xref: /openbmc/linux/arch/sparc/kernel/of_device_64.c (revision b627b4ed)
1 #include <linux/string.h>
2 #include <linux/kernel.h>
3 #include <linux/of.h>
4 #include <linux/init.h>
5 #include <linux/module.h>
6 #include <linux/mod_devicetable.h>
7 #include <linux/slab.h>
8 #include <linux/errno.h>
9 #include <linux/irq.h>
10 #include <linux/of_device.h>
11 #include <linux/of_platform.h>
12 
13 void __iomem *of_ioremap(struct resource *res, unsigned long offset, unsigned long size, char *name)
14 {
15 	unsigned long ret = res->start + offset;
16 	struct resource *r;
17 
18 	if (res->flags & IORESOURCE_MEM)
19 		r = request_mem_region(ret, size, name);
20 	else
21 		r = request_region(ret, size, name);
22 	if (!r)
23 		ret = 0;
24 
25 	return (void __iomem *) ret;
26 }
27 EXPORT_SYMBOL(of_ioremap);
28 
29 void of_iounmap(struct resource *res, void __iomem *base, unsigned long size)
30 {
31 	if (res->flags & IORESOURCE_MEM)
32 		release_mem_region((unsigned long) base, size);
33 	else
34 		release_region((unsigned long) base, size);
35 }
36 EXPORT_SYMBOL(of_iounmap);
37 
38 static int node_match(struct device *dev, void *data)
39 {
40 	struct of_device *op = to_of_device(dev);
41 	struct device_node *dp = data;
42 
43 	return (op->node == dp);
44 }
45 
46 struct of_device *of_find_device_by_node(struct device_node *dp)
47 {
48 	struct device *dev = bus_find_device(&of_platform_bus_type, NULL,
49 					     dp, node_match);
50 
51 	if (dev)
52 		return to_of_device(dev);
53 
54 	return NULL;
55 }
56 EXPORT_SYMBOL(of_find_device_by_node);
57 
58 unsigned int irq_of_parse_and_map(struct device_node *node, int index)
59 {
60 	struct of_device *op = of_find_device_by_node(node);
61 
62 	if (!op || index >= op->num_irqs)
63 		return 0;
64 
65 	return op->irqs[index];
66 }
67 EXPORT_SYMBOL(irq_of_parse_and_map);
68 
69 /* Take the archdata values for IOMMU, STC, and HOSTDATA found in
70  * BUS and propagate to all child of_device objects.
71  */
72 void of_propagate_archdata(struct of_device *bus)
73 {
74 	struct dev_archdata *bus_sd = &bus->dev.archdata;
75 	struct device_node *bus_dp = bus->node;
76 	struct device_node *dp;
77 
78 	for (dp = bus_dp->child; dp; dp = dp->sibling) {
79 		struct of_device *op = of_find_device_by_node(dp);
80 
81 		op->dev.archdata.iommu = bus_sd->iommu;
82 		op->dev.archdata.stc = bus_sd->stc;
83 		op->dev.archdata.host_controller = bus_sd->host_controller;
84 		op->dev.archdata.numa_node = bus_sd->numa_node;
85 
86 		if (dp->child)
87 			of_propagate_archdata(op);
88 	}
89 }
90 
91 struct bus_type of_platform_bus_type;
92 EXPORT_SYMBOL(of_platform_bus_type);
93 
94 static inline u64 of_read_addr(const u32 *cell, int size)
95 {
96 	u64 r = 0;
97 	while (size--)
98 		r = (r << 32) | *(cell++);
99 	return r;
100 }
101 
102 static void get_cells(struct device_node *dp, int *addrc, int *sizec)
103 {
104 	if (addrc)
105 		*addrc = of_n_addr_cells(dp);
106 	if (sizec)
107 		*sizec = of_n_size_cells(dp);
108 }
109 
110 /* Max address size we deal with */
111 #define OF_MAX_ADDR_CELLS	4
112 
113 struct of_bus {
114 	const char	*name;
115 	const char	*addr_prop_name;
116 	int		(*match)(struct device_node *parent);
117 	void		(*count_cells)(struct device_node *child,
118 				       int *addrc, int *sizec);
119 	int		(*map)(u32 *addr, const u32 *range,
120 			       int na, int ns, int pna);
121 	unsigned long	(*get_flags)(const u32 *addr, unsigned long);
122 };
123 
124 /*
125  * Default translator (generic bus)
126  */
127 
128 static void of_bus_default_count_cells(struct device_node *dev,
129 				       int *addrc, int *sizec)
130 {
131 	get_cells(dev, addrc, sizec);
132 }
133 
134 /* Make sure the least significant 64-bits are in-range.  Even
135  * for 3 or 4 cell values it is a good enough approximation.
