xref: /openbmc/linux/arch/sparc/kernel/of_device_64.c (revision 78c99ba1)
1 #include <linux/string.h>
2 #include <linux/kernel.h>
3 #include <linux/of.h>
4 #include <linux/init.h>
5 #include <linux/module.h>
6 #include <linux/mod_devicetable.h>
7 #include <linux/slab.h>
8 #include <linux/errno.h>
9 #include <linux/irq.h>
10 #include <linux/of_device.h>
11 #include <linux/of_platform.h>
12 
13 void __iomem *of_ioremap(struct resource *res, unsigned long offset, unsigned long size, char *name)
14 {
15 	unsigned long ret = res->start + offset;
16 	struct resource *r;
17 
18 	if (res->flags & IORESOURCE_MEM)
19 		r = request_mem_region(ret, size, name);
20 	else
21 		r = request_region(ret, size, name);
22 	if (!r)
23 		ret = 0;
24 
25 	return (void __iomem *) ret;
26 }
27 EXPORT_SYMBOL(of_ioremap);
28 
29 void of_iounmap(struct resource *res, void __iomem *base, unsigned long size)
30 {
31 	if (res->flags & IORESOURCE_MEM)
32 		release_mem_region((unsigned long) base, size);
33 	else
34 		release_region((unsigned long) base, size);
35 }
36 EXPORT_SYMBOL(of_iounmap);
37 
38 static int node_match(struct device *dev, void *data)
39 {
40 	struct of_device *op = to_of_device(dev);
41 	struct device_node *dp = data;
42 
43 	return (op->node == dp);
44 }
45 
46 struct of_device *of_find_device_by_node(struct device_node *dp)
47 {
48 	struct device *dev = bus_find_device(&of_platform_bus_type, NULL,
49 					     dp, node_match);
50 
51 	if (dev)
52 		return to_of_device(dev);
53 
54 	return NULL;
55 }
56 EXPORT_SYMBOL(of_find_device_by_node);
57 
58 unsigned int irq_of_parse_and_map(struct device_node *node, int index)
59 {
60 	struct of_device *op = of_find_device_by_node(node);
61 
62 	if (!op || index >= op->num_irqs)
63 		return 0;
64 
65 	return op->irqs[index];
66 }
67 EXPORT_SYMBOL(irq_of_parse_and_map);
68 
69 /* Take the archdata values for IOMMU, STC, and HOSTDATA found in
70  * BUS and propagate to all child of_device objects.
71  */
72 void of_propagate_archdata(struct of_device *bus)
73 {
74 	struct dev_archdata *bus_sd = &bus->dev.archdata;
75 	struct device_node *bus_dp = bus->node;
76 	struct device_node *dp;
77 
78 	for (dp = bus_dp->child; dp; dp = dp->sibling) {
79 		struct of_device *op = of_find_device_by_node(dp);
80 
81 		op->dev.archdata.iommu = bus_sd->iommu;
82 		op->dev.archdata.stc = bus_sd->stc;
83 		op->dev.archdata.host_controller = bus_sd->host_controller;
84 		op->dev.archdata.numa_node = bus_sd->numa_node;
85 
86 		if (dp->child)
87 			of_propagate_archdata(op);
88 	}
89 }
90 
91 struct bus_type of_platform_bus_type;
92 EXPORT_SYMBOL(of_platform_bus_type);
93 
94 static inline u64 of_read_addr(const u32 *cell, int size)
95 {
96 	u64 r = 0;
97 	while (size--)
98 		r = (r << 32) | *(cell++);
99 	return r;
100 }
101 
102 static void get_cells(struct device_node *dp, int *addrc, int *sizec)
103 {
104 	if (addrc)
105 		*addrc = of_n_addr_cells(dp);
106 	if (sizec)
107 		*sizec = of_n_size_cells(dp);
108 }
109 
110 /* Max address size we deal with */
111 #define OF_MAX_ADDR_CELLS	4
112 
113 struct of_bus {
114 	const char	*name;
115 	const char	*addr_prop_name;
116 	int		(*match)(struct device_node *parent);
117 	void		(*count_cells)(struct device_node *child,
118 				       int *addrc, int *sizec);
119 	int		(*map)(u32 *addr, const u32 *range,
120 			       int na, int ns, int pna);
121 	unsigned long	(*get_flags)(const u32 *addr, unsigned long);
122 };
123 
124 /*
125  * Default translator (generic bus)
126  */
127 
128 static void of_bus_default_count_cells(struct device_node *dev,
129 				       int *addrc, int *sizec)
130 {
131 	get_cells(dev, addrc, sizec);
132 }
133 
134 /* Make sure the least significant 64-bits are in-range.  Even
135  * for 3 or 4 cell values it is a good enough approximation.
