1 #include <linux/string.h> 2 #include <linux/kernel.h> 3 #include <linux/of.h> 4 #include <linux/init.h> 5 #include <linux/module.h> 6 #include <linux/mod_devicetable.h> 7 #include <linux/slab.h> 8 #include <linux/errno.h> 9 #include <linux/irq.h> 10 #include <linux/of_device.h> 11 #include <linux/of_platform.h> 12 13 #include "of_device_common.h" 14 15 void __iomem *of_ioremap(struct resource *res, unsigned long offset, unsigned long size, char *name) 16 { 17 unsigned long ret = res->start + offset; 18 struct resource *r; 19 20 if (res->flags & IORESOURCE_MEM) 21 r = request_mem_region(ret, size, name); 22 else 23 r = request_region(ret, size, name); 24 if (!r) 25 ret = 0; 26 27 return (void __iomem *) ret; 28 } 29 EXPORT_SYMBOL(of_ioremap); 30 31 void of_iounmap(struct resource *res, void __iomem *base, unsigned long size) 32 { 33 if (res->flags & IORESOURCE_MEM) 34 release_mem_region((unsigned long) base, size); 35 else 36 release_region((unsigned long) base, size); 37 } 38 EXPORT_SYMBOL(of_iounmap); 39 40 /* 41 * PCI bus specific translator 42 */ 43 44 static int of_bus_pci_match(struct device_node *np) 45 { 46 if (!strcmp(np->name, "pci")) { 47 const char *model = of_get_property(np, "model", NULL); 48 49 if (model && !strcmp(model, "SUNW,simba")) 50 return 0; 51 52 /* Do not do PCI specific frobbing if the 53 * PCI bridge lacks a ranges property. We 54 * want to pass it through up to the next 55 * parent as-is, not with the PCI translate 56 * method which chops off the top address cell. 57 */ 58 if (!of_find_property(np, "ranges", NULL)) 59 return 0; 60 61 return 1; 62 } 63 64 return 0; 65 } 66 67 static int of_bus_simba_match(struct device_node *np) 68 { 69 const char *model = of_get_property(np, "model", NULL); 70 71 if (model && !strcmp(model, "SUNW,simba")) 72 return 1; 73 74 /* Treat PCI busses lacking ranges property just like 75 * simba. 76 */ 77 if (!strcmp(np->name, "pci")) { 78 if (!of_find_property(np, "ranges", NULL)) 79 return 1; 80 } 81 82 return 0; 83 } 84 85 static int of_bus_simba_map(u32 *addr, const u32 *range, 86 int na, int ns, int pna) 87 { 88 return 0; 89 } 90 91 static void of_bus_pci_count_cells(struct device_node *np, 92 int *addrc, int *sizec) 93 { 94 if (addrc) 95 *addrc = 3; 96 if (sizec) 97 *sizec = 2; 98 } 99 100 static int of_bus_pci_map(u32 *addr, const u32 *range, 101 int na, int ns, int pna) 102 { 103 u32 result[OF_MAX_ADDR_CELLS]; 104 int i; 105 106 /* Check address type match */ 107 if (!((addr[0] ^ range[0]) & 0x03000000)) 108 goto type_match; 109 110 /* Special exception, we can map a 64-bit address into 111 * a 32-bit range. 112 */ 113 if ((addr[0] & 0x03000000) == 0x03000000 && 114 (range[0] & 0x03000000) == 0x02000000) 115 goto type_match; 116 117 return -EINVAL; 118 119 type_match: 120 if (of_out_of_range(addr + 1, range + 1, range + na + pna, 121 na - 1, ns)) 122 return -EINVAL; 123 124 /* Start with the parent range base. */ 125 memcpy(result, range + na, pna * 4); 126 127 /* Add in the child address offset, skipping high cell. */ 128 for (i = 0; i < na - 1; i++) 129 result[pna - 1 - i] += 130 (addr[na - 1 - i] - 131 range[na - 1 - i]); 132 133 memcpy(addr, result, pna * 4); 134 135 return 0; 136 } 137 138 static unsigned long of_bus_pci_get_flags(const u32 *addr, unsigned long flags) 139 { 140 u32 w = addr[0]; 141 142 /* For PCI, we override whatever child busses may have used. */ 143 flags = 0; 144 switch((w >> 24) & 0x03) { 145 case 0x01: 146 flags |= IORESOURCE_IO; 147 break; 148 149 case 0x02: /* 32 bits */ 150 case 0x03: /* 64 bits */ 151 flags |= IORESOURCE_MEM; 152 break; 153 } 154 if (w & 0x40000000) 155 flags |= IORESOURCE_PREFETCH; 156 return flags; 157 } 158 159 /* 160 * FHC/Central bus specific translator. 