1 #include <linux/string.h> 2 #include <linux/kernel.h> 3 #include <linux/of.h> 4 #include <linux/init.h> 5 #include <linux/module.h> 6 #include <linux/mod_devicetable.h> 7 #include <linux/slab.h> 8 #include <linux/errno.h> 9 #include <linux/irq.h> 10 #include <linux/of_device.h> 11 #include <linux/of_platform.h> 12 13 void __iomem *of_ioremap(struct resource *res, unsigned long offset, unsigned long size, char *name) 14 { 15 unsigned long ret = res->start + offset; 16 struct resource *r; 17 18 if (res->flags & IORESOURCE_MEM) 19 r = request_mem_region(ret, size, name); 20 else 21 r = request_region(ret, size, name); 22 if (!r) 23 ret = 0; 24 25 return (void __iomem *) ret; 26 } 27 EXPORT_SYMBOL(of_ioremap); 28 29 void of_iounmap(struct resource *res, void __iomem *base, unsigned long size) 30 { 31 if (res->flags & IORESOURCE_MEM) 32 release_mem_region((unsigned long) base, size); 33 else 34 release_region((unsigned long) base, size); 35 } 36 EXPORT_SYMBOL(of_iounmap); 37 38 static int node_match(struct device *dev, void *data) 39 { 40 struct of_device *op = to_of_device(dev); 41 struct device_node *dp = data; 42 43 return (op->node == dp); 44 } 45 46 struct of_device *of_find_device_by_node(struct device_node *dp) 47 { 48 struct device *dev = bus_find_device(&of_platform_bus_type, NULL, 49 dp, node_match); 50 51 if (dev) 52 return to_of_device(dev); 53 54 return NULL; 55 } 56 EXPORT_SYMBOL(of_find_device_by_node); 57 58 unsigned int irq_of_parse_and_map(struct device_node *node, int index) 59 { 60 struct of_device *op = of_find_device_by_node(node); 61 62 if (!op || index >= op->num_irqs) 63 return 0; 64 65 return op->irqs[index]; 66 } 67 EXPORT_SYMBOL(irq_of_parse_and_map); 68 69 /* Take the archdata values for IOMMU, STC, and HOSTDATA found in 70 * BUS and propagate to all child of_device objects. 71 */ 72 void of_propagate_archdata(struct of_device *bus) 73 { 74 struct dev_archdata *bus_sd = &bus->dev.archdata; 75 struct device_node *bus_dp = bus->node; 76 struct device_node *dp; 77 78 for (dp = bus_dp->child; dp; dp = dp->sibling) { 79 struct of_device *op = of_find_device_by_node(dp); 80 81 op->dev.archdata.iommu = bus_sd->iommu; 82 op->dev.archdata.stc = bus_sd->stc; 83 op->dev.archdata.host_controller = bus_sd->host_controller; 84 op->dev.archdata.numa_node = bus_sd->numa_node; 85 86 if (dp->child) 87 of_propagate_archdata(op); 88 } 89 } 90 91 struct bus_type of_platform_bus_type; 92 EXPORT_SYMBOL(of_platform_bus_type); 93 94 static inline u64 of_read_addr(const u32 *cell, int size) 95 { 96 u64 r = 0; 97 while (size--) 98 r = (r << 32) | *(cell++); 99 return r; 100 } 101 102 static void get_cells(struct device_node *dp, int *addrc, int *sizec) 103 { 104 if (addrc) 105 *addrc = of_n_addr_cells(dp); 106 if (sizec) 107 *sizec = of_n_size_cells(dp); 108 } 109 110 /* Max address size we deal with */ 111 #define OF_MAX_ADDR_CELLS 4 112 113 struct of_bus { 114 const char *name; 115 const char *addr_prop_name; 116 int (*match)(struct device_node *parent); 117 void (*count_cells)(struct device_node *child, 118 int *addrc, int *sizec); 