xref: /openbmc/linux/arch/sparc/kernel/kprobes.c (revision e2c75e76)
1 // SPDX-License-Identifier: GPL-2.0
2 /* arch/sparc64/kernel/kprobes.c
3  *
4  * Copyright (C) 2004 David S. Miller <davem@davemloft.net>
5  */
6 
7 #include <linux/kernel.h>
8 #include <linux/kprobes.h>
9 #include <linux/extable.h>
10 #include <linux/kdebug.h>
11 #include <linux/slab.h>
12 #include <linux/context_tracking.h>
13 #include <asm/signal.h>
14 #include <asm/cacheflush.h>
15 #include <linux/uaccess.h>
16 
17 /* We do not have hardware single-stepping on sparc64.
18  * So we implement software single-stepping with breakpoint
19  * traps.  The top-level scheme is similar to that used
20  * in the x86 kprobes implementation.
21  *
22  * In the kprobe->ainsn.insn[] array we store the original
23  * instruction at index zero and a break instruction at
24  * index one.
25  *
26  * When we hit a kprobe we:
27  * - Run the pre-handler
28  * - Remember "regs->tnpc" and interrupt level stored in
29  *   "regs->tstate" so we can restore them later
30  * - Disable PIL interrupts
31  * - Set regs->tpc to point to kprobe->ainsn.insn[0]
32  * - Set regs->tnpc to point to kprobe->ainsn.insn[1]
33  * - Mark that we are actively in a kprobe
34  *
35  * At this point we wait for the second breakpoint at
36  * kprobe->ainsn.insn[1] to hit.  When it does we:
37  * - Run the post-handler
38  * - Set regs->tpc to "remembered" regs->tnpc stored above,
39  *   restore the PIL interrupt level in "regs->tstate" as well
40  * - Make any adjustments necessary to regs->tnpc in order
41  *   to handle relative branches correctly.  See below.
42  * - Mark that we are no longer actively in a kprobe.
43  */
44 
45 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
46 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
47 
48 struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
49 
50 int __kprobes arch_prepare_kprobe(struct kprobe *p)
51 {
52 	if ((unsigned long) p->addr & 0x3UL)
53 		return -EILSEQ;
54 
55 	p->ainsn.insn[0] = *p->addr;
56 	flushi(&p->ainsn.insn[0]);
57 
58 	p->ainsn.insn[1] = BREAKPOINT_INSTRUCTION_2;
59 	flushi(&p->ainsn.insn[1]);
60 
61 	p->opcode = *p->addr;
62 	return 0;
63 }
64 
65 void __kprobes arch_arm_kprobe(struct kprobe *p)
66 {
67 	*p->addr = BREAKPOINT_INSTRUCTION;
68 	flushi(p->addr);
69 }
70 
71 void __kprobes arch_disarm_kprobe(struct kprobe *p)
72 {
73 	*p->addr = p->opcode;
74 	flushi(p->addr);
75 }
76 
77 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
78 {
79 	kcb->prev_kprobe.kp = kprobe_running();
80 	kcb->prev_kprobe.status = kcb->kprobe_status;
81 	kcb->prev_kprobe.orig_tnpc = kcb->kprobe_orig_tnpc;
82 	kcb->prev_kprobe.orig_tstate_pil = kcb->kprobe_orig_tstate_pil;
83 }
84 
85 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
86 {
87 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
88 	kcb->kprobe_status = kcb->prev_kprobe.status;
89 	kcb->kprobe_orig_tnpc = kcb->prev_kprobe.orig_tnpc;
90 	kcb->kprobe_orig_tstate_pil = kcb->prev_kprobe.orig_tstate_pil;
91 }
92 
93 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
94 				struct kprobe_ctlblk *kcb)
95 {
96 	__this_cpu_write(current_kprobe, p);
97 	kcb->kprobe_orig_tnpc = regs->tnpc;
98 	kcb->kprobe_orig_tstate_pil = (regs->tstate & TSTATE_PIL);
99 }
100 
101 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs,
102 			struct kprobe_ctlblk *kcb)
103 {
104 	regs->tstate |= TSTATE_PIL;
105 
106 	/*single step inline, if it a breakpoint instruction*/
107 	if (p->opcode == BREAKPOINT_INSTRUCTION) {
108 		regs->tpc = (unsigned long) p->addr;
109 		regs->tnpc = kcb->kprobe_orig_tnpc;
110 	} else {