136  */
137 static int of_out_of_range(const u32 *addr, const u32 *base,
138 			   const u32 *size, int na, int ns)
139 {
140 	u64 a = of_read_addr(addr, na);
141 	u64 b = of_read_addr(base, na);
142 
143 	if (a < b)
144 		return 1;
145 
146 	b += of_read_addr(size, ns);
147 	if (a >= b)
148 		return 1;
149 
150 	return 0;
151 }
152 
153 static int of_bus_default_map(u32 *addr, const u32 *range,
154 			      int na, int ns, int pna)
155 {
156 	u32 result[OF_MAX_ADDR_CELLS];
157 	int i;
158 
159 	if (ns > 2) {
160 		printk("of_device: Cannot handle size cells (%d) > 2.", ns);
161 		return -EINVAL;
162 	}
163 
164 	if (of_out_of_range(addr, range, range + na + pna, na, ns))
165 		return -EINVAL;
166 
167 	/* Start with the parent range base.  */
168 	memcpy(result, range + na, pna * 4);
169 
170 	/* Add in the child address offset.  */
171 	for (i = 0; i < na; i++)
172 		result[pna - 1 - i] +=
173 			(addr[na - 1 - i] -
174 			 range[na - 1 - i]);
175 
176 	memcpy(addr, result, pna * 4);
177 
178 	return 0;
179 }
180 
181 static unsigned long of_bus_default_get_flags(const u32 *addr, unsigned long flags)
182 {
183 	if (flags)
184 		return flags;
185 	return IORESOURCE_MEM;
186 }
187 
188 /*
189  * PCI bus specific translator
190  */
191 
192 static int of_bus_pci_match(struct device_node *np)
193 {
194 	if (!strcmp(np->name, "pci")) {
195 		const char *model = of_get_property(np, "model", NULL);
196 
197 		if (model && !strcmp(model, "SUNW,simba"))
198 			return 0;
199 
200 		/* Do not do PCI specific frobbing if the
201 		 * PCI bridge lacks a ranges property.  We
202 		 * want to pass it through up to the next
203 		 * parent as-is, not with the PCI translate
204 		 * method which chops off the top address cell.
205 		 */
206 		if (!of_find_property(np, "ranges", NULL))
207 			return 0;
208 
209 		return 1;
210 	}
211 
212 	return 0;
213 }
214 
215 static int of_bus_simba_match(struct device_node *np)
216 {
217 	const char *model = of_get_property(np, "model", NULL);
218 
219 	if (model && !strcmp(model, "SUNW,simba"))
220 		return 1;
221 
222 	/* Treat PCI busses lacking ranges property just like
223 	 * simba.