161 * 162 * This is just needed to hard-code the address and size cell 163 * counts. 'fhc' and 'central' nodes lack the #address-cells and 164 * #size-cells properties, and if you walk to the root on such 165 * Enterprise boxes all you'll get is a #size-cells of 2 which is 166 * not what we want to use. 167 */ 168 static int of_bus_fhc_match(struct device_node *np) 169 { 170 return !strcmp(np->name, "fhc") || 171 !strcmp(np->name, "central"); 172 } 173 174 #define of_bus_fhc_count_cells of_bus_sbus_count_cells 175 176 /* 177 * Array of bus specific translators 178 */ 179 180 static struct of_bus of_busses[] = { 181 /* PCI */ 182 { 183 .name = "pci", 184 .addr_prop_name = "assigned-addresses", 185 .match = of_bus_pci_match, 186 .count_cells = of_bus_pci_count_cells, 187 .map = of_bus_pci_map, 188 .get_flags = of_bus_pci_get_flags, 189 }, 190 /* SIMBA */ 191 { 192 .name = "simba", 193 .addr_prop_name = "assigned-addresses", 194 .match = of_bus_simba_match, 195 .count_cells = of_bus_pci_count_cells, 196 .map = of_bus_simba_map, 197 .get_flags = of_bus_pci_get_flags, 198 }, 199 /* SBUS */ 200 { 201 .name = "sbus", 202 .addr_prop_name = "reg", 203 .match = of_bus_sbus_match, 204 .count_cells = of_bus_sbus_count_cells, 205 .map = of_bus_default_map, 206 .get_flags = of_bus_default_get_flags, 207 }, 208 /* FHC */ 209 { 210 .name = "fhc", 211 .addr_prop_name = "reg", 212 .match = of_bus_fhc_match, 213 .count_cells = of_bus_fhc_count_cells, 214 .map = of_bus_default_map, 215 .get_flags = of_bus_default_get_flags, 216 }, 217 /* Default */ 218 { 219 .name = "default", 220 .addr_prop_name = "reg", 221 .match = NULL, 222 .count_cells = of_bus_default_count_cells, 223 .map = of_bus_default_map, 224 .get_flags = of_bus_default_get_flags, 225 }, 226 }; 227 228 static struct of_bus *of_match_bus(struct device_node *np) 229 { 230 int i; 231 232 for (i = 0; i < ARRAY_SIZE(of_busses); i ++) 233 if (!of_busses[i].match || of_busses[i].match(np)) 234 return &of_busses[i]; 235 BUG(); 236 return NULL; 237 } 238 239 static int __init build_one_resource(struct device_node *parent, 240 struct of_bus *bus, 241 struct of_bus *pbus, 242 u32 *addr, 243 int na, int ns, int pna) 244 { 245 const u32 *ranges; 246 int rone, rlen; 247 248 ranges = of_get_property(parent, "ranges", &rlen); 249 if (ranges == NULL || rlen == 0) { 250 u32 result[OF_MAX_ADDR_CELLS]; 251 int i; 252 253 memset(result, 0, pna * 4); 254 for (i = 0; i < na; i++) 255 result[pna - 1 - i] = 256 addr[na - 1 - i]; 257 258 memcpy(addr, result, pna * 4); 259 return 0; 260 } 261 262 /* Now walk through the ranges */ 263 rlen /= 4; 264 rone = na + pna + ns; 265 for (; rlen >= rone; rlen -= rone, ranges += rone) { 266 if (!bus->map(addr, ranges, na, ns, pna)) 267 return 0; 268 } 269 270 /* When we miss an I/O space match on PCI, just pass it up 271 * to the next PCI bridge and/or controller. 272 */ 273 if (!strcmp(bus->name, "pci") && 274 (addr[0] & 0x03000000) == 0x01000000) 275 return 0; 276 277 return 1; 278 } 279 280 static int __init use_1to1_mapping(struct device_node *pp) 281 { 282 /* If we have a ranges property in the parent, use it. */ 283 if (of_find_property(pp, "ranges", NULL) != NULL) 284 return 0; 285 286 /* If the parent is the dma node of an ISA bus, pass 287 * the translation up to the root. 288 * 289 * Some SBUS devices use intermediate nodes to express 290 * hierarchy within the device itself. These aren't 291 * real bus nodes, and don't have a 'ranges' property. 