119 int (*map)(u32 *addr, const u32 *range, 120 int na, int ns, int pna); 121 unsigned long (*get_flags)(const u32 *addr, unsigned long); 122 }; 123 124 /* 125 * Default translator (generic bus) 126 */ 127 128 static void of_bus_default_count_cells(struct device_node *dev, 129 int *addrc, int *sizec) 130 { 131 get_cells(dev, addrc, sizec); 132 } 133 134 /* Make sure the least significant 64-bits are in-range. Even 135 * for 3 or 4 cell values it is a good enough approximation. 136 */ 137 static int of_out_of_range(const u32 *addr, const u32 *base, 138 const u32 *size, int na, int ns) 139 { 140 u64 a = of_read_addr(addr, na); 141 u64 b = of_read_addr(base, na); 142 143 if (a < b) 144 return 1; 145 146 b += of_read_addr(size, ns); 147 if (a >= b) 148 return 1; 149 150 return 0; 151 } 152 153 static int of_bus_default_map(u32 *addr, const u32 *range, 154 int na, int ns, int pna) 155 { 156 u32 result[OF_MAX_ADDR_CELLS]; 157 int i; 158 159 if (ns > 2) { 160 printk("of_device: Cannot handle size cells (%d) > 2.", ns); 161 return -EINVAL; 162 } 163 164 if (of_out_of_range(addr, range, range + na + pna, na, ns)) 165 return -EINVAL; 166 167 /* Start with the parent range base. */ 168 memcpy(result, range + na, pna * 4); 169 170 /* Add in the child address offset. */ 171 for (i = 0; i < na; i++) 172 result[pna - 1 - i] += 173 (addr[na - 1 - i] - 174 range[na - 1 - i]); 175 176 memcpy(addr, result, pna * 4); 177 178 return 0; 179 } 180 181 static unsigned long of_bus_default_get_flags(const u32 *addr, unsigned long flags) 182 { 183 if (flags) 184 return flags; 185 return IORESOURCE_MEM; 186 } 187 188 /* 189 * PCI bus specific translator 190 */ 191 192 static int of_bus_pci_match(struct device_node *np) 193 { 194 if (!strcmp(np->name, "pci")) { 195 const char *model = of_get_property(np, "model", NULL); 196 197 if (model && !strcmp(model, "SUNW,simba")) 198 return 0; 199 200 /* Do not do PCI specific frobbing if the 201 * PCI bridge lacks a ranges property. We 202 * want to pass it through up to the next 203 * parent as-is, not with the PCI translate 204 * method which chops off the top address cell. 205 */ 206 if (!of_find_property(np, "ranges", NULL)) 207 return 0; 208 209 return 1; 210 } 211 212 return 0; 213 } 214 215 static int of_bus_simba_match(struct device_node *np) 216 { 217 const char *model = of_get_property(np, "model", NULL); 218 219 if (model && !strcmp(model, "SUNW,simba")) 220 return 1; 221 222 /* Treat PCI busses lacking ranges property just like 223 * simba. 224 */ 225 if (!strcmp(np->name, "pci")) { 226 if (!of_find_property(np, "ranges", NULL)) 227 return 1; 228 } 229 230 return 0; 231 } 232 233 static int of_bus_simba_map(u32 *addr, const u32 *range, 234 int na, int ns, int pna) 235 { 236 return 0; 237 } 238 239 static void of_bus_pci_count_cells(struct device_node *np, 240 int *addrc, int *sizec) 241 { 242 if (addrc) 243 *addrc = 3; 244 if (sizec) 245 *sizec = 2; 246 } 247 248 static int of_bus_pci_map(u32 *addr, const u32 *range, 249 int na, int ns, int pna) 250 { 251 u32 result[OF_MAX_ADDR_CELLS]; 252 int i; 253 254 /* Check