224 	 */
225 	if (!strcmp(np->name, "pci")) {
226 		if (!of_find_property(np, "ranges", NULL))
227 			return 1;
228 	}
229 
230 	return 0;
231 }
232 
233 static int of_bus_simba_map(u32 *addr, const u32 *range,
234 			    int na, int ns, int pna)
235 {
236 	return 0;
237 }
238 
239 static void of_bus_pci_count_cells(struct device_node *np,
240 				   int *addrc, int *sizec)
241 {
242 	if (addrc)
243 		*addrc = 3;
244 	if (sizec)
245 		*sizec = 2;
246 }
247 
248 static int of_bus_pci_map(u32 *addr, const u32 *range,
249 			  int na, int ns, int pna)
250 {
251 	u32 result[OF_MAX_ADDR_CELLS];
252 	int i;
253 
254 	/* Check address type match */
255 	if ((addr[0] ^ range[0]) & 0x03000000)
256 		return -EINVAL;
257 
258 	if (of_out_of_range(addr + 1, range + 1, range + na + pna,
259 			    na - 1, ns))
260 		return -EINVAL;
261 
262 	/* Start with the parent range base.  */
263 	memcpy(result, range + na, pna * 4);
264 
265 	/* Add in the child address offset, skipping high cell.  */
266 	for (i = 0; i < na - 1; i++)
267 		result[pna - 1 - i] +=
268 			(addr[na - 1 - i] -
269 			 range[na - 1 - i]);
270 
271 	memcpy(addr, result, pna * 4);
272 
273 	return 0;
274 }
275 
276 static unsigned long of_bus_pci_get_flags(const u32 *addr, unsigned long flags)
277 {
278 	u32 w = addr[0];
279 
280 	/* For PCI, we override whatever child busses may have used.  */
281 	flags = 0;
282 	switch((w >> 24) & 0x03) {
283 	case 0x01:
284 		flags |= IORESOURCE_IO;
285 		break;
286 
287 	case 0x02: /* 32 bits */
288 	case 0x03: /* 64 bits */
289 		flags |= IORESOURCE_MEM;
290 		break;
291 	}
292 	if (w & 0x40000000)
293 		flags |= IORESOURCE_PREFETCH;
294 	return flags;
295 }
296 
297 /*
298  * SBUS bus specific translator
299  */
300 
301 static int of_bus_sbus_match(struct device_node *np)
302 {
303 	return !strcmp(np->name, "sbus") ||
304 		!strcmp(np->name, "sbi");
305 }
306 
307 static void of_bus_sbus_count_cells(struct device_node *child,
308 				   int *addrc, int *sizec)
309 {
310 	if (addrc)
311 		*addrc = 2;
312 	if (sizec)
313 		*sizec = 1;
314 }
315 
316 /*
317  * FHC/Central bus specific translator.
318  *
319  * This is just needed to hard-code the address and size cell
320  * counts.  'fhc' and 'central' nodes lack the #address-cells and
321  * #size-cells properties, and if you walk to the root on such
322  * Enterprise boxes all you'll get is a #size-cells of 2 which is
323  * not what we want to use.
324  */
325 static int of_bus_fhc_match(struct device_node *np)
326 {
327 	return !strcmp(np->name, "fhc") ||
328 		!strcmp(np->name, "central");
329 }
330 
331 #define of_bus_fhc_count_cells of_bus_sbus_count_cells
332 
333 /*
334  * Array of bus specific translators
335  */
336 
337 static struct of_bus of_busses[] = {
338 	/* PCI */
339 	{
340 		.name = "pci",
341 		.addr_prop_name = "assigned-addresses",
342 		.match = of_bus_pci_match,
343 		.count_cells = of_bus_pci_count_cells,
344 		.map = of_bus_pci_map,
345 		.get_flags = of_bus_pci_get_flags,
346 	},
347 	/* SIMBA */
348 	{
349 		.name = "simba",
350 		.addr_prop_name = "assigned-addresses",
351 		.match = of_bus_simba_match,
352 		.count_cells = of_bus_pci_count_cells,
353 		.map = of_bus_simba_map,
354 		.get_flags = of_bus_pci_get_flags,
355 	},
356 	/* SBUS */
357 	{
358 		.name = "sbus",
359 		.addr_prop_name = "reg",
360 		.match = of_bus_sbus_match,
361 		.count_cells = of_bus_sbus_count_cells,
362 		.map = of_bus_default_map,
363 		.get_flags = of_bus_default_get_flags,
364 	},
365 	/* FHC */
366 	{
367 		.name = "fhc",
368 		.addr_prop_name = "reg",
369 		.match = of_bus_fhc_match,
370 		.count_cells = of_bus_fhc_count_cells,
371 		.map = of_bus_default_map,
372 		.get_flags = of_bus_default_get_flags,