292 * But, we should still pass the translation work up 293 * to the SBUS itself. 294 */ 295 if (!strcmp(pp->name, "dma") || 296 !strcmp(pp->name, "espdma") || 297 !strcmp(pp->name, "ledma") || 298 !strcmp(pp->name, "lebuffer")) 299 return 0; 300 301 /* Similarly for all PCI bridges, if we get this far 302 * it lacks a ranges property, and this will include 303 * cases like Simba. 304 */ 305 if (!strcmp(pp->name, "pci")) 306 return 0; 307 308 return 1; 309 } 310 311 static int of_resource_verbose; 312 313 static void __init build_device_resources(struct platform_device *op, 314 struct device *parent) 315 { 316 struct platform_device *p_op; 317 struct of_bus *bus; 318 int na, ns; 319 int index, num_reg; 320 const void *preg; 321 322 if (!parent) 323 return; 324 325 p_op = to_platform_device(parent); 326 bus = of_match_bus(p_op->dev.of_node); 327 bus->count_cells(op->dev.of_node, &na, &ns); 328 329 preg = of_get_property(op->dev.of_node, bus->addr_prop_name, &num_reg); 330 if (!preg || num_reg == 0) 331 return; 332 333 /* Convert to num-cells. */ 334 num_reg /= 4; 335 336 /* Convert to num-entries. */ 337 num_reg /= na + ns; 338 339 /* Prevent overrunning the op->resources[] array. */ 340 if (num_reg > PROMREG_MAX) { 341 printk(KERN_WARNING "%s: Too many regs (%d), " 342 "limiting to %d.\n", 343 op->dev.of_node->full_name, num_reg, PROMREG_MAX); 344 num_reg = PROMREG_MAX; 345 } 346 347 op->resource = op->archdata.resource; 348 op->num_resources = num_reg; 349 for (index = 0; index < num_reg; index++) { 350 struct resource *r = &op->resource[index]; 351 u32 addr[OF_MAX_ADDR_CELLS]; 352 const u32 *reg = (preg + (index * ((na + ns) * 4))); 353 struct device_node *dp = op->dev.of_node; 354 struct device_node *pp = p_op->dev.of_node; 355 struct of_bus *pbus, *dbus; 356 u64 size, result = OF_BAD_ADDR; 357 unsigned long flags; 358 int dna, dns; 359 int pna, pns; 360 361 size = of_read_addr(reg + na, ns); 362 memcpy(addr, reg, na * 4); 363 364 flags = bus->get_flags(addr, 0); 365 366 if (use_1to1_mapping(pp)) { 367 result = of_read_addr(addr, na); 368 goto build_res; 369 } 370 371 dna = na; 372 dns = ns; 373 dbus = bus; 374 375 while (1) { 376 dp = pp; 377 pp = dp->parent; 378 if (!pp) { 379 result = of_read_addr(addr, dna); 380 break; 381 } 382 383 pbus = of_match_bus(pp); 384 pbus->count_cells(dp, &pna, &pns); 385 386 if (build_one_resource(dp, dbus, pbus, addr, 387 dna, dns, pna)) 388 break; 389 390 flags = pbus->get_flags(addr, flags); 391 392 dna = pna; 393 dns = pns; 394 dbus = pbus; 395 } 396 397 build_res: 398 memset(r, 0, sizeof(*r)); 399 400 if (of_resource_verbose) 401 printk("%s reg[%d] -> %llx\n", 402 op->dev.of_node->full_name, index, 403 result); 404 405 if (result != OF_BAD_ADDR) { 406 if (tlb_type == hypervisor) 407 result &= 0x0fffffffffffffffUL; 408 409 r->start = result; 410 r->end = result + size - 1; 411 r->flags = flags; 412 } 413 r->name = op->dev.of_node->name; 414 } 415 } 416 417 static struct device_node * __init 418 apply_interrupt_map(struct device_node *dp, struct device_node *pp, 419 const u32 *imap, int imlen, const u32 *imask, 420 unsigned int *irq_p) 421 { 422 struct device_node *cp; 423 unsigned int irq = *irq_p; 424 struct of_bus *bus; 425 phandle handle; 426 const u32 *reg; 427 int na, num_reg, i; 428 429 bus = of_match_bus(pp); 430 bus->count_cells(dp, &na, NULL); 431 432 reg = of_get_property(dp, "reg", &num_reg); 