136  */
137 static int of_out_of_range(const u32 *addr, const u32 *base,
138 			   const u32 *size, int na, int ns)
139 {
140 	u64 a = of_read_addr(addr, na);
141 	u64 b = of_read_addr(base, na);
142 
143 	if (a < b)
144 		return 1;
145 
146 	b += of_read_addr(size, ns);
147 	if (a >= b)
148 		return 1;
149 
150 	return 0;
151 }
152 
153 static int of_bus_default_map(u32 *addr, const u32 *range,
154 			      int na, int ns, int pna)
155 {
156 	u32 result[OF_MAX_ADDR_CELLS];
157 	int i;
158 
159 	if (ns > 2) {
160 		printk("of_device: Cannot handle size cells (%d) > 2.", ns);
161 		return -EINVAL;
162 	}
163 
164 	if (of_out_of_range(addr, range, range + na + pna, na, ns))
165 		return -EINVAL;
166 
167 	/* Start with the parent range base.  */
168 	memcpy(result, range + na, pna * 4);
169 
170 	/* Add in the child address offset.  */
171 	for (i = 0; i < na; i++)
172 		result[pna - 1 - i] +=
173 			(addr[na - 1 - i] -
174 			 range[na - 1 - i]);
175 
176 	memcpy(addr, result, pna * 4);
177 
178 	return 0;
179 }
180 
181 static unsigned long of_bus_default_get_flags(const u32 *addr, unsigned long flags)
182 {
183 	if (flags)
184 		return flags;
185 	return IORESOURCE_MEM;
186 }
187 
188 /*
189  * PCI bus specific translator
190  */
191 
192 static int of_bus_pci_match(struct device_node *np)
193 {
194 	if (!strcmp(np->name, "pci")) {
195 		const char *model = of_get_property(np, "model", NULL);
196 
197 		if (model && !strcmp(model, "SUNW,simba"))
198 			return 0;
199 
200 		/* Do not do PCI specific frobbing if the
201 		 * PCI bridge lacks a ranges property.  We
202 		 * want to pass it through up to the next
203 		 * parent as-is, not with the PCI translate
204 		 * method which chops off the top address cell.
205 		 */
206 		if (!of_find_property(np, "ranges", NULL))
207 			return 0;
208 
209 		return 1;
210 	}
211 
212 	return 0;
213 }
214 
215 static int of_bus_simba_match(struct device_node *np)
216 {
217 	const char *model = of_get_property(np, "model", NULL);
218 
219 	if (model && !strcmp(model, "SUNW,simba"))
220 		return 1;
221 
222 	/* Treat PCI busses lacking ranges property just like
223 	 * simba.