373 	},
374 	/* Default */
375 	{
376 		.name = "default",
377 		.addr_prop_name = "reg",
378 		.match = NULL,
379 		.count_cells = of_bus_default_count_cells,
380 		.map = of_bus_default_map,
381 		.get_flags = of_bus_default_get_flags,
382 	},
383 };
384 
385 static struct of_bus *of_match_bus(struct device_node *np)
386 {
387 	int i;
388 
389 	for (i = 0; i < ARRAY_SIZE(of_busses); i ++)
390 		if (!of_busses[i].match || of_busses[i].match(np))
391 			return &of_busses[i];
392 	BUG();
393 	return NULL;
394 }
395 
396 static int __init build_one_resource(struct device_node *parent,
397 				     struct of_bus *bus,
398 				     struct of_bus *pbus,
399 				     u32 *addr,
400 				     int na, int ns, int pna)
401 {
402 	const u32 *ranges;
403 	int rone, rlen;
404 
405 	ranges = of_get_property(parent, "ranges", &rlen);
406 	if (ranges == NULL || rlen == 0) {
407 		u32 result[OF_MAX_ADDR_CELLS];
408 		int i;
409 
410 		memset(result, 0, pna * 4);
411 		for (i = 0; i < na; i++)
412 			result[pna - 1 - i] =
413 				addr[na - 1 - i];
414 
415 		memcpy(addr, result, pna * 4);
416 		return 0;
417 	}
418 
419 	/* Now walk through the ranges */
420 	rlen /= 4;
421 	rone = na + pna + ns;
422 	for (; rlen >= rone; rlen -= rone, ranges += rone) {
423 		if (!bus->map(addr, ranges, na, ns, pna))
424 			return 0;
425 	}
426 
427 	/* When we miss an I/O space match on PCI, just pass it up
428 	 * to the next PCI bridge and/or controller.
429 	 */
430 	if (!strcmp(bus->name, "pci") &&
431 	    (addr[0] & 0x03000000) == 0x01000000)
432 		return 0;
433 
434 	return 1;
435 }
436 
437 static int __init use_1to1_mapping(struct device_node *pp)
438 {
439 	/* If we have a ranges property in the parent, use it.  */
440 	if (of_find_property(pp, "ranges", NULL) != NULL)
441 		return 0;
442 
443 	/* If the parent is the dma node of an ISA bus, pass
444 	 * the translation up to the root.
445 	 *
446 	 * Some SBUS devices use intermediate nodes to express
447 	 * hierarchy within the device itself.  These aren't
448 	 * real bus nodes, and don't have a 'ranges' property.
449 	 * But, we should still pass the translation work up
450 	 * to the SBUS itself.
451 	 */
452 	if (!strcmp(pp->name, "dma") ||
453 	    !strcmp(pp->name, "espdma") ||
454 	    !strcmp(pp->name, "ledma") ||
455 	    !strcmp(pp->name, "lebuffer"))
456 		return 0;
457 
458 	/* Similarly for all PCI bridges, if we get this far
459 	 * it lacks a ranges property, and this will include
460 	 * cases like Simba.
461 	 */
462 	if (!strcmp(pp->name, "pci"))
463 		return 0;
464 
465 	return 1;
466 }
467 
468 static int of_resource_verbose;
469 
470 static void __init build_device_resources(struct of_device *op,
471 					  struct device *parent)
472 {
473 	struct of_device *p_op;
474 	struct of_bus *bus;
475 	int na, ns;
476 	int index, num_reg;
477 	const void *preg;
478 
479 	if (!parent)
480 		return;
481 
482 	p_op = to_of_device(parent);
483 	bus = of_match_bus(p_op->node);
484 	bus->count_cells(op->node, &na, &ns);
485 
486 	preg = of_get_property(op->node, bus->addr_prop_name, &num_reg);
487 	if (!preg || num_reg == 0)
488 		return;
489 
490 	/* Convert to num-cells.  */
491 	num_reg /= 4;
492 
493 	/* Convert to num-entries.  */
494 	num_reg /= na + ns;
495 
496 	/* Prevent overrunning the op->resources[] array.  */
497 	if (num_reg > PROMREG_MAX) {
498 		printk(KERN_WARNING "%s: Too many regs (%d), "
499 		       "limiting to %d.\n",
500 		       op->node->full_name, num_reg, PROMREG_MAX);
501 		num_reg = PROMREG_MAX;
502 	}
503 
504 	for (index = 0; index < num_reg; index++) {
505 		struct resource *r = &op->resource[index];
506 		u32 addr[OF_MAX_ADDR_CELLS];
507 		const u32 *reg = (preg + (index * ((na + ns) * 4)));
