xref: /openbmc/linux/arch/sparc/kernel/of_device_64.c (revision b8bb76713ec50df2f11efee386e16f93d51e1076)
1 #include <linux/string.h>
2 #include <linux/kernel.h>
3 #include <linux/of.h>
4 #include <linux/init.h>
5 #include <linux/module.h>
6 #include <linux/mod_devicetable.h>
7 #include <linux/slab.h>
8 #include <linux/errno.h>
9 #include <linux/irq.h>
10 #include <linux/of_device.h>
11 #include <linux/of_platform.h>
12 
13 void __iomem *of_ioremap(struct resource *res, unsigned long offset, unsigned long size, char *name)
14 {
15 	unsigned long ret = res->start + offset;
16 	struct resource *r;
17 
18 	if (res->flags & IORESOURCE_MEM)
19 		r = request_mem_region(ret, size, name);
20 	else
21 		r = request_region(ret, size, name);
22 	if (!r)
23 		ret = 0;
24 
25 	return (void __iomem *) ret;
26 }
27 EXPORT_SYMBOL(of_ioremap);
28 
29 void of_iounmap(struct resource *res, void __iomem *base, unsigned long size)
30 {
31 	if (res->flags & IORESOURCE_MEM)
32 		release_mem_region((unsigned long) base, size);
33 	else
34 		release_region((unsigned long) base, size);
35 }
36 EXPORT_SYMBOL(of_iounmap);
37 
38 static int node_match(struct device *dev, void *data)
39 {
40 	struct of_device *op = to_of_device(dev);
41 	struct device_node *dp = data;
42 
43 	return (op->node == dp);
44 }
45 
46 struct of_device *of_find_device_by_node(struct device_node *dp)
47 {
48 	struct device *dev = bus_find_device(&of_platform_bus_type, NULL,
49 					     dp, node_match);
50 
51 	if (dev)
52 		return to_of_device(dev);
53 
54 	return NULL;
55 }
56 EXPORT_SYMBOL(of_find_device_by_node);
57 
58 unsigned int irq_of_parse_and_map(struct device_node *node, int index)
59 {
60 	struct of_device *op = of_find_device_by_node(node);
61 
62 	if (!op || index >= op->num_irqs)
63 		return 0;
64 
65 	return op->irqs[index];
66 }
67 EXPORT_SYMBOL(irq_of_parse_and_map);
68 
69 /* Take the archdata values for IOMMU, STC, and HOSTDATA found in
70  * BUS and propagate to all child of_device objects.
71  */
72 void of_propagate_archdata(struct of_device *bus)
73 {
74 	struct dev_archdata *bus_sd = &bus->dev.archdata;
75 	struct device_node *bus_dp = bus->node;
76 	struct device_node *dp;
77 
78 	for (dp = bus_dp->child; dp; dp = dp->sibling) {
79 		struct of_device *op = of_find_device_by_node(dp);
80 
81 		op->dev.archdata.iommu = bus_sd->iommu;
82 		op->dev.archdata.stc = bus_sd->stc;
83 		op->dev.archdata.host_controller = bus_sd->host_controller;
84 		op->dev.archdata.numa_node = bus_sd->numa_node;
85 
86 		if (dp->child)
87 			of_propagate_archdata(op);
88 	}
89 }
90 
91 struct bus_type of_platform_bus_type;
92 EXPORT_SYMBOL(of_platform_bus_type);
93 
94 static inline u64 of_read_addr(const u32 *cell, int size)
95 {
96 	u64 r = 0;
97 	while (size--)
98 		r = (r << 32) | *(cell++);
99 	return r;
100 }
101 
102 static void __init get_cells(struct device_node *dp,
103 			     int *addrc, int *sizec)
104 {
105 	if (addrc)
106 		*addrc = of_n_addr_cells(dp);
107 	if (sizec)
108 		*sizec = of_n_size_cells(dp);
109 }
110 
111 /* Max address size we deal with */
112 #define OF_MAX_ADDR_CELLS	4
113 
114 struct of_bus {
115 	const char	*name;
116 	const char	*addr_prop_name;
117 	int		(*match)(struct device_node *parent);
118 	void		(*count_cells)(struct device_node *child,
119 				       int *addrc, int *sizec);
120 	int		(*map)(u32 *addr, const u32 *range,
121 			       int na, int ns, int pna);
122 	unsigned long	(*get_flags)(const u32 *addr, unsigned long);
123 };
124 
125 /*
126  * Default translator (generic bus)
127  */
128 
129 static void of_bus_default_count_cells(struct device_node *dev,
130 				       int *addrc, int *sizec)
131 {
132 	get_cells(dev, addrc, sizec);
133 }
134 
135 /* Make sure the least significant 64-bits are in-range.  Even
136  * for 3 or 4 cell values it is a good enough approximation.