224 	 */
225 	if (!strcmp(np->name, "pci")) {
226 		if (!of_find_property(np, "ranges", NULL))
227 			return 1;
228 	}
229 
230 	return 0;
231 }
232 
233 static int of_bus_simba_map(u32 *addr, const u32 *range,
234 			    int na, int ns, int pna)
235 {
236 	return 0;
237 }
238 
239 static void of_bus_pci_count_cells(struct device_node *np,
240 				   int *addrc, int *sizec)
241 {
242 	if (addrc)
243 		*addrc = 3;
244 	if (sizec)
245 		*sizec = 2;
246 }
247 
248 static int of_bus_pci_map(u32 *addr, const u32 *range,
249 			  int na, int ns, int pna)
250 {
251 	u32 result[OF_MAX_ADDR_CELLS];
252 	int i;
253 
254 	/* Check address type match */
255 	if ((addr[0] ^ range[0]) & 0x03000000)
256 		return -EINVAL;
257 
258 	if (of_out_of_range(addr + 1, range + 1, range + na + pna,
259 			    na - 1, ns))
260 		return -EINVAL;
261 
262 	/* Start with the parent range base.  */
263 	memcpy(result, range + na, pna * 4);
264 
265 	/* Add in the child address offset, skipping high cell.  */
266 	for (i = 0; i < na - 1; i++)
267 		result[pna - 1 - i] +=
268 			(addr[na - 1 - i] -
269 			 range[na - 1 - i]);
270 
271 	memcpy(addr, result, pna * 4);
272 
273 	return 0;
274 }
275 
276 static unsigned long of_bus_pci_get_flags(const u32 *addr, unsigned long flags)
277 {
278 	u32 w = addr[0];
279 
280 	/* For PCI, we override whatever child busses may have used.  */
281 	flags = 0;
282 	switch((w >> 24) & 0x03) {
283 	case 0x01:
284 		flags |= IORESOURCE_IO;
285 		break;
286 
287 	case 0x02: /* 32 bits */
288 	case 0x03: /* 64 bits */
289 		flags |= IORESOURCE_MEM;
290 		break;
291 	}
292 	if (w & 0x40000000)
293 		flags |= IORESOURCE_PREFETCH;
294 	return flags;
295 }
296 
297 /*
298  * SBUS bus specific translator
299  */
300 
301 static int of_bus_sbus_match(struct device_node *np)
302 {
303 	struct device_node *dp = np;
304 
305 	while (dp) {
306 		if (!strcmp(dp->name, "sbus") ||
307 		    !strcmp(dp->name, "sbi"))
308 			return 1;
309 
310 		/* Have a look at use_1to1_mapping().  We're trying
311 		 * to match SBUS if that's the top-level bus and we
312 		 * don't have some intervening real bus that provides
313 		 * ranges based translations.
314 		 */
315 		if (of_find_property(dp, "ranges", NULL) != NULL)
316 			break;
317 
318 		dp = dp->parent;
319 	}
320 
321 	return 0;
322 }
323 
324 static void of_bus_sbus_count_cells(struct device_node *child,
325 				   int *addrc, int *sizec)
326 {
327 	if (addrc)
328 		*addrc = 2;
329 	if (sizec)
330 		*sizec = 1;
331 }
332 
333 /*
334  * FHC/Central bus specific translator.
335  *
336  * This is just needed to hard-code the address and size cell
337  * counts.  'fhc' and 'central' nodes lack the #address-cells and
338  * #size-cells properties, and if you walk to the root on such
339  * Enterprise boxes all you'll get is a #size-cells of 2 which is
340  * not what we want to use.
341  */
342 static int of_bus_fhc_match(struct device_node *np)
343 {
344 	return !strcmp(np->name, "fhc") ||
345 		!strcmp(np->name, "central");
346 }
347 
348 #define of_bus_fhc_count_cells of_bus_sbus_count_cells
349 
350 /*
351  * Array of bus specific translators
352  */
353 
354 static struct of_bus of_busses[] = {
355 	/* PCI */
356 	{
357 		.name = "pci",
358 		.addr_prop_name = "assigned-addresses",
359 		.match = of_bus_pci_match,
360 		.count_cells = of_bus_pci_count_cells,
361 		.map = of_bus_pci_map,
362 		.get_flags = of_bus_pci_get_flags,
363 	},
364 	/* SIMBA */
365 	{
366 		.name = "simba",
367 		.addr_prop_name = "assigned-addresses",
368 		.match = of_bus_simba_match,