433 if (!reg || !num_reg) 434 return NULL; 435 436 imlen /= ((na + 3) * 4); 437 handle = 0; 438 for (i = 0; i < imlen; i++) { 439 int j; 440 441 for (j = 0; j < na; j++) { 442 if ((reg[j] & imask[j]) != imap[j]) 443 goto next; 444 } 445 if (imap[na] == irq) { 446 handle = imap[na + 1]; 447 irq = imap[na + 2]; 448 break; 449 } 450 451 next: 452 imap += (na + 3); 453 } 454 if (i == imlen) { 455 /* Psycho and Sabre PCI controllers can have 'interrupt-map' 456 * properties that do not include the on-board device 457 * interrupts. Instead, the device's 'interrupts' property 458 * is already a fully specified INO value. 459 * 460 * Handle this by deciding that, if we didn't get a 461 * match in the parent's 'interrupt-map', and the 462 * parent is an IRQ translator, then use the parent as 463 * our IRQ controller. 464 */ 465 if (pp->irq_trans) 466 return pp; 467 468 return NULL; 469 } 470 471 *irq_p = irq; 472 cp = of_find_node_by_phandle(handle); 473 474 return cp; 475 } 476 477 static unsigned int __init pci_irq_swizzle(struct device_node *dp, 478 struct device_node *pp, 479 unsigned int irq) 480 { 481 const struct linux_prom_pci_registers *regs; 482 unsigned int bus, devfn, slot, ret; 483 484 if (irq < 1 || irq > 4) 485 return irq; 486 487 regs = of_get_property(dp, "reg", NULL); 488 if (!regs) 489 return irq; 490 491 bus = (regs->phys_hi >> 16) & 0xff; 492 devfn = (regs->phys_hi >> 8) & 0xff; 493 slot = (devfn >> 3) & 0x1f; 494 495 if (pp->irq_trans) { 496 /* Derived from Table 8-3, U2P User's Manual. This branch 497 * is handling a PCI controller that lacks a proper set of 498 * interrupt-map and interrupt-map-mask properties. The 499 * Ultra-E450 is one example. 500 * 501 * The bit layout is BSSLL, where: 502 * B: 0 on bus A, 1 on bus B 503 * D: 2-bit slot number, derived from PCI device number as 504 * (dev - 1) for bus A, or (dev - 2) for bus B 505 * L: 2-bit line number 506 */ 507 if (bus & 0x80) { 508 /* PBM-A */ 509 bus = 0x00; 510 slot = (slot - 1) << 2; 511 } else { 512 /* PBM-B */ 513 bus = 0x10; 514 slot = (slot - 2) << 2; 515 } 516 irq -= 1; 517 518 ret = (bus | slot | irq); 519 } else { 520 /* Going through a PCI-PCI bridge that lacks a set of 521 * interrupt-map and interrupt-map-mask properties. 522 */ 523 ret = ((irq - 1 + (slot & 3)) & 3) + 1; 524 } 525 526 return ret; 527 } 528 529 static int of_irq_verbose; 530 531 static unsigned int __init build_one_device_irq(struct platform_device *op, 532 struct device *parent, 533 unsigned int irq) 534 { 535 struct device_node *dp = op->dev.of_node; 536 struct device_node *pp, *ip; 537 unsigned int orig_irq = irq; 538 int nid; 539 540 if (irq == 0xffffffff) 541 return irq; 542 543 if (dp->irq_trans) { 544 irq = dp->irq_trans->irq_build(dp, irq, 545 dp->irq_trans->data); 546 547 if (of_irq_verbose) 548 printk("%s: direct translate %x --> %x\n", 549 dp->full_name, orig_irq, irq); 550 551 goto out; 552 } 553 554 /* Something more complicated. Walk up to the root, applying 555 * interrupt-map or bus specific translations, until we hit 556 * an IRQ translator. 557 * 558 * If we hit a bus type or situation we cannot handle, we 559 * stop and assume that the original IRQ number was in a 560 * format which has special meaning to it's immediate parent. 