137  */
138 static int of_out_of_range(const u32 *addr, const u32 *base,
139 			   const u32 *size, int na, int ns)
140 {
141 	u64 a = of_read_addr(addr, na);
142 	u64 b = of_read_addr(base, na);
143 
144 	if (a < b)
145 		return 1;
146 
147 	b += of_read_addr(size, ns);
148 	if (a >= b)
149 		return 1;
150 
151 	return 0;
152 }
153 
154 static int of_bus_default_map(u32 *addr, const u32 *range,
155 			      int na, int ns, int pna)
156 {
157 	u32 result[OF_MAX_ADDR_CELLS];
158 	int i;
159 
160 	if (ns > 2) {
161 		printk("of_device: Cannot handle size cells (%d) > 2.", ns);
162 		return -EINVAL;
163 	}
164 
165 	if (of_out_of_range(addr, range, range + na + pna, na, ns))
166 		return -EINVAL;
167 
168 	/* Start with the parent range base.  */
169 	memcpy(result, range + na, pna * 4);
170 
171 	/* Add in the child address offset.  */
172 	for (i = 0; i < na; i++)
173 		result[pna - 1 - i] +=
174 			(addr[na - 1 - i] -
175 			 range[na - 1 - i]);
176 
177 	memcpy(addr, result, pna * 4);
178 
179 	return 0;
180 }
181 
182 static unsigned long of_bus_default_get_flags(const u32 *addr, unsigned long flags)
183 {
184 	if (flags)
185 		return flags;
186 	return IORESOURCE_MEM;
187 }
188 
189 /*
190  * PCI bus specific translator
191  */
192 
193 static int of_bus_pci_match(struct device_node *np)
194 {
195 	if (!strcmp(np->name, "pci")) {
196 		const char *model = of_get_property(np, "model", NULL);
197 
198 		if (model && !strcmp(model, "SUNW,simba"))
199 			return 0;
200 
201 		/* Do not do PCI specific frobbing if the
202 		 * PCI bridge lacks a ranges property.  We
203 		 * want to pass it through up to the next
204 		 * parent as-is, not with the PCI translate
205 		 * method which chops off the top address cell.
206 		 */
207 		if (!of_find_property(np, "ranges", NULL))
208 			return 0;
209 
210 		return 1;
211 	}
212 
213 	return 0;
214 }
215 
216 static int of_bus_simba_match(struct device_node *np)
217 {
218 	const char *model = of_get_property(np, "model", NULL);
219 
220 	if (model && !strcmp(model, "SUNW,simba"))
221 		return 1;
222 
223 	/* Treat PCI busses lacking ranges property just like
224 	 * simba.