508 		struct device_node *dp = op->node;
509 		struct device_node *pp = p_op->node;
510 		struct of_bus *pbus, *dbus;
511 		u64 size, result = OF_BAD_ADDR;
512 		unsigned long flags;
513 		int dna, dns;
514 		int pna, pns;
515 
516 		size = of_read_addr(reg + na, ns);
517 		memcpy(addr, reg, na * 4);
518 
519 		flags = bus->get_flags(addr, 0);
520 
521 		if (use_1to1_mapping(pp)) {
522 			result = of_read_addr(addr, na);
523 			goto build_res;
524 		}
525 
526 		dna = na;
527 		dns = ns;
528 		dbus = bus;
529 
530 		while (1) {
531 			dp = pp;
532 			pp = dp->parent;
533 			if (!pp) {
534 				result = of_read_addr(addr, dna);
535 				break;
536 			}
537 
538 			pbus = of_match_bus(pp);
539 			pbus->count_cells(dp, &pna, &pns);
540 
541 			if (build_one_resource(dp, dbus, pbus, addr,
542 					       dna, dns, pna))
543 				break;
544 
545 			flags = pbus->get_flags(addr, flags);
546 
547 			dna = pna;
548 			dns = pns;
549 			dbus = pbus;
550 		}
551 
552 	build_res:
553 		memset(r, 0, sizeof(*r));
554 
555 		if (of_resource_verbose)
556 			printk("%s reg[%d] -> %llx\n",
557 			       op->node->full_name, index,
558 			       result);
559 
560 		if (result != OF_BAD_ADDR) {
561 			if (tlb_type == hypervisor)
562 				result &= 0x0fffffffffffffffUL;
563 
564 			r->start = result;
565 			r->end = result + size - 1;
566 			r->flags = flags;
567 		}
568 		r->name = op->node->name;
569 	}
570 }
571 
572 static struct device_node * __init
573 apply_interrupt_map(struct device_node *dp, struct device_node *pp,
574 		    const u32 *imap, int imlen, const u32 *imask,
575 		    unsigned int *irq_p)
576 {
577 	struct device_node *cp;
578 	unsigned int irq = *irq_p;
579 	struct of_bus *bus;
580 	phandle handle;
581 	const u32 *reg;
582 	int na, num_reg, i;
583 
584 	bus = of_match_bus(pp);
585 	bus->count_cells(dp, &na, NULL);
586 
587 	reg = of_get_property(dp, "reg", &num_reg);
588 	if (!reg || !num_reg)
589 		return NULL;
590 
591 	imlen /= ((na + 3) * 4);
592 	handle = 0;
593 	for (i = 0; i < imlen; i++) {
594 		int j;
595 
596 		for (j = 0; j < na; j++) {
597 			if ((reg[j] & imask[j]) != imap[j])
598 				goto next;
599 		}
600 		if (imap[na] == irq) {
601 			handle = imap[na + 1];
602 			irq = imap[na + 2];
603 			break;
604 		}
605 
606 	next:
607 		imap += (na + 3);
608 	}
609 	if (i == imlen) {
610 		/* Psycho and Sabre PCI controllers can have 'interrupt-map'
611 		 * properties that do not include the on-board device
612 		 * interrupts.  Instead, the device's 'interrupts' property
613 		 * is already a fully specified INO value.
614 		 *
615 		 * Handle this by deciding that, if we didn't get a
616 		 * match in the parent's 'interrupt-map', and the
617 		 * parent is an IRQ translater, then use the parent as
618 		 * our IRQ controller.
619 		 */
620 		if (pp->irq_trans)
621 			return pp;
622 
623 		return NULL;
624 	}
625 
626 	*irq_p = irq;
627 	cp = of_find_node_by_phandle(handle);
628 
629 	return cp;
630 }
631 
632 static unsigned int __init pci_irq_swizzle(struct device_node *dp,
633 					   struct device_node *pp,
634 					   unsigned int irq)
635 {
636 	const struct linux_prom_pci_registers *regs;
637 	unsigned int bus, devfn, slot, ret;
638 
639 	if (irq < 1 || irq > 4)
640 		return irq;
641 
642 	regs = of_get_property(dp, "reg", NULL);
643 	if (!regs)
644 		return irq;
645 
646 	bus = (regs->phys_hi >> 16) & 0xff;
647 	devfn = (regs->phys_hi >> 8) & 0xff;
648 	slot = (devfn >> 3) & 0x1f;
649 
650 	if (pp->irq_trans) {
651 		/* Derived from Table 8-3, U2P User's Manual.  This branch
652 		 * is handling a PCI controller that lacks a proper set of
653 		 * interrupt-map and interrupt-map-mask properties.  The
654 		 * Ultra-E450 is one example.