369 		.count_cells = of_bus_pci_count_cells,
370 		.map = of_bus_simba_map,
371 		.get_flags = of_bus_pci_get_flags,
372 	},
373 	/* SBUS */
374 	{
375 		.name = "sbus",
376 		.addr_prop_name = "reg",
377 		.match = of_bus_sbus_match,
378 		.count_cells = of_bus_sbus_count_cells,
379 		.map = of_bus_default_map,
380 		.get_flags = of_bus_default_get_flags,
381 	},
382 	/* FHC */
383 	{
384 		.name = "fhc",
385 		.addr_prop_name = "reg",
386 		.match = of_bus_fhc_match,
387 		.count_cells = of_bus_fhc_count_cells,
388 		.map = of_bus_default_map,
389 		.get_flags = of_bus_default_get_flags,
390 	},
391 	/* Default */
392 	{
393 		.name = "default",
394 		.addr_prop_name = "reg",
395 		.match = NULL,
396 		.count_cells = of_bus_default_count_cells,
397 		.map = of_bus_default_map,
398 		.get_flags = of_bus_default_get_flags,
399 	},
400 };
401 
402 static struct of_bus *of_match_bus(struct device_node *np)
403 {
404 	int i;
405 
406 	for (i = 0; i < ARRAY_SIZE(of_busses); i ++)
407 		if (!of_busses[i].match || of_busses[i].match(np))
408 			return &of_busses[i];
409 	BUG();
410 	return NULL;
411 }
412 
413 static int __init build_one_resource(struct device_node *parent,
414 				     struct of_bus *bus,
415 				     struct of_bus *pbus,
416 				     u32 *addr,
417 				     int na, int ns, int pna)
418 {
419 	const u32 *ranges;
420 	int rone, rlen;
421 
422 	ranges = of_get_property(parent, "ranges", &rlen);
423 	if (ranges == NULL || rlen == 0) {
424 		u32 result[OF_MAX_ADDR_CELLS];
425 		int i;
426 
427 		memset(result, 0, pna * 4);
428 		for (i = 0; i < na; i++)
429 			result[pna - 1 - i] =
430 				addr[na - 1 - i];
431 
432 		memcpy(addr, result, pna * 4);
433 		return 0;
434 	}
435 
436 	/* Now walk through the ranges */
437 	rlen /= 4;
438 	rone = na + pna + ns;
439 	for (; rlen >= rone; rlen -= rone, ranges += rone) {
440 		if (!bus->map(addr, ranges, na, ns, pna))
441 			return 0;
442 	}
443 
444 	/* When we miss an I/O space match on PCI, just pass it up
445 	 * to the next PCI bridge and/or controller.
446 	 */
447 	if (!strcmp(bus->name, "pci") &&
448 	    (addr[0] & 0x03000000) == 0x01000000)
449 		return 0;
450 
451 	return 1;
452 }
453 
454 static int __init use_1to1_mapping(struct device_node *pp)
455 {
456 	/* If we have a ranges property in the parent, use it.  */
457 	if (of_find_property(pp, "ranges", NULL) != NULL)
458 		return 0;
459 
460 	/* If the parent is the dma node of an ISA bus, pass
461 	 * the translation up to the root.
462 	 *
463 	 * Some SBUS devices use intermediate nodes to express
464 	 * hierarchy within the device itself.  These aren't
465 	 * real bus nodes, and don't have a 'ranges' property.
466 	 * But, we should still pass the translation work up
467 	 * to the SBUS itself.
468 	 */
469 	if (!strcmp(pp->name, "dma") ||
470 	    !strcmp(pp->name, "espdma") ||
471 	    !strcmp(pp->name, "ledma") ||
472 	    !strcmp(pp->name, "lebuffer"))
473 		return 0;
474 
475 	/* Similarly for all PCI bridges, if we get this far
476 	 * it lacks a ranges property, and this will include
477 	 * cases like Simba.
478 	 */
479 	if (!strcmp(pp->name, "pci"))
480 		return 0;
481 
482 	return 1;
483 }
484 
485 static int of_resource_verbose;
486 
487 static void __init build_device_resources(struct of_device *op,
488 					  struct device *parent)
489 {
490 	struct of_device *p_op;
491 	struct of_bus *bus;
492 	int na, ns;
493 	int index, num_reg;
494 	const void *preg;
495 
496 	if (!parent)
497 		return;
498 
499 	p_op = to_of_device(parent);
500 	bus = of_match_bus(p_op->node);