225 	 */
226 	if (!strcmp(np->name, "pci")) {
227 		if (!of_find_property(np, "ranges", NULL))
228 			return 1;
229 	}
230 
231 	return 0;
232 }
233 
234 static int of_bus_simba_map(u32 *addr, const u32 *range,
235 			    int na, int ns, int pna)
236 {
237 	return 0;
238 }
239 
240 static void of_bus_pci_count_cells(struct device_node *np,
241 				   int *addrc, int *sizec)
242 {
243 	if (addrc)
244 		*addrc = 3;
245 	if (sizec)
246 		*sizec = 2;
247 }
248 
249 static int of_bus_pci_map(u32 *addr, const u32 *range,
250 			  int na, int ns, int pna)
251 {
252 	u32 result[OF_MAX_ADDR_CELLS];
253 	int i;
254 
255 	/* Check address type match */
256 	if ((addr[0] ^ range[0]) & 0x03000000)
257 		return -EINVAL;
258 
259 	if (of_out_of_range(addr + 1, range + 1, range + na + pna,
260 			    na - 1, ns))
261 		return -EINVAL;
262 
263 	/* Start with the parent range base.  */
264 	memcpy(result, range + na, pna * 4);
265 
266 	/* Add in the child address offset, skipping high cell.  */
267 	for (i = 0; i < na - 1; i++)
268 		result[pna - 1 - i] +=
269 			(addr[na - 1 - i] -
270 			 range[na - 1 - i]);
271 
272 	memcpy(addr, result, pna * 4);
273 
274 	return 0;
275 }
276 
277 static unsigned long of_bus_pci_get_flags(const u32 *addr, unsigned long flags)
278 {
279 	u32 w = addr[0];
280 
281 	/* For PCI, we override whatever child busses may have used.  */
282 	flags = 0;
283 	switch((w >> 24) & 0x03) {
284 	case 0x01:
285 		flags |= IORESOURCE_IO;
286 		break;
287 
288 	case 0x02: /* 32 bits */
289 	case 0x03: /* 64 bits */
290 		flags |= IORESOURCE_MEM;
291 		break;
292 	}
293 	if (w & 0x40000000)
294 		flags |= IORESOURCE_PREFETCH;
295 	return flags;
296 }
297 
298 /*
299  * SBUS bus specific translator
300  */
301 
302 static int of_bus_sbus_match(struct device_node *np)
303 {
304 	return !strcmp(np->name, "sbus") ||
305 		!strcmp(np->name, "sbi");
306 }
307 
308 static void of_bus_sbus_count_cells(struct device_node *child,
309 				   int *addrc, int *sizec)
310 {
311 	if (addrc)
312 		*addrc = 2;
313 	if (sizec)
314 		*sizec = 1;
315 }
316 
317 /*
318  * FHC/Central bus specific translator.
319  *
320  * This is just needed to hard-code the address and size cell
321  * counts.  'fhc' and 'central' nodes lack the #address-cells and
322  * #size-cells properties, and if you walk to the root on such
323  * Enterprise boxes all you'll get is a #size-cells of 2 which is
324  * not what we want to use.
325  */
326 static int of_bus_fhc_match(struct device_node *np)
327 {
328 	return !strcmp(np->name, "fhc") ||
329 		!strcmp(np->name, "central");
330 }
331 
332 #define of_bus_fhc_count_cells of_bus_sbus_count_cells
333 
334 /*
335  * Array of bus specific translators
336  */
337 
338 static struct of_bus of_busses[] = {
339 	/* PCI */
340 	{
341 		.name = "pci",
342 		.addr_prop_name = "assigned-addresses",
343 		.match = of_bus_pci_match,
344 		.count_cells = of_bus_pci_count_cells,
345 		.map = of_bus_pci_map,
346 		.get_flags = of_bus_pci_get_flags,
347 	},
348 	/* SIMBA */
349 	{
350 		.name = "simba",
351 		.addr_prop_name = "assigned-addresses",
352 		.match = of_bus_simba_match,
353 		.count_cells = of_bus_pci_count_cells,
354 		.map = of_bus_simba_map,
355 		.get_flags = of_bus_pci_get_flags,
356 	},
357 	/* SBUS */
358 	{
359 		.name = "sbus",
360 		.addr_prop_name = "reg",
361 		.match = of_bus_sbus_match,
362 		.count_cells = of_bus_sbus_count_cells,
363 		.map = of_bus_default_map,
364 		.get_flags = of_bus_default_get_flags,
365 	},
366 	/* FHC */
367 	{
368 		.name = "fhc",
369 		.addr_prop_name = "reg",
370 		.match = of_bus_fhc_match,
371 		.count_cells = of_bus_fhc_count_cells,
372 		.map = of_bus_default_map,
373 		.get_flags = of_bus_default_get_flags,