address type match */ 255 if ((addr[0] ^ range[0]) & 0x03000000) 256 return -EINVAL; 257 258 if (of_out_of_range(addr + 1, range + 1, range + na + pna, 259 na - 1, ns)) 260 return -EINVAL; 261 262 /* Start with the parent range base. */ 263 memcpy(result, range + na, pna * 4); 264 265 /* Add in the child address offset, skipping high cell. */ 266 for (i = 0; i < na - 1; i++) 267 result[pna - 1 - i] += 268 (addr[na - 1 - i] - 269 range[na - 1 - i]); 270 271 memcpy(addr, result, pna * 4); 272 273 return 0; 274 } 275 276 static unsigned long of_bus_pci_get_flags(const u32 *addr, unsigned long flags) 277 { 278 u32 w = addr[0]; 279 280 /* For PCI, we override whatever child busses may have used. */ 281 flags = 0; 282 switch((w >> 24) & 0x03) { 283 case 0x01: 284 flags |= IORESOURCE_IO; 285 break; 286 287 case 0x02: /* 32 bits */ 288 case 0x03: /* 64 bits */ 289 flags |= IORESOURCE_MEM; 290 break; 291 } 292 if (w & 0x40000000) 293 flags |= IORESOURCE_PREFETCH; 294 return flags; 295 } 296 297 /* 298 * SBUS bus specific translator 299 */ 300 301 static int of_bus_sbus_match(struct device_node *np) 302 { 303 return !strcmp(np->name, "sbus") || 304 !strcmp(np->name, "sbi"); 305 } 306 307 static void of_bus_sbus_count_cells(struct device_node *child, 308 int *addrc, int *sizec) 309 { 310 if (addrc) 311 *addrc = 2; 312 if (sizec) 313 *sizec = 1; 314 } 315 316 /* 317 * FHC/Central bus specific translator. 318 * 319 * This is just needed to hard-code the address and size cell 320 * counts. 'fhc' and 'central' nodes lack the #address-cells and 321 * #size-cells properties, and if you walk to the root on such 322 * Enterprise boxes all you'll get is a #size-cells of 2 which is 323 * not what we want to use. 324 */ 325 static int of_bus_fhc_match(struct device_node *np) 326 { 327 return !strcmp(np->name, "fhc") || 328 !strcmp(np->name, "central"); 329 } 330 331 #define of_bus_fhc_count_cells of_bus_sbus_count_cells 332 333 /* 334 * Array of bus specific translators 335 */ 336 337 static struct of_bus of_busses[] = { 338 /* PCI */ 339 { 340 .name = "pci", 341 .addr_prop_name = "assigned-addresses", 342 .match = of_bus_pci_match, 343 .count_cells = of_bus_pci_count_cells, 344 .map = of_bus_pci_map, 345 .get_flags = of_bus_pci_get_flags, 346 }, 347 /* SIMBA */ 348 { 349 .name = "simba", 350 .addr_prop_name = "assigned-addresses", 351 .match = of_bus_simba_match, 352 .count_cells = of_bus_pci_count_cells, 353 .map = of_bus_simba_map, 354 .get_flags = of_bus_pci_get_flags, 355 }, 356 /* SBUS */ 357 { 358 .name = "sbus", 359 .addr_prop_name = "reg", 360 .match = of_bus_sbus_match, 361 .count_cells = of_bus_sbus_count_cells, 362 .map = of_bus_default_map, 363 .get_flags = of_bus_default_get_flags, 364 }, 365 /* FHC */ 366 { 367 .name = "fhc", 368 .addr_prop_name = "reg", 369 .match = of_bus_fhc_match, 370 .count_cells = of_bus_fhc_count_cells, 371 .map = of_bus_default_map, 372 .get_flags = of_bus_default_get_flags, 373 }, 374 /* Default */ 375 { 376 .name = "default", 377 .addr_prop_name = "reg", 378 .match = NULL, 379 .count_cells = of_bus_default_count_cells, 