501 	bus->count_cells(op->node, &na, &ns);
502 
503 	preg = of_get_property(op->node, bus->addr_prop_name, &num_reg);
504 	if (!preg || num_reg == 0)
505 		return;
506 
507 	/* Convert to num-cells.  */
508 	num_reg /= 4;
509 
510 	/* Convert to num-entries.  */
511 	num_reg /= na + ns;
512 
513 	/* Prevent overrunning the op->resources[] array.  */
514 	if (num_reg > PROMREG_MAX) {
515 		printk(KERN_WARNING "%s: Too many regs (%d), "
516 		       "limiting to %d.\n",
517 		       op->node->full_name, num_reg, PROMREG_MAX);
518 		num_reg = PROMREG_MAX;
519 	}
520 
521 	for (index = 0; index < num_reg; index++) {
522 		struct resource *r = &op->resource[index];
523 		u32 addr[OF_MAX_ADDR_CELLS];
524 		const u32 *reg = (preg + (index * ((na + ns) * 4)));
525 		struct device_node *dp = op->node;
526 		struct device_node *pp = p_op->node;
527 		struct of_bus *pbus, *dbus;
528 		u64 size, result = OF_BAD_ADDR;
529 		unsigned long flags;
530 		int dna, dns;
531 		int pna, pns;
532 
533 		size = of_read_addr(reg + na, ns);
534 		memcpy(addr, reg, na * 4);
535 
536 		flags = bus->get_flags(addr, 0);
537 
538 		if (use_1to1_mapping(pp)) {
539 			result = of_read_addr(addr, na);
540 			goto build_res;
541 		}
542 
543 		dna = na;
544 		dns = ns;
545 		dbus = bus;
546 
547 		while (1) {
548 			dp = pp;
549 			pp = dp->parent;
550 			if (!pp) {
551 				result = of_read_addr(addr, dna);
552 				break;
553 			}
554 
555 			pbus = of_match_bus(pp);
556 			pbus->count_cells(dp, &pna, &pns);
557 
558 			if (build_one_resource(dp, dbus, pbus, addr,
559 					       dna, dns, pna))
560 				break;
561 
562 			flags = pbus->get_flags(addr, flags);
563 
564 			dna = pna;
565 			dns = pns;
566 			dbus = pbus;
567 		}
568 
569 	build_res:
570 		memset(r, 0, sizeof(*r));
571 
572 		if (of_resource_verbose)
573 			printk("%s reg[%d] -> %llx\n",
574 			       op->node->full_name, index,
575 			       result);
576 
577 		if (result != OF_BAD_ADDR) {
578 			if (tlb_type == hypervisor)
579 				result &= 0x0fffffffffffffffUL;
580 
581 			r->start = result;
582 			r->end = result + size - 1;
583 			r->flags = flags;
584 		}
585 		r->name = op->node->name;
586 	}
587 }
588 
589 static struct device_node * __init
590 apply_interrupt_map(struct device_node *dp, struct device_node *pp,
591 		    const u32 *imap, int imlen, const u32 *imask,
592 		    unsigned int *irq_p)
593 {
594 	struct device_node *cp;
595 	unsigned int irq = *irq_p;
596 	struct of_bus *bus;
597 	phandle handle;
598 	const u32 *reg;
599 	int na, num_reg, i;
600 
601 	bus = of_match_bus(pp);
602 	bus->count_cells(dp, &na, NULL);
603 
604 	reg = of_get_property(dp, "reg", &num_reg);
605 	if (!reg || !num_reg)
606 		return NULL;
607 
608 	imlen /= ((na + 3) * 4);
609 	handle = 0;
610 	for (i = 0; i < imlen; i++) {
611 		int j;
612 
613 		for (j = 0; j < na; j++) {
614 			if ((reg[j] & imask[j]) != imap[j])
615 				goto next;
616 		}
617 		if (imap[na] == irq) {
618 			handle = imap[na + 1];
619 			irq = imap[na + 2];
620 			break;
621 		}
622 
623 	next:
624 		imap += (na + 3);
625 	}
626 	if (i == imlen) {
627 		/* Psycho and Sabre PCI controllers can have 'interrupt-map'
628 		 * properties that do not include the on-board device
629 		 * interrupts.  Instead, the device's 'interrupts' property
630 		 * is already a fully specified INO value.
631 		 *
632 		 * Handle this by deciding that, if we didn't get a
633 		 * match in the parent's 'interrupt-map', and the
634 		 * parent is an IRQ translater, then use the parent as
635 		 * our IRQ controller.