374 	},
375 	/* Default */
376 	{
377 		.name = "default",
378 		.addr_prop_name = "reg",
379 		.match = NULL,
380 		.count_cells = of_bus_default_count_cells,
381 		.map = of_bus_default_map,
382 		.get_flags = of_bus_default_get_flags,
383 	},
384 };
385 
386 static struct of_bus *of_match_bus(struct device_node *np)
387 {
388 	int i;
389 
390 	for (i = 0; i < ARRAY_SIZE(of_busses); i ++)
391 		if (!of_busses[i].match || of_busses[i].match(np))
392 			return &of_busses[i];
393 	BUG();
394 	return NULL;
395 }
396 
397 static int __init build_one_resource(struct device_node *parent,
398 				     struct of_bus *bus,
399 				     struct of_bus *pbus,
400 				     u32 *addr,
401 				     int na, int ns, int pna)
402 {
403 	const u32 *ranges;
404 	int rone, rlen;
405 
406 	ranges = of_get_property(parent, "ranges", &rlen);
407 	if (ranges == NULL || rlen == 0) {
408 		u32 result[OF_MAX_ADDR_CELLS];
409 		int i;
410 
411 		memset(result, 0, pna * 4);
412 		for (i = 0; i < na; i++)
413 			result[pna - 1 - i] =
414 				addr[na - 1 - i];
415 
416 		memcpy(addr, result, pna * 4);
417 		return 0;
418 	}
419 
420 	/* Now walk through the ranges */
421 	rlen /= 4;
422 	rone = na + pna + ns;
423 	for (; rlen >= rone; rlen -= rone, ranges += rone) {
424 		if (!bus->map(addr, ranges, na, ns, pna))
425 			return 0;
426 	}
427 
428 	/* When we miss an I/O space match on PCI, just pass it up
429 	 * to the next PCI bridge and/or controller.
430 	 */
431 	if (!strcmp(bus->name, "pci") &&
432 	    (addr[0] & 0x03000000) == 0x01000000)
433 		return 0;
434 
435 	return 1;
436 }
437 
438 static int __init use_1to1_mapping(struct device_node *pp)
439 {
440 	/* If we have a ranges property in the parent, use it.  */
441 	if (of_find_property(pp, "ranges", NULL) != NULL)
442 		return 0;
443 
444 	/* If the parent is the dma node of an ISA bus, pass
445 	 * the translation up to the root.
446 	 *
447 	 * Some SBUS devices use intermediate nodes to express
448 	 * hierarchy within the device itself.  These aren't
449 	 * real bus nodes, and don't have a 'ranges' property.
450 	 * But, we should still pass the translation work up
451 	 * to the SBUS itself.
452 	 */
453 	if (!strcmp(pp->name, "dma") ||
454 	    !strcmp(pp->name, "espdma") ||
455 	    !strcmp(pp->name, "ledma") ||
456 	    !strcmp(pp->name, "lebuffer"))
457 		return 0;
458 
459 	/* Similarly for all PCI bridges, if we get this far
460 	 * it lacks a ranges property, and this will include
461 	 * cases like Simba.
462 	 */
463 	if (!strcmp(pp->name, "pci"))
464 		return 0;
465 
466 	return 1;
467 }
468 
469 static int of_resource_verbose;
470 
471 static void __init build_device_resources(struct of_device *op,
472 					  struct device *parent)
473 {
474 	struct of_device *p_op;
475 	struct of_bus *bus;
476 	int na, ns;
477 	int index, num_reg;
478 	const void *preg;
479 
480 	if (!parent)
481 		return;
482 
483 	p_op = to_of_device(parent);
484 	bus = of_match_bus(p_op->node);
485 	bus->count_cells(op->node, &na, &ns);
486 
487 	preg = of_get_property(op->node, bus->addr_prop_name, &num_reg);
488 	if (!preg || num_reg == 0)
489 		return;
490 
491 	/* Convert to num-cells.  */
492 	num_reg /= 4;
493 
494 	/* Convert to num-entries.  */
495 	num_reg /= na + ns;
496 
497 	/* Prevent overrunning the op->resources[] array.  */
498 	if (num_reg > PROMREG_MAX) {
499 		printk(KERN_WARNING "%s: Too many regs (%d), "
500 		       "limiting to %d.\n",
501 		       op->node->full_name, num_reg, PROMREG_MAX);
502 		num_reg = PROMREG_MAX;
503 	}
504 
505 	for (index = 0; index < num_reg; index++) {
506 		struct resource *r = &op->resource[index];
507 		u32 addr[OF_MAX_ADDR_CELLS];
508 		const u32 *reg = (preg + (index * ((na + ns) * 4)));