380 .map = of_bus_default_map, 381 .get_flags = of_bus_default_get_flags, 382 }, 383 }; 384 385 static struct of_bus *of_match_bus(struct device_node *np) 386 { 387 int i; 388 389 for (i = 0; i < ARRAY_SIZE(of_busses); i ++) 390 if (!of_busses[i].match || of_busses[i].match(np)) 391 return &of_busses[i]; 392 BUG(); 393 return NULL; 394 } 395 396 static int __init build_one_resource(struct device_node *parent, 397 struct of_bus *bus, 398 struct of_bus *pbus, 399 u32 *addr, 400 int na, int ns, int pna) 401 { 402 const u32 *ranges; 403 int rone, rlen; 404 405 ranges = of_get_property(parent, "ranges", &rlen); 406 if (ranges == NULL || rlen == 0) { 407 u32 result[OF_MAX_ADDR_CELLS]; 408 int i; 409 410 memset(result, 0, pna * 4); 411 for (i = 0; i < na; i++) 412 result[pna - 1 - i] = 413 addr[na - 1 - i]; 414 415 memcpy(addr, result, pna * 4); 416 return 0; 417 } 418 419 /* Now walk through the ranges */ 420 rlen /= 4; 421 rone = na + pna + ns; 422 for (; rlen >= rone; rlen -= rone, ranges += rone) { 423 if (!bus->map(addr, ranges, na, ns, pna)) 424 return 0; 425 } 426 427 /* When we miss an I/O space match on PCI, just pass it up 428 * to the next PCI bridge and/or controller. 429 */ 430 if (!strcmp(bus->name, "pci") && 431 (addr[0] & 0x03000000) == 0x01000000) 432 return 0; 433 434 return 1; 435 } 436 437 static int __init use_1to1_mapping(struct device_node *pp) 438 { 439 /* If we have a ranges property in the parent, use it. */ 440 if (of_find_property(pp, "ranges", NULL) != NULL) 441 return 0; 442 443 /* If the parent is the dma node of an ISA bus, pass 444 * the translation up to the root. 445 * 446 * Some SBUS devices use intermediate nodes to express 447 * hierarchy within the device itself. These aren't 448 * real bus nodes, and don't have a 'ranges' property. 449 * But, we should still pass the translation work up 450 * to the SBUS itself. 451 */ 452 if (!strcmp(pp->name, "dma") || 453 !strcmp(pp->name, "espdma") || 454 !strcmp(pp->name, "ledma") || 455 !strcmp(pp->name, "lebuffer")) 456 return 0; 457 458 /* Similarly for all PCI bridges, if we get this far 459 * it lacks a ranges property, and this will include 460 * cases like Simba. 461 */ 462 if (!strcmp(pp->name, "pci")) 463 return 0; 464 465 return 1; 466 } 467 468 static int of_resource_verbose; 469 470 static void __init build_device_resources(struct of_device *op, 471 struct device *parent) 472 { 473 struct of_device *p_op; 474 struct of_bus *bus; 475 int na, ns; 476 int index, num_reg; 477 const void *preg; 478 479 if (!parent) 480 return; 481 482 p_op = to_of_device(parent); 483 bus = of_match_bus(p_op->node); 484 bus->count_cells(op->node, &na, &ns); 485 486 preg = of_get_property(op->node, bus->addr_prop_name, &num_reg); 487 if (!preg || num_reg == 0) 488 return; 489 490 /* Convert to num-cells. */ 491 num_reg /= 4; 492 493 /* Convert to num-entries. */ 494 num_reg /= na + ns; 495 496 /* Prevent overrunning the op->resources[] array. */ 497 if (num_reg > PROMREG_MAX) { 498 printk(KERN_WARNING "%s: Too many regs (%d), " 499 "limiting to %d.