636 		 */
637 		if (pp->irq_trans)
638 			return pp;
639 
640 		return NULL;
641 	}
642 
643 	*irq_p = irq;
644 	cp = of_find_node_by_phandle(handle);
645 
646 	return cp;
647 }
648 
649 static unsigned int __init pci_irq_swizzle(struct device_node *dp,
650 					   struct device_node *pp,
651 					   unsigned int irq)
652 {
653 	const struct linux_prom_pci_registers *regs;
654 	unsigned int bus, devfn, slot, ret;
655 
656 	if (irq < 1 || irq > 4)
657 		return irq;
658 
659 	regs = of_get_property(dp, "reg", NULL);
660 	if (!regs)
661 		return irq;
662 
663 	bus = (regs->phys_hi >> 16) & 0xff;
664 	devfn = (regs->phys_hi >> 8) & 0xff;
665 	slot = (devfn >> 3) & 0x1f;
666 
667 	if (pp->irq_trans) {
668 		/* Derived from Table 8-3, U2P User's Manual.  This branch
669 		 * is handling a PCI controller that lacks a proper set of
670 		 * interrupt-map and interrupt-map-mask properties.  The
671 		 * Ultra-E450 is one example.
672 		 *
673 		 * The bit layout is BSSLL, where:
674 		 * B: 0 on bus A, 1 on bus B
675 		 * D: 2-bit slot number, derived from PCI device number as
676 		 *    (dev - 1) for bus A, or (dev - 2) for bus B
677 		 * L: 2-bit line number
678 		 */
679 		if (bus & 0x80) {
680 			/* PBM-A */
681 			bus  = 0x00;
682 			slot = (slot - 1) << 2;
683 		} else {
684 			/* PBM-B */
685 			bus  = 0x10;
686 			slot = (slot - 2) << 2;
687 		}
688 		irq -= 1;
689 
690 		ret = (bus | slot | irq);
691 	} else {
692 		/* Going through a PCI-PCI bridge that lacks a set of
693 		 * interrupt-map and interrupt-map-mask properties.
694 		 */
695 		ret = ((irq - 1 + (slot & 3)) & 3) + 1;
696 	}
697 
698 	return ret;
699 }
700 
701 static int of_irq_verbose;
702 
703 static unsigned int __init build_one_device_irq(struct of_device *op,
704 						struct device *parent,
705 						unsigned int irq)
706 {
707 	struct device_node *dp = op->node;
708 	struct device_node *pp, *ip;
709 	unsigned int orig_irq = irq;
710 	int nid;
711 
712 	if (irq == 0xffffffff)
713 		return irq;
714 
715 	if (dp->irq_trans) {
716 		irq = dp->irq_trans->irq_build(dp, irq,
717 					       dp->irq_trans->data);
718 
719 		if (of_irq_verbose)
720 			printk("%s: direct translate %x --> %x\n",
721 			       dp->full_name, orig_irq, irq);
722 
723 		goto out;
724 	}
725 
726 	/* Something more complicated.  Walk up to the root, applying
727 	 * interrupt-map or bus specific translations, until we hit
728 	 * an IRQ translator.
729 	 *
730 	 * If we hit a bus type or situation we cannot handle, we
731 	 * stop and assume that the original IRQ number was in a
732 	 * format which has special meaning to it's immediate parent.
733 	 */
734 	pp = dp->parent;
735 	ip = NULL;
736 	while (pp) {
737 		const void *imap, *imsk;
738 		int imlen;
739 
740 		imap = of_get_property(pp, "interrupt-map", &imlen);
741 		imsk = of_get_property(pp, "interrupt-map-mask", NULL);
742 		if (imap && imsk) {
743 			struct device_node *iret;
744 			int this_orig_irq = irq;
745 
746 			iret = apply_interrupt_map(dp, pp,
747 						   imap, imlen, imsk,
748 						   &irq);
749 
750 			if (of_irq_verbose)
751 				printk("%s: Apply [%s:%x] imap --> [%s:%x]\n",
752 				       op->node->full_name,
753 				       pp->full_name, this_orig_irq,
754 				       (iret ? iret->full_name : "NULL"), irq);
755 
756 			if (!iret)
757 				break;
758 
759 			if (iret->irq_trans) {
760 				ip = iret;
761 				break;
762 			}
763 		} else {
764 			if (!strcmp(pp->name, "pci")) {
765 				unsigned int this_orig_irq = irq;
766 
767 				irq = pci_irq_swizzle(dp, pp, irq);