509 		struct device_node *dp = op->node;
510 		struct device_node *pp = p_op->node;
511 		struct of_bus *pbus, *dbus;
512 		u64 size, result = OF_BAD_ADDR;
513 		unsigned long flags;
514 		int dna, dns;
515 		int pna, pns;
516 
517 		size = of_read_addr(reg + na, ns);
518 		memcpy(addr, reg, na * 4);
519 
520 		flags = bus->get_flags(addr, 0);
521 
522 		if (use_1to1_mapping(pp)) {
523 			result = of_read_addr(addr, na);
524 			goto build_res;
525 		}
526 
527 		dna = na;
528 		dns = ns;
529 		dbus = bus;
530 
531 		while (1) {
532 			dp = pp;
533 			pp = dp->parent;
534 			if (!pp) {
535 				result = of_read_addr(addr, dna);
536 				break;
537 			}
538 
539 			pbus = of_match_bus(pp);
540 			pbus->count_cells(dp, &pna, &pns);
541 
542 			if (build_one_resource(dp, dbus, pbus, addr,
543 					       dna, dns, pna))
544 				break;
545 
546 			flags = pbus->get_flags(addr, flags);
547 
548 			dna = pna;
549 			dns = pns;
550 			dbus = pbus;
551 		}
552 
553 	build_res:
554 		memset(r, 0, sizeof(*r));
555 
556 		if (of_resource_verbose)
557 			printk("%s reg[%d] -> %llx\n",
558 			       op->node->full_name, index,
559 			       result);
560 
561 		if (result != OF_BAD_ADDR) {
562 			if (tlb_type == hypervisor)
563 				result &= 0x0fffffffffffffffUL;
564 
565 			r->start = result;
566 			r->end = result + size - 1;
567 			r->flags = flags;
568 		}
569 		r->name = op->node->name;
570 	}
571 }
572 
573 static struct device_node * __init
574 apply_interrupt_map(struct device_node *dp, struct device_node *pp,
575 		    const u32 *imap, int imlen, const u32 *imask,
576 		    unsigned int *irq_p)
577 {
578 	struct device_node *cp;
579 	unsigned int irq = *irq_p;
580 	struct of_bus *bus;
581 	phandle handle;
582 	const u32 *reg;
583 	int na, num_reg, i;
584 
585 	bus = of_match_bus(pp);
586 	bus->count_cells(dp, &na, NULL);
587 
588 	reg = of_get_property(dp, "reg", &num_reg);
589 	if (!reg || !num_reg)
590 		return NULL;
591 
592 	imlen /= ((na + 3) * 4);
593 	handle = 0;
594 	for (i = 0; i < imlen; i++) {
595 		int j;
596 
597 		for (j = 0; j < na; j++) {
598 			if ((reg[j] & imask[j]) != imap[j])
599 				goto next;
600 		}
601 		if (imap[na] == irq) {
602 			handle = imap[na + 1];
603 			irq = imap[na + 2];
604 			break;
605 		}
606 
607 	next:
608 		imap += (na + 3);
609 	}
610 	if (i == imlen) {
611 		/* Psycho and Sabre PCI controllers can have 'interrupt-map'
612 		 * properties that do not include the on-board device
613 		 * interrupts.  Instead, the device's 'interrupts' property
614 		 * is already a fully specified INO value.
615 		 *
616 		 * Handle this by deciding that, if we didn't get a
617 		 * match in the parent's 'interrupt-map', and the
618 		 * parent is an IRQ translater, then use the parent as
619 		 * our IRQ controller.
620 		 */
621 		if (pp->irq_trans)
622 			return pp;
623 
624 		return NULL;
625 	}
626 
627 	*irq_p = irq;
628 	cp = of_find_node_by_phandle(handle);
629 
630 	return cp;
631 }
632 
633 static unsigned int __init pci_irq_swizzle(struct device_node *dp,
634 					   struct device_node *pp,
635 					   unsigned int irq)
636 {
637 	const struct linux_prom_pci_registers *regs;
638 	unsigned int bus, devfn, slot, ret;
639 
640 	if (irq < 1 || irq > 4)
641 		return irq;
642 
643 	regs = of_get_property(dp, "reg", NULL);
644 	if (!regs)
645 		return irq;
646 
647 	bus = (regs->phys_hi >> 16) & 0xff;
648 	devfn = (regs->phys_hi >> 8) & 0xff;
649 	slot = (devfn >> 3) & 0x1f;
650 
651 	if (pp->irq_trans) {
652 		/* Derived from Table 8-3, U2P User's Manual.  This branch
653 		 * is handling a PCI controller that lacks a proper set of
654 		 * interrupt-map and interrupt-map-mask properties.  The
655 		 * Ultra-E450 is one example.