111 		regs->tpc = (unsigned long) &p->ainsn.insn[0];
112 		regs->tnpc = (unsigned long) &p->ainsn.insn[1];
113 	}
114 }
115 
116 static int __kprobes kprobe_handler(struct pt_regs *regs)
117 {
118 	struct kprobe *p;
119 	void *addr = (void *) regs->tpc;
120 	int ret = 0;
121 	struct kprobe_ctlblk *kcb;
122 
123 	/*
124 	 * We don't want to be preempted for the entire
125 	 * duration of kprobe processing
126 	 */
127 	preempt_disable();
128 	kcb = get_kprobe_ctlblk();
129 
130 	if (kprobe_running()) {
131 		p = get_kprobe(addr);
132 		if (p) {
133 			if (kcb->kprobe_status == KPROBE_HIT_SS) {
134 				regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
135 					kcb->kprobe_orig_tstate_pil);
136 				goto no_kprobe;
137 			}
138 			/* We have reentered the kprobe_handler(), since
139 			 * another probe was hit while within the handler.
140 			 * We here save the original kprobes variables and
141 			 * just single step on the instruction of the new probe
142 			 * without calling any user handlers.
143 			 */
144 			save_previous_kprobe(kcb);
145 			set_current_kprobe(p, regs, kcb);
146 			kprobes_inc_nmissed_count(p);
147 			kcb->kprobe_status = KPROBE_REENTER;
148 			prepare_singlestep(p, regs, kcb);
149 			return 1;
150 		} else {
151 			if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) {
152 			/* The breakpoint instruction was removed by
153 			 * another cpu right after we hit, no further
154 			 * handling of this interrupt is appropriate
155 			 */
156 				ret = 1;
157 				goto no_kprobe;
158 			}
159 			p = __this_cpu_read(current_kprobe);
160 			if (p->break_handler && p->break_handler(p, regs))
161 				goto ss_probe;
162 		}
163 		goto no_kprobe;
164 	}
165 
166 	p = get_kprobe(addr);
167 	if (!p) {
168 		if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) {
169 			/*
170 			 * The breakpoint instruction was removed right
171 			 * after we hit it.  Another cpu has removed
172 			 * either a probepoint or a debugger breakpoint
173 			 * at this address.  In either case, no further
174 			 * handling of this interrupt is appropriate.
175 			 */
176 			ret = 1;
177 		}
178 		/* Not one of ours: let kernel handle it */
179 		goto no_kprobe;
180 	}
181 
182 	set_current_kprobe(p, regs, kcb);
183 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
184 	if (p->pre_handler && p->pre_handler(p, regs))
185 		return 1;
186 
187 ss_probe:
188 	prepare_singlestep(p, regs, kcb);
189 	kcb->kprobe_status = KPROBE_HIT_SS;
190 	return 1;
191 
192 no_kprobe:
193 	preempt_enable_no_resched();
194 	return ret;
195 }
196 
197 /* If INSN is a relative control transfer instruction,
198  * return the corrected branch destination value.
199  *
200  * regs->tpc and regs->tnpc still hold the values of the
201  * program counters at the time of trap due to the execution
202  * of the BREAKPOINT_INSTRUCTION_2 at p->ainsn.insn[1]
203  *
204  */
205 static unsigned long __kprobes relbranch_fixup(u32 insn, struct kprobe *p,
206 					       struct pt_regs *regs)
207 {
208 	unsigned long real_pc = (unsigned long) p->addr;
209 
210 	/* Branch not taken, no mods necessary.  */
211 	if (regs->tnpc == regs->tpc + 0x4UL)
212 		return real_pc + 0x8UL;
213 
214 	/* The three cases are call, branch w/prediction,
215 	 * and traditional branch.
216 	 */
217 	if ((insn & 0xc0000000) == 0x40000000 ||
218 	    (insn & 0xc1c00000) == 0x00400000 ||
219 	    (insn & 0xc1c00000) == 0x00800000) {
220 		unsigned long ainsn_addr;
221 
222 		ainsn_addr = (unsigned long) &p->ainsn.insn[0];
223 
224 		/* The instruction did all the work for us
225 		 * already, just apply the offset to the correct
226 		 * instruction location.