768 				if (of_irq_verbose)
769 					printk("%s: PCI swizzle [%s] "
770 					       "%x --> %x\n",
771 					       op->node->full_name,
772 					       pp->full_name, this_orig_irq,
773 					       irq);
774 
775 			}
776 
777 			if (pp->irq_trans) {
778 				ip = pp;
779 				break;
780 			}
781 		}
782 		dp = pp;
783 		pp = pp->parent;
784 	}
785 	if (!ip)
786 		return orig_irq;
787 
788 	irq = ip->irq_trans->irq_build(op->node, irq,
789 				       ip->irq_trans->data);
790 	if (of_irq_verbose)
791 		printk("%s: Apply IRQ trans [%s] %x --> %x\n",
792 		       op->node->full_name, ip->full_name, orig_irq, irq);
793 
794 out:
795 	nid = of_node_to_nid(dp);
796 	if (nid != -1) {
797 		cpumask_t numa_mask = *cpumask_of_node(nid);
798 
799 		irq_set_affinity(irq, &numa_mask);
800 	}
801 
802 	return irq;
803 }
804 
805 static struct of_device * __init scan_one_device(struct device_node *dp,
806 						 struct device *parent)
807 {
808 	struct of_device *op = kzalloc(sizeof(*op), GFP_KERNEL);
809 	const unsigned int *irq;
810 	struct dev_archdata *sd;
811 	int len, i;
812 
813 	if (!op)
814 		return NULL;
815 
816 	sd = &op->dev.archdata;
817 	sd->prom_node = dp;
818 	sd->op = op;
819 
820 	op->node = dp;
821 
822 	op->clock_freq = of_getintprop_default(dp, "clock-frequency",
823 					       (25*1000*1000));
824 	op->portid = of_getintprop_default(dp, "upa-portid", -1);
825 	if (op->portid == -1)
826 		op->portid = of_getintprop_default(dp, "portid", -1);
827 
828 	irq = of_get_property(dp, "interrupts", &len);
829 	if (irq) {
830 		op->num_irqs = len / 4;
831 
832 		/* Prevent overrunning the op->irqs[] array.  */
833 		if (op->num_irqs > PROMINTR_MAX) {
834 			printk(KERN_WARNING "%s: Too many irqs (%d), "
835 			       "limiting to %d.\n",
836 			       dp->full_name, op->num_irqs, PROMINTR_MAX);
837 			op->num_irqs = PROMINTR_MAX;
838 		}
839 		memcpy(op->irqs, irq, op->num_irqs * 4);
840 	} else {
841 		op->num_irqs = 0;
842 	}
843 
844 	build_device_resources(op, parent);
845 	for (i = 0; i < op->num_irqs; i++)
846 		op->irqs[i] = build_one_device_irq(op, parent, op->irqs[i]);
847 
848 	op->dev.parent = parent;
849 	op->dev.bus = &of_platform_bus_type;
850 	if (!parent)
851 		dev_set_name(&op->dev, "root");
852 	else
853 		dev_set_name(&op->dev, "%08x", dp->node);
854 
855 	if (of_device_register(op)) {
856 		printk("%s: Could not register of device.\n",
857 		       dp->full_name);
858 		kfree(op);
859 		op = NULL;
860 	}
861 
862 	return op;
863 }
864 
865 static void __init scan_tree(struct device_node *dp, struct device *parent)
866 {
867 	while (dp) {
868 		struct of_device *op = scan_one_device(dp, parent);
869 
870 		if (op)
871 			scan_tree(dp->child, &op->dev);
872 
873 		dp = dp->sibling;
874 	}
875 }
876 
877 static void __init scan_of_devices(void)
878 {
879 	struct device_node *root = of_find_node_by_path("/");
880 	struct of_device *parent;
881 
882 	parent = scan_one_device(root, NULL);
883 	if (!parent)
884 		return;
885 
886 	scan_tree(root->child, &parent->dev);
887 }
888 
889 static int __init of_bus_driver_init(void)
890 {
891 	int err;
892 
893 	err = of_bus_type_init(&of_platform_bus_type, "of");
894 	if (!err)
895 		scan_of_devices();
896 
897 	return err;
898 }
899 
900 postcore_initcall(of_bus_driver_init);
901 
902 static int __init of_debug(char *str)
903 {
904 	int val = 0;
905 
906 	get_option(&str, &val);
907 	if (val & 1)
908 		of_resource_verbose = 1;
909 	if (val & 2)
910 		of_irq_verbose = 1;
911 	return 1;
912 }
913 
914 __setup("of_debug=", of_debug);
915