656 		 *
657 		 * The bit layout is BSSLL, where:
658 		 * B: 0 on bus A, 1 on bus B
659 		 * D: 2-bit slot number, derived from PCI device number as
660 		 *    (dev - 1) for bus A, or (dev - 2) for bus B
661 		 * L: 2-bit line number
662 		 */
663 		if (bus & 0x80) {
664 			/* PBM-A */
665 			bus  = 0x00;
666 			slot = (slot - 1) << 2;
667 		} else {
668 			/* PBM-B */
669 			bus  = 0x10;
670 			slot = (slot - 2) << 2;
671 		}
672 		irq -= 1;
673 
674 		ret = (bus | slot | irq);
675 	} else {
676 		/* Going through a PCI-PCI bridge that lacks a set of
677 		 * interrupt-map and interrupt-map-mask properties.
678 		 */
679 		ret = ((irq - 1 + (slot & 3)) & 3) + 1;
680 	}
681 
682 	return ret;
683 }
684 
685 static int of_irq_verbose;
686 
687 static unsigned int __init build_one_device_irq(struct of_device *op,
688 						struct device *parent,
689 						unsigned int irq)
690 {
691 	struct device_node *dp = op->node;
692 	struct device_node *pp, *ip;
693 	unsigned int orig_irq = irq;
694 	int nid;
695 
696 	if (irq == 0xffffffff)
697 		return irq;
698 
699 	if (dp->irq_trans) {
700 		irq = dp->irq_trans->irq_build(dp, irq,
701 					       dp->irq_trans->data);
702 
703 		if (of_irq_verbose)
704 			printk("%s: direct translate %x --> %x\n",
705 			       dp->full_name, orig_irq, irq);
706 
707 		goto out;
708 	}
709 
710 	/* Something more complicated.  Walk up to the root, applying
711 	 * interrupt-map or bus specific translations, until we hit
712 	 * an IRQ translator.
713 	 *
714 	 * If we hit a bus type or situation we cannot handle, we
715 	 * stop and assume that the original IRQ number was in a
716 	 * format which has special meaning to it's immediate parent.
717 	 */
718 	pp = dp->parent;
719 	ip = NULL;
720 	while (pp) {
721 		const void *imap, *imsk;
722 		int imlen;
723 
724 		imap = of_get_property(pp, "interrupt-map", &imlen);
725 		imsk = of_get_property(pp, "interrupt-map-mask", NULL);
726 		if (imap && imsk) {
727 			struct device_node *iret;
728 			int this_orig_irq = irq;
729 
730 			iret = apply_interrupt_map(dp, pp,
731 						   imap, imlen, imsk,
732 						   &irq);
733 
734 			if (of_irq_verbose)
735 				printk("%s: Apply [%s:%x] imap --> [%s:%x]\n",
736 				       op->node->full_name,
737 				       pp->full_name, this_orig_irq,
738 				       (iret ? iret->full_name : "NULL"), irq);
739 
740 			if (!iret)
741 				break;
742 
743 			if (iret->irq_trans) {
744 				ip = iret;
745 				break;
746 			}
747 		} else {
748 			if (!strcmp(pp->name, "pci")) {
749 				unsigned int this_orig_irq = irq;
750 
751 				irq = pci_irq_swizzle(dp, pp, irq);
752 				if (of_irq_verbose)
753 					printk("%s: PCI swizzle [%s] "
754 					       "%x --> %x\n",
755 					       op->node->full_name,
756 					       pp->full_name, this_orig_irq,
757 					       irq);
758 
759 			}
760 
761 			if (pp->irq_trans) {
762 				ip = pp;
763 				break;
764 			}
765 		}
766 		dp = pp;
767 		pp = pp->parent;
768 	}
769 	if (!ip)
770 		return orig_irq;
771 
772 	irq = ip->irq_trans->irq_build(op->node, irq,
773 				       ip->irq_trans->data);