227 		 */
228 		return (real_pc + (regs->tnpc - ainsn_addr));
229 	}
230 
231 	/* It is jmpl or some other absolute PC modification instruction,
232 	 * leave NPC as-is.
233 	 */
234 	return regs->tnpc;
235 }
236 
237 /* If INSN is an instruction which writes it's PC location
238  * into a destination register, fix that up.
239  */
240 static void __kprobes retpc_fixup(struct pt_regs *regs, u32 insn,
241 				  unsigned long real_pc)
242 {
243 	unsigned long *slot = NULL;
244 
245 	/* Simplest case is 'call', which always uses %o7 */
246 	if ((insn & 0xc0000000) == 0x40000000) {
247 		slot = &regs->u_regs[UREG_I7];
248 	}
249 
250 	/* 'jmpl' encodes the register inside of the opcode */
251 	if ((insn & 0xc1f80000) == 0x81c00000) {
252 		unsigned long rd = ((insn >> 25) & 0x1f);
253 
254 		if (rd <= 15) {
255 			slot = &regs->u_regs[rd];
256 		} else {
257 			/* Hard case, it goes onto the stack. */
258 			flushw_all();
259 
260 			rd -= 16;
261 			slot = (unsigned long *)
262 				(regs->u_regs[UREG_FP] + STACK_BIAS);
263 			slot += rd;
264 		}
265 	}
266 	if (slot != NULL)
267 		*slot = real_pc;
268 }
269 
270 /*
271  * Called after single-stepping.  p->addr is the address of the
272  * instruction which has been replaced by the breakpoint
273  * instruction.  To avoid the SMP problems that can occur when we
274  * temporarily put back the original opcode to single-step, we
275  * single-stepped a copy of the instruction.  The address of this
276  * copy is &p->ainsn.insn[0].
277  *
278  * This function prepares to return from the post-single-step
279  * breakpoint trap.
280  */
281 static void __kprobes resume_execution(struct kprobe *p,
282 		struct pt_regs *regs, struct kprobe_ctlblk *kcb)
283 {
284 	u32 insn = p->ainsn.insn[0];
285 
286 	regs->tnpc = relbranch_fixup(insn, p, regs);
287 
288 	/* This assignment must occur after relbranch_fixup() */
289 	regs->tpc = kcb->kprobe_orig_tnpc;
290 
291 	retpc_fixup(regs, insn, (unsigned long) p->addr);
292 
293 	regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
294 			kcb->kprobe_orig_tstate_pil);
295 }
296 
297 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
298 {
299 	struct kprobe *cur = kprobe_running();
300 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
301 
302 	if (!cur)
303 		return 0;
304 
305 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
306 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
307 		cur->post_handler(cur, regs, 0);
308 	}
309 
310 	resume_execution(cur, regs, kcb);
311 
312 	/*Restore back the original saved kprobes variables and continue. */
313 	if (kcb->kprobe_status == KPROBE_REENTER) {
314 		restore_previous_kprobe(kcb);
315 		goto out;
316 	}
317 	reset_current_kprobe();
318 out:
319 	preempt_enable_no_resched();
320 
321 	return 1;
322 }
323 
324 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
325 {
326 	struct kprobe *cur = kprobe_running();
327 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
328 	const struct exception_table_entry *entry;
329 
330 	switch(kcb->kprobe_status) {
331 	case KPROBE_HIT_SS:
332 	case KPROBE_REENTER:
333 		/*
334 		 * We are here because the instruction being single
335 		 * stepped caused a page fault. We reset the current
336 		 * kprobe and the tpc points back to the probe address
337 		 * and allow the page fault handler to continue as a
338 		 * normal page fault.