655 		 *
656 		 * The bit layout is BSSLL, where:
657 		 * B: 0 on bus A, 1 on bus B
658 		 * D: 2-bit slot number, derived from PCI device number as
659 		 *    (dev - 1) for bus A, or (dev - 2) for bus B
660 		 * L: 2-bit line number
661 		 */
662 		if (bus & 0x80) {
663 			/* PBM-A */
664 			bus  = 0x00;
665 			slot = (slot - 1) << 2;
666 		} else {
667 			/* PBM-B */
668 			bus  = 0x10;
669 			slot = (slot - 2) << 2;
670 		}
671 		irq -= 1;
672 
673 		ret = (bus | slot | irq);
674 	} else {
675 		/* Going through a PCI-PCI bridge that lacks a set of
676 		 * interrupt-map and interrupt-map-mask properties.
677 		 */
678 		ret = ((irq - 1 + (slot & 3)) & 3) + 1;
679 	}
680 
681 	return ret;
682 }
683 
684 static int of_irq_verbose;
685 
686 static unsigned int __init build_one_device_irq(struct of_device *op,
687 						struct device *parent,
688 						unsigned int irq)
689 {
690 	struct device_node *dp = op->node;
691 	struct device_node *pp, *ip;
692 	unsigned int orig_irq = irq;
693 	int nid;
694 
695 	if (irq == 0xffffffff)
696 		return irq;
697 
698 	if (dp->irq_trans) {
699 		irq = dp->irq_trans->irq_build(dp, irq,
700 					       dp->irq_trans->data);
701 
702 		if (of_irq_verbose)
703 			printk("%s: direct translate %x --> %x\n",
704 			       dp->full_name, orig_irq, irq);
705 
706 		goto out;
707 	}
708 
709 	/* Something more complicated.  Walk up to the root, applying
710 	 * interrupt-map or bus specific translations, until we hit
711 	 * an IRQ translator.
712 	 *
713 	 * If we hit a bus type or situation we cannot handle, we
714 	 * stop and assume that the original IRQ number was in a
715 	 * format which has special meaning to it's immediate parent.
716 	 */
717 	pp = dp->parent;
718 	ip = NULL;
719 	while (pp) {
720 		const void *imap, *imsk;
721 		int imlen;
722 
723 		imap = of_get_property(pp, "interrupt-map", &imlen);
724 		imsk = of_get_property(pp, "interrupt-map-mask", NULL);
725 		if (imap && imsk) {
726 			struct device_node *iret;
727 			int this_orig_irq = irq;
728 
729 			iret = apply_interrupt_map(dp, pp,
730 						   imap, imlen, imsk,
731 						   &irq);
732 
733 			if (of_irq_verbose)
734 				printk("%s: Apply [%s:%x] imap --> [%s:%x]\n",
735 				       op->node->full_name,
736 				       pp->full_name, this_orig_irq,
737 				       (iret ? iret->full_name : "NULL"), irq);
738 
739 			if (!iret)
740 				break;
741 
742 			if (iret->irq_trans) {
743 				ip = iret;
744 				break;
745 			}
746 		} else {
747 			if (!strcmp(pp->name, "pci")) {
748 				unsigned int this_orig_irq = irq;
749 
750 				irq = pci_irq_swizzle(dp, pp, irq);
751 				if (of_irq_verbose)
752 					printk("%s: PCI swizzle [%s] "
753 					       "%x --> %x\n",
754 					       op->node->full_name,
755 					       pp->full_name, this_orig_irq,
756 					       irq);
757 
758 			}
759 
760 			if (pp->irq_trans) {
761 				ip = pp;
762 				break;
763 			}
764 		}
765 		dp = pp;
766 		pp = pp->parent;
767 	}
768 	if (!ip)
769 		return orig_irq;
770 
771 	irq = ip->irq_trans->irq_build(op->node, irq,
772 				       ip->irq_trans->data);