774 	if (of_irq_verbose)
775 		printk("%s: Apply IRQ trans [%s] %x --> %x\n",
776 		       op->node->full_name, ip->full_name, orig_irq, irq);
777 
778 out:
779 	nid = of_node_to_nid(dp);
780 	if (nid != -1) {
781 		cpumask_t numa_mask = *cpumask_of_node(nid);
782 
783 		irq_set_affinity(irq, &numa_mask);
784 	}
785 
786 	return irq;
787 }
788 
789 static struct of_device * __init scan_one_device(struct device_node *dp,
790 						 struct device *parent)
791 {
792 	struct of_device *op = kzalloc(sizeof(*op), GFP_KERNEL);
793 	const unsigned int *irq;
794 	struct dev_archdata *sd;
795 	int len, i;
796 
797 	if (!op)
798 		return NULL;
799 
800 	sd = &op->dev.archdata;
801 	sd->prom_node = dp;
802 	sd->op = op;
803 
804 	op->node = dp;
805 
806 	op->clock_freq = of_getintprop_default(dp, "clock-frequency",
807 					       (25*1000*1000));
808 	op->portid = of_getintprop_default(dp, "upa-portid", -1);
809 	if (op->portid == -1)
810 		op->portid = of_getintprop_default(dp, "portid", -1);
811 
812 	irq = of_get_property(dp, "interrupts", &len);
813 	if (irq) {
814 		op->num_irqs = len / 4;
815 
816 		/* Prevent overrunning the op->irqs[] array.  */
817 		if (op->num_irqs > PROMINTR_MAX) {
818 			printk(KERN_WARNING "%s: Too many irqs (%d), "
819 			       "limiting to %d.\n",
820 			       dp->full_name, op->num_irqs, PROMINTR_MAX);
821 			op->num_irqs = PROMINTR_MAX;
822 		}
823 		memcpy(op->irqs, irq, op->num_irqs * 4);
824 	} else {
825 		op->num_irqs = 0;
826 	}
827 
828 	build_device_resources(op, parent);
829 	for (i = 0; i < op->num_irqs; i++)
830 		op->irqs[i] = build_one_device_irq(op, parent, op->irqs[i]);
831 
832 	op->dev.parent = parent;
833 	op->dev.bus = &of_platform_bus_type;
834 	if (!parent)
835 		dev_set_name(&op->dev, "root");
836 	else
837 		dev_set_name(&op->dev, "%08x", dp->node);
838 
839 	if (of_device_register(op)) {
840 		printk("%s: Could not register of device.\n",
841 		       dp->full_name);
842 		kfree(op);
843 		op = NULL;
844 	}
845 
846 	return op;
847 }
848 
849 static void __init scan_tree(struct device_node *dp, struct device *parent)
850 {
851 	while (dp) {
852 		struct of_device *op = scan_one_device(dp, parent);
853 
854 		if (op)
855 			scan_tree(dp->child, &op->dev);
856 
857 		dp = dp->sibling;
858 	}
859 }
860 
861 static void __init scan_of_devices(void)
862 {
863 	struct device_node *root = of_find_node_by_path("/");
864 	struct of_device *parent;
865 
866 	parent = scan_one_device(root, NULL);
867 	if (!parent)
868 		return;
869 
870 	scan_tree(root->child, &parent->dev);
871 }
872 
873 static int __init of_bus_driver_init(void)
874 {
875 	int err;
876 
877 	err = of_bus_type_init(&of_platform_bus_type, "of");
878 	if (!err)
879 		scan_of_devices();
880 
881 	return err;
882 }
883 
884 postcore_initcall(of_bus_driver_init);
885 
886 static int __init of_debug(char *str)
887 {
888 	int val = 0;
889 
890 	get_option(&str, &val);
891 	if (val & 1)
892 		of_resource_verbose = 1;
893 	if (val & 2)
894 		of_irq_verbose = 1;
895 	return 1;
896 }
897 
898 __setup("of_debug=", of_debug);
899