339 		 */
340 		regs->tpc = (unsigned long)cur->addr;
341 		regs->tnpc = kcb->kprobe_orig_tnpc;
342 		regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
343 				kcb->kprobe_orig_tstate_pil);
344 		if (kcb->kprobe_status == KPROBE_REENTER)
345 			restore_previous_kprobe(kcb);
346 		else
347 			reset_current_kprobe();
348 		preempt_enable_no_resched();
349 		break;
350 	case KPROBE_HIT_ACTIVE:
351 	case KPROBE_HIT_SSDONE:
352 		/*
353 		 * We increment the nmissed count for accounting,
354 		 * we can also use npre/npostfault count for accounting
355 		 * these specific fault cases.
356 		 */
357 		kprobes_inc_nmissed_count(cur);
358 
359 		/*
360 		 * We come here because instructions in the pre/post
361 		 * handler caused the page_fault, this could happen
362 		 * if handler tries to access user space by
363 		 * copy_from_user(), get_user() etc. Let the
364 		 * user-specified handler try to fix it first.
365 		 */
366 		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
367 			return 1;
368 
369 		/*
370 		 * In case the user-specified fault handler returned
371 		 * zero, try to fix up.
372 		 */
373 
374 		entry = search_exception_tables(regs->tpc);
375 		if (entry) {
376 			regs->tpc = entry->fixup;
377 			regs->tnpc = regs->tpc + 4;
378 			return 1;
379 		}
380 
381 		/*
382 		 * fixup_exception() could not handle it,
383 		 * Let do_page_fault() fix it.
384 		 */
385 		break;
386 	default:
387 		break;
388 	}
389 
390 	return 0;
391 }
392 
393 /*
394  * Wrapper routine to for handling exceptions.
395  */
396 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
397 				       unsigned long val, void *data)
398 {
399 	struct die_args *args = (struct die_args *)data;
400 	int ret = NOTIFY_DONE;
401 
402 	if (args->regs && user_mode(args->regs))
403 		return ret;
404 
405 	switch (val) {
406 	case DIE_DEBUG:
407 		if (kprobe_handler(args->regs))
408 			ret = NOTIFY_STOP;
409 		break;
410 	case DIE_DEBUG_2:
411 		if (post_kprobe_handler(args->regs))
412 			ret = NOTIFY_STOP;
413 		break;
414 	default:
415 		break;
416 	}
417 	return ret;
418 }
419 
420 asmlinkage void __kprobes kprobe_trap(unsigned long trap_level,
421 				      struct pt_regs *regs)
422 {
423 	enum ctx_state prev_state = exception_enter();
424 
425 	BUG_ON(trap_level != 0x170 && trap_level != 0x171);
426 
427 	if (user_mode(regs)) {
428 		local_irq_enable();
429 		bad_trap(regs, trap_level);
430 		goto out;
431 	}
432 
433 	/* trap_level == 0x170 --> ta 0x70
434 	 * trap_level == 0x171 --> ta 0x71
435 	 */
436 	if (notify_die((trap_level == 0x170) ? DIE_DEBUG : DIE_DEBUG_2,
437 		       (trap_level == 0x170) ? "debug" : "debug_2",
438 		       regs, 0, trap_level, SIGTRAP) != NOTIFY_STOP)
439 		bad_trap(regs, trap_level);
440 out:
441 	exception_exit(prev_state);
442 }
443 
444 /* Jprobes support.  */
445 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
446 {
447 	struct jprobe *jp = container_of(p, struct jprobe, kp);
448 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
449 
450 	memcpy(&(kcb->jprobe_saved_regs), regs, sizeof(*regs));
451 
452 	regs->tpc  = (unsigned long) jp->entry;
453 	regs->tnpc = ((unsigned long) jp->entry) + 0x4UL;
454 	regs->tstate |= TSTATE_PIL;
455 
456 	return 1;
457 }
458 
459 void __kprobes jprobe_return(void)
460 {
461 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
462 	register unsigned long orig_fp asm("g1");
463 
464 	orig_fp = kcb->jprobe_saved_regs.u_regs[UREG_FP];
465 	__asm__ __volatile__("\n"
466 "1:	cmp		%%sp, %0\n\t"
467 	"blu,a,pt	%%xcc, 1b\n\t"
468 	" restore\n\t"
469 	".globl		jprobe_return_trap_instruction\n"
470 "jprobe_return_trap_instruction:\n\t"
471 	"ta		0x70"
472 	: /* no outputs */
473 	: "r" (orig_fp));
474 }
475 
476 extern void jprobe_return_trap_instruction(void);
477 
478 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
479 {
480 	u32 *addr = (u32 *) regs->tpc;
481 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
482 
483 	if (addr == (u32 *) jprobe_return_trap_instruction) {
484 		memcpy(regs, &(kcb->jprobe_saved_regs), sizeof(*regs));
485 		preempt_enable_no_resched();
486 		return 1;
487 	}
488 	return 0;
489 }
490 
491 /* The value stored in the return address register is actually 2
492  * instructions before where the callee will return to.