773 	if (of_irq_verbose)
774 		printk("%s: Apply IRQ trans [%s] %x --> %x\n",
775 		       op->node->full_name, ip->full_name, orig_irq, irq);
776 
777 out:
778 	nid = of_node_to_nid(dp);
779 	if (nid != -1) {
780 		cpumask_t numa_mask = *cpumask_of_node(nid);
781 
782 		irq_set_affinity(irq, &numa_mask);
783 	}
784 
785 	return irq;
786 }
787 
788 static struct of_device * __init scan_one_device(struct device_node *dp,
789 						 struct device *parent)
790 {
791 	struct of_device *op = kzalloc(sizeof(*op), GFP_KERNEL);
792 	const unsigned int *irq;
793 	struct dev_archdata *sd;
794 	int len, i;
795 
796 	if (!op)
797 		return NULL;
798 
799 	sd = &op->dev.archdata;
800 	sd->prom_node = dp;
801 	sd->op = op;
802 
803 	op->node = dp;
804 
805 	op->clock_freq = of_getintprop_default(dp, "clock-frequency",
806 					       (25*1000*1000));
807 	op->portid = of_getintprop_default(dp, "upa-portid", -1);
808 	if (op->portid == -1)
809 		op->portid = of_getintprop_default(dp, "portid", -1);
810 
811 	irq = of_get_property(dp, "interrupts", &len);
812 	if (irq) {
813 		op->num_irqs = len / 4;
814 
815 		/* Prevent overrunning the op->irqs[] array.  */
816 		if (op->num_irqs > PROMINTR_MAX) {
817 			printk(KERN_WARNING "%s: Too many irqs (%d), "
818 			       "limiting to %d.\n",
819 			       dp->full_name, op->num_irqs, PROMINTR_MAX);
820 			op->num_irqs = PROMINTR_MAX;
821 		}
822 		memcpy(op->irqs, irq, op->num_irqs * 4);
823 	} else {
824 		op->num_irqs = 0;
825 	}
826 
827 	build_device_resources(op, parent);
828 	for (i = 0; i < op->num_irqs; i++)
829 		op->irqs[i] = build_one_device_irq(op, parent, op->irqs[i]);
830 
831 	op->dev.parent = parent;
832 	op->dev.bus = &of_platform_bus_type;
833 	if (!parent)
834 		dev_set_name(&op->dev, "root");
835 	else
836 		dev_set_name(&op->dev, "%08x", dp->node);
837 
838 	if (of_device_register(op)) {
839 		printk("%s: Could not register of device.\n",
840 		       dp->full_name);
841 		kfree(op);
842 		op = NULL;
843 	}
844 
845 	return op;
846 }
847 
848 static void __init scan_tree(struct device_node *dp, struct device *parent)
849 {
850 	while (dp) {
851 		struct of_device *op = scan_one_device(dp, parent);
852 
853 		if (op)
854 			scan_tree(dp->child, &op->dev);
855 
856 		dp = dp->sibling;
857 	}
858 }
859 
860 static void __init scan_of_devices(void)
861 {
862 	struct device_node *root = of_find_node_by_path("/");
863 	struct of_device *parent;
864 
865 	parent = scan_one_device(root, NULL);
866 	if (!parent)
867 		return;
868 
869 	scan_tree(root->child, &parent->dev);
870 }
871 
872 static int __init of_bus_driver_init(void)
873 {
874 	int err;
875 
876 	err = of_bus_type_init(&of_platform_bus_type, "of");
877 	if (!err)
878 		scan_of_devices();
879 
880 	return err;
881 }
882 
883 postcore_initcall(of_bus_driver_init);
884 
885 static int __init of_debug(char *str)
886 {
887 	int val = 0;
888 
889 	get_option(&str, &val);
890 	if (val & 1)
891 		of_resource_verbose = 1;
892 	if (val & 2)
893 		of_irq_verbose = 1;
894 	return 1;
895 }
896 
897 __setup("of_debug=", of_debug);
898