561 */ 562 pp = dp->parent; 563 ip = NULL; 564 while (pp) { 565 const void *imap, *imsk; 566 int imlen; 567 568 imap = of_get_property(pp, "interrupt-map", &imlen); 569 imsk = of_get_property(pp, "interrupt-map-mask", NULL); 570 if (imap && imsk) { 571 struct device_node *iret; 572 int this_orig_irq = irq; 573 574 iret = apply_interrupt_map(dp, pp, 575 imap, imlen, imsk, 576 &irq); 577 578 if (of_irq_verbose) 579 printk("%s: Apply [%s:%x] imap --> [%s:%x]\n", 580 op->dev.of_node->full_name, 581 pp->full_name, this_orig_irq, 582 (iret ? iret->full_name : "NULL"), irq); 583 584 if (!iret) 585 break; 586 587 if (iret->irq_trans) { 588 ip = iret; 589 break; 590 } 591 } else { 592 if (!strcmp(pp->name, "pci")) { 593 unsigned int this_orig_irq = irq; 594 595 irq = pci_irq_swizzle(dp, pp, irq); 596 if (of_irq_verbose) 597 printk("%s: PCI swizzle [%s] " 598 "%x --> %x\n", 599 op->dev.of_node->full_name, 600 pp->full_name, this_orig_irq, 601 irq); 602 603 } 604 605 if (pp->irq_trans) { 606 ip = pp; 607 break; 608 } 609 } 610 dp = pp; 611 pp = pp->parent; 612 } 613 if (!ip) 614 return orig_irq; 615 616 irq = ip->irq_trans->irq_build(op->dev.of_node, irq, 617 ip->irq_trans->data); 618 if (of_irq_verbose) 619 printk("%s: Apply IRQ trans [%s] %x --> %x\n", 620 op->dev.of_node->full_name, ip->full_name, orig_irq, irq); 621 622 out: 623 nid = of_node_to_nid(dp); 624 if (nid != -1) { 625 cpumask_t numa_mask; 626 627 cpumask_copy(&numa_mask, cpumask_of_node(nid)); 628 irq_set_affinity(irq, &numa_mask); 629 } 630 631 return irq; 632 } 633 634 static struct platform_device * __init scan_one_device(struct device_node *dp, 635 struct device *parent) 636 { 637 struct platform_device *op = kzalloc(sizeof(*op), GFP_KERNEL); 638 const unsigned int *irq; 639 struct dev_archdata *sd; 640 int len, i; 641 642 if (!op) 643 return NULL; 644 645 sd = &op->dev.archdata; 646 sd->op = op; 647 648 op->dev.of_node = dp; 649 650 irq = of_get_property(dp, "interrupts", &len); 651 if (irq) { 652 op->archdata.num_irqs = len / 4; 653 654 /* Prevent overrunning the op->irqs[] array. */ 655 if (op->archdata.num_irqs > PROMINTR_MAX) { 656 printk(KERN_WARNING "%s: Too many irqs (%d), " 657 "limiting to %d.\n", 658 dp->full_name, op->archdata.num_irqs, PROMINTR_MAX); 659 op->archdata.num_irqs = PROMINTR_MAX; 660 } 661 memcpy(op->archdata.irqs, irq, op->archdata.num_irqs * 4); 662 } else { 663 op->archdata.num_irqs = 0; 664 } 665 666 build_device_resources(op, parent); 667 for (i = 0; i < op->archdata.num_irqs; i++) 668 op->archdata.irqs[i] = build_one_device_irq(op, parent, op->archdata.irqs[i]); 669 670 op->dev.parent = parent; 671 op->dev.bus = &platform_bus_type; 672 if (!parent) 673 dev_set_name(&op->dev, "root"); 674 else 675 dev_set_name(&op->dev, "%08x", dp->phandle); 676 677 if (of_device_register(op)) { 678 printk("%s: Could not register of device.\n", 679 dp->full_name); 680 kfree(op); 681 op = NULL; 682 } 683 684 return op; 685 } 686 687 static void __init scan_tree(struct device_node *dp, struct device *parent) 688 { 689 while (dp) { 690 struct platform_device *op = scan_one_device(dp, parent); 691 692 if (op) 693 scan_tree(dp->child, &op->dev); 694 695 dp = dp->sibling; 696 } 697 } 698 699 static int __init scan_of_devices(void) 700 { 701 struct device_node *root = of_find_node_by_path("/"); 702 struct platform_device *parent; 703 704 parent = scan_one_device(root, NULL); 705 if (!parent) 706 return 0; 707 708 scan_tree(root->child, &parent->dev); 709 return 0; 710 } 711 postcore_initcall(scan_of_devices); 712 713 static int __init of_debug(char *str) 714 { 715 int val = 0; 716 717 get_option(&str, &val); 718 if (val & 1) 719 of_resource_verbose = 1; 720 if (val & 2) 721 of_irq_verbose = 1; 722 return 1; 723 } 724 725 __setup("of_debug=", of_debug); 726