\n", 500 op->node->full_name, num_reg, PROMREG_MAX); 501 num_reg = PROMREG_MAX; 502 } 503 504 for (index = 0; index < num_reg; index++) { 505 struct resource *r = &op->resource[index]; 506 u32 addr[OF_MAX_ADDR_CELLS]; 507 const u32 *reg = (preg + (index * ((na + ns) * 4))); 508 struct device_node *dp = op->node; 509 struct device_node *pp = p_op->node; 510 struct of_bus *pbus, *dbus; 511 u64 size, result = OF_BAD_ADDR; 512 unsigned long flags; 513 int dna, dns; 514 int pna, pns; 515 516 size = of_read_addr(reg + na, ns); 517 memcpy(addr, reg, na * 4); 518 519 flags = bus->get_flags(addr, 0); 520 521 if (use_1to1_mapping(pp)) { 522 result = of_read_addr(addr, na); 523 goto build_res; 524 } 525 526 dna = na; 527 dns = ns; 528 dbus = bus; 529 530 while (1) { 531 dp = pp; 532 pp = dp->parent; 533 if (!pp) { 534 result = of_read_addr(addr, dna); 535 break; 536 } 537 538 pbus = of_match_bus(pp); 539 pbus->count_cells(dp, &pna, &pns); 540 541 if (build_one_resource(dp, dbus, pbus, addr, 542 dna, dns, pna)) 543 break; 544 545 flags = pbus->get_flags(addr, flags); 546 547 dna = pna; 548 dns = pns; 549 dbus = pbus; 550 } 551 552 build_res: 553 memset(r, 0, sizeof(*r)); 554 555 if (of_resource_verbose) 556 printk("%s reg[%d] -> %llx\n", 557 op->node->full_name, index, 558 result); 559 560 if (result != OF_BAD_ADDR) { 561 if (tlb_type == hypervisor) 562 result &= 0x0fffffffffffffffUL; 563 564 r->start = result; 565 r->end = result + size - 1; 566 r->flags = flags; 567 } 568 r->name = op->node->name; 569 } 570 } 571 572 static struct device_node * __init 573 apply_interrupt_map(struct device_node *dp, struct device_node *pp, 574 const u32 *imap, int imlen, const u32 *imask, 575 unsigned int *irq_p) 576 { 577 struct device_node *cp; 578 unsigned int irq = *irq_p; 579 struct of_bus *bus; 580 phandle handle; 581 const u32 *reg; 582 int na, num_reg, i; 583 584 bus = of_match_bus(pp); 585 bus->count_cells(dp, &na, NULL); 586 587 reg = of_get_property(dp, "reg", &num_reg); 588 if (!reg || !num_reg) 589 return NULL; 590 591 imlen /= ((na + 3) * 4); 592 handle = 0; 593 for (i = 0; i < imlen; i++) { 594 int j; 595 596 for (j = 0; j < na; j++) { 597 if ((reg[j] & imask[j]) != imap[j]) 598 goto next; 599 } 600 if (imap[na] == irq) { 601 handle = imap[na + 1]; 602 irq = imap[na + 2]; 603 break; 604 } 605 606 next: 607 imap += (na + 3); 608 } 609 if (i == imlen) { 610 /* Psycho and Sabre PCI controllers can have 'interrupt-map' 611 * properties that do not include the on-board device 612 * interrupts. Instead, the device's 'interrupts' property 613 * is already a fully specified INO value. 614 * 615 * Handle this by deciding that, if we didn't get a 616 * match in the parent's 'interrupt-map', and the 617 * parent is an IRQ translater, then use the parent as 618 * our IRQ controller. 