493  * Sequences usually look something like this
494  *
495  *		call	some_function	<--- return register points here
496  *		 nop			<--- call delay slot
497  *		whatever		<--- where callee returns to
498  *
499  * To keep trampoline_probe_handler logic simpler, we normalize the
500  * value kept in ri->ret_addr so we don't need to keep adjusting it
501  * back and forth.
502  */
503 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
504 				      struct pt_regs *regs)
505 {
506 	ri->ret_addr = (kprobe_opcode_t *)(regs->u_regs[UREG_RETPC] + 8);
507 
508 	/* Replace the return addr with trampoline addr */
509 	regs->u_regs[UREG_RETPC] =
510 		((unsigned long)kretprobe_trampoline) - 8;
511 }
512 
513 /*
514  * Called when the probe at kretprobe trampoline is hit
515  */
516 static int __kprobes trampoline_probe_handler(struct kprobe *p,
517 					      struct pt_regs *regs)
518 {
519 	struct kretprobe_instance *ri = NULL;
520 	struct hlist_head *head, empty_rp;
521 	struct hlist_node *tmp;
522 	unsigned long flags, orig_ret_address = 0;
523 	unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
524 
525 	INIT_HLIST_HEAD(&empty_rp);
526 	kretprobe_hash_lock(current, &head, &flags);
527 
528 	/*
529 	 * It is possible to have multiple instances associated with a given
530 	 * task either because an multiple functions in the call path
531 	 * have a return probe installed on them, and/or more than one return
532 	 * return probe was registered for a target function.
533 	 *
534 	 * We can handle this because:
535 	 *     - instances are always inserted at the head of the list
536 	 *     - when multiple return probes are registered for the same
537 	 *       function, the first instance's ret_addr will point to the
538 	 *       real return address, and all the rest will point to
539 	 *       kretprobe_trampoline
540 	 */
541 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
542 		if (ri->task != current)
543 			/* another task is sharing our hash bucket */
544 			continue;
545 
546 		if (ri->rp && ri->rp->handler)
547 			ri->rp->handler(ri, regs);
548 
549 		orig_ret_address = (unsigned long)ri->ret_addr;
550 		recycle_rp_inst(ri, &empty_rp);
551 
552 		if (orig_ret_address != trampoline_address)
553 			/*
554 			 * This is the real return address. Any other
555 			 * instances associated with this task are for
556 			 * other calls deeper on the call stack
557 			 */
558 			break;
559 	}
560 
561 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
562 	regs->tpc = orig_ret_address;
563 	regs->tnpc = orig_ret_address + 4;
564 
565 	reset_current_kprobe();
566 	kretprobe_hash_unlock(current, &flags);
567 	preempt_enable_no_resched();
568 
569 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
570 		hlist_del(&ri->hlist);
571 		kfree(ri);
572 	}
573 	/*
574 	 * By returning a non-zero value, we are telling
575 	 * kprobe_handler() that we don't want the post_handler
576 	 * to run (and have re-enabled preemption)
577 	 */
578 	return 1;
579 }
580 
581 static void __used kretprobe_trampoline_holder(void)
582 {
583 	asm volatile(".global kretprobe_trampoline\n"
584 		     "kretprobe_trampoline:\n"
585 		     "\tnop\n"
586 		     "\tnop\n");
587 }
588 static struct kprobe trampoline_p = {
589 	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
590 	.pre_handler = trampoline_probe_handler
591 };
592 
593 int __init arch_init_kprobes(void)
594 {
595 	return register_kprobe(&trampoline_p);
596 }
597 
598 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
599 {
600 	if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline)
601 		return 1;
602 
603 	return 0;
604 }
605