619 */ 620 if (pp->irq_trans) 621 return pp; 622 623 return NULL; 624 } 625 626 *irq_p = irq; 627 cp = of_find_node_by_phandle(handle); 628 629 return cp; 630 } 631 632 static unsigned int __init pci_irq_swizzle(struct device_node *dp, 633 struct device_node *pp, 634 unsigned int irq) 635 { 636 const struct linux_prom_pci_registers *regs; 637 unsigned int bus, devfn, slot, ret; 638 639 if (irq < 1 || irq > 4) 640 return irq; 641 642 regs = of_get_property(dp, "reg", NULL); 643 if (!regs) 644 return irq; 645 646 bus = (regs->phys_hi >> 16) & 0xff; 647 devfn = (regs->phys_hi >> 8) & 0xff; 648 slot = (devfn >> 3) & 0x1f; 649 650 if (pp->irq_trans) { 651 /* Derived from Table 8-3, U2P User's Manual. This branch 652 * is handling a PCI controller that lacks a proper set of 653 * interrupt-map and interrupt-map-mask properties. The 654 * Ultra-E450 is one example. 655 * 656 * The bit layout is BSSLL, where: 657 * B: 0 on bus A, 1 on bus B 658 * D: 2-bit slot number, derived from PCI device number as 659 * (dev - 1) for bus A, or (dev - 2) for bus B 660 * L: 2-bit line number 661 */ 662 if (bus & 0x80) { 663 /* PBM-A */ 664 bus = 0x00; 665 slot = (slot - 1) << 2; 666 } else { 667 /* PBM-B */ 668 bus = 0x10; 669 slot = (slot - 2) << 2; 670 } 671 irq -= 1; 672 673 ret = (bus | slot | irq); 674 } else { 675 /* Going through a PCI-PCI bridge that lacks a set of 676 * interrupt-map and interrupt-map-mask properties. 677 */ 678 ret = ((irq - 1 + (slot & 3)) & 3) + 1; 679 } 680 681 return ret; 682 } 683 684 static int of_irq_verbose; 685 686 static unsigned int __init build_one_device_irq(struct of_device *op, 687 struct device *parent, 688 unsigned int irq) 689 { 690 struct device_node *dp = op->node; 691 struct device_node *pp, *ip; 692 unsigned int orig_irq = irq; 693 int nid; 694 695 if (irq == 0xffffffff) 696 return irq; 697 698 if (dp->irq_trans) { 699 irq = dp->irq_trans->irq_build(dp, irq, 700 dp->irq_trans->data); 701 702 if (of_irq_verbose) 703 printk("%s: direct translate %x --> %x\n", 704 dp->full_name, orig_irq, irq); 705 706 goto out; 707 } 708 709 /* Something more complicated. Walk up to the root, applying 710 * interrupt-map or bus specific translations, until we hit 711 * an IRQ translator. 712 * 713 * If we hit a bus type or situation we cannot handle, we 714 * stop and assume that the original IRQ number was in a 715 * format which has special meaning to it's immediate parent. 716 */ 717 pp = dp->parent; 718 ip = NULL; 719 while (pp) { 720 const void *imap, *imsk; 721 int imlen; 722 723 imap = of_get_property(pp, "interrupt-map", &imlen); 724 imsk = of_get_property(pp, "interrupt-map-mask", NULL); 725 if (imap && imsk) { 726 struct device_node *iret; 727 int this_orig_irq = irq; 728 729 iret = apply_interrupt_map(dp, pp, 730 imap, imlen, imsk, 731 &irq); 732 733 if (of_irq_verbose) 734 printk("%s: Apply [%s:%x] imap --> [%s:%x]\n", 735 op->node->full_name, 736 pp->full_name, this_orig_irq, 737 (iret ? iret->full_name : "NULL"), irq); 738 739 if (!iret) 740 break; 741 742 if (iret->irq_trans) { 743 ip = iret; 744 break; 745 } 746 } else { 747 if (!strcmp(pp->name, "pci")) { 748 unsigned int this_orig_irq = irq; 749 750 irq = pci_irq_swizzle(dp, pp, irq); 751 if (of_irq_verbose) 752 printk("%s: PCI swizzle [%s] " 753 "%x --> %x\n", 754 op->node->full_name, 755 pp->full_name, this_orig_irq, 756 irq); 757 758 } 759 760 if (pp->irq_trans) { 761 ip = pp; 762 break; 763 } 764 } 765 dp = pp; 766 pp = pp->parent; 767 } 768 if (!ip) 769 return orig_irq; 770 771 irq = ip->irq_trans->irq_build(op->node, irq, 772 ip->irq_trans->data); 773 if (of_irq_verbose) 774 printk("%s: Apply IRQ trans [%s] %x --> %x\n", 775 op->node->full_name, ip->full_name, orig_irq, irq); 776 777 out: 778 nid = of_node_to_nid(dp); 779 if (nid != -1) { 780 cpumask_t numa_mask = *cpumask_of_node(nid); 781 782 irq_set_affinity(irq, &numa_mask); 783 } 784 785 return irq; 786 } 787 788 static struct of_device * __init scan_one_device(struct device_node *dp, 789 struct device *parent) 790 { 791 struct of_device *op = kzalloc(sizeof(*op), GFP_KERNEL); 792 const unsigned int *irq; 793 struct dev_archdata *sd; 794 int len, i; 795 796 if (!op) 797 return NULL; 798 799 sd = &op->dev.archdata; 800 sd->prom_node = dp; 801 sd->op = op; 802 803 op->node = dp; 804 805 op->clock_freq = of_getintprop_default(dp, "clock-frequency", 806 (25*1000*1000)); 807 op->portid = of_getintprop_default(dp, "upa-portid", -1); 808 if (op->portid == -1) 809 op->portid = of_getintprop_default(dp, "portid", -1); 810 811 irq = of_get_property(dp, "interrupts", &len); 812 if (irq) { 813 op->num_irqs = len / 4; 814 815 /* Prevent overrunning the op->irqs[] array. */ 816 if (op->num_irqs > PROMINTR_MAX) { 817 printk(KERN_WARNING "%s: Too many irqs (%d), " 818 "limiting to %d.\n", 819 dp->full_name, op->num_irqs, PROMINTR_MAX); 820 op->num_irqs = PROMINTR_MAX; 821 } 822 memcpy(op->irqs, irq, op->num_irqs * 4); 823 } else { 824 op->num_irqs = 0; 825 } 826 827 build_device_resources(op, parent); 828 for (i = 0; i < op->num_irqs; i++) 829 op->irqs[i] = build_one_device_irq(op, parent, op->irqs[i]); 830 831 op->dev.parent = parent; 832 op->dev.bus = &of_platform_bus_type; 833 if (!parent) 834 dev_set_name(&op->dev, "root"); 835 else 836 dev_set_name(&op->dev, "%08x", dp->node); 837 838 if (of_device_register(op)) { 839 printk("%s: Could not register of device.\n", 840 dp->full_name); 841 kfree(op); 842 op = NULL; 843 } 844 845 return op; 846 } 847 848 static void __init scan_tree(struct device_node *dp, struct device *parent) 849 { 850 while (dp) { 851 struct of_device *op = scan_one_device(dp, parent); 852 853 if (op) 854 scan_tree(dp->child, &op->dev); 855 856 dp = dp->sibling; 857 } 858 } 859 860 static void __init scan_of_devices(void) 861 { 862 struct device_node *root = of_find_node_by_path("/"); 863 struct of_device *parent; 864 865 parent = scan_one_device(root, NULL); 866 if (!parent) 867 return; 868 869 scan_tree(root->child, &parent->dev); 870 } 871 872 static int __init of_bus_driver_init(void) 873 { 874 int err; 875 876 err = of_bus_type_init(&of_platform_bus_type, "of"); 877 if (!err) 878 scan_of_devices(); 879 880 return err; 881 } 882 883 postcore_initcall(of_bus_driver_init); 884 885 static int __init of_debug(char *str) 886 { 887 int val = 0; 888 889 get_option(&str, &val); 890 if (val & 1) 891 of_resource_verbose = 1; 892 if (val & 2) 893 of_irq_verbose = 1; 894 return 1; 895 } 896 897 __setup("of_debug=", of_debug); 898