xref: /openbmc/linux/arch/sparc/kernel/kprobes.c (revision 9b93eb47)
1 // SPDX-License-Identifier: GPL-2.0
2 /* arch/sparc64/kernel/kprobes.c
3  *
4  * Copyright (C) 2004 David S. Miller <davem@davemloft.net>
5  */
6 
7 #include <linux/kernel.h>
8 #include <linux/kprobes.h>
9 #include <linux/extable.h>
10 #include <linux/kdebug.h>
11 #include <linux/slab.h>
12 #include <linux/context_tracking.h>
13 #include <asm/signal.h>
14 #include <asm/cacheflush.h>
15 #include <linux/uaccess.h>
16 
17 /* We do not have hardware single-stepping on sparc64.
18  * So we implement software single-stepping with breakpoint
19  * traps.  The top-level scheme is similar to that used
20  * in the x86 kprobes implementation.
21  *
22  * In the kprobe->ainsn.insn[] array we store the original
23  * instruction at index zero and a break instruction at
24  * index one.
25  *
26  * When we hit a kprobe we:
27  * - Run the pre-handler
28  * - Remember "regs->tnpc" and interrupt level stored in
29  *   "regs->tstate" so we can restore them later
30  * - Disable PIL interrupts
31  * - Set regs->tpc to point to kprobe->ainsn.insn[0]
32  * - Set regs->tnpc to point to kprobe->ainsn.insn[1]
33  * - Mark that we are actively in a kprobe
34  *
35  * At this point we wait for the second breakpoint at
36  * kprobe->ainsn.insn[1] to hit.  When it does we:
37  * - Run the post-handler
38  * - Set regs->tpc to "remembered" regs->tnpc stored above,
39  *   restore the PIL interrupt level in "regs->tstate" as well
40  * - Make any adjustments necessary to regs->tnpc in order
41  *   to handle relative branches correctly.  See below.
42  * - Mark that we are no longer actively in a kprobe.
43  */
44 
45 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
46 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
47 
48 struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
49 
50 int __kprobes arch_prepare_kprobe(struct kprobe *p)
51 {
52 	if ((unsigned long) p->addr & 0x3UL)
53 		return -EILSEQ;
54 
55 	p->ainsn.insn[0] = *p->addr;
56 	flushi(&p->ainsn.insn[0]);
57 
58 	p->ainsn.insn[1] = BREAKPOINT_INSTRUCTION_2;
59 	flushi(&p->ainsn.insn[1]);
60 
61 	p->opcode = *p->addr;
62 	return 0;
63 }
64 
65 void __kprobes arch_arm_kprobe(struct kprobe *p)
66 {
67 	*p->addr = BREAKPOINT_INSTRUCTION;
68 	flushi(p->addr);
69 }
70 
71 void __kprobes arch_disarm_kprobe(struct kprobe *p)
72 {
73 	*p->addr = p->opcode;
74 	flushi(p->addr);
75 }
76 
77 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
78 {
79 	kcb->prev_kprobe.kp = kprobe_running();
80 	kcb->prev_kprobe.status = kcb->kprobe_status;
81 	kcb->prev_kprobe.orig_tnpc = kcb->kprobe_orig_tnpc;
82 	kcb->prev_kprobe.orig_tstate_pil = kcb->kprobe_orig_tstate_pil;
83 }
84 
85 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
86 {
87 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
88 	kcb->kprobe_status = kcb->prev_kprobe.status;
89 	kcb->kprobe_orig_tnpc = kcb->prev_kprobe.orig_tnpc;
90 	kcb->kprobe_orig_tstate_pil = kcb->prev_kprobe.orig_tstate_pil;
91 }
92 
93 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
94 				struct kprobe_ctlblk *kcb)
95 {
96 	__this_cpu_write(current_kprobe, p);
97 	kcb->kprobe_orig_tnpc = regs->tnpc;
98 	kcb->kprobe_orig_tstate_pil = (regs->tstate & TSTATE_PIL);
99 }
100 
101 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs,
102 			struct kprobe_ctlblk *kcb)
103 {
104 	regs->tstate |= TSTATE_PIL;
105 
106 	/*single step inline, if it a breakpoint instruction*/
107 	if (p->opcode == BREAKPOINT_INSTRUCTION) {
108 		regs->tpc = (unsigned long) p->addr;
109 		regs->tnpc = kcb->kprobe_orig_tnpc;
110 	} else {
111 		regs->tpc = (unsigned long) &p->ainsn.insn[0];
112 		regs->tnpc = (unsigned long) &p->ainsn.insn[1];
113 	}
114 }
115 
116 static int __kprobes kprobe_handler(struct pt_regs *regs)
117 {
118 	struct kprobe *p;
119 	void *addr = (void *) regs->tpc;
120 	int ret = 0;
121 	struct kprobe_ctlblk *kcb;
122 
123 	/*
124 	 * We don't want to be preempted for the entire
125 	 * duration of kprobe processing
126 	 */
127 	preempt_disable();
128 	kcb = get_kprobe_ctlblk();
129 
130 	if (kprobe_running()) {
131 		p = get_kprobe(addr);
132 		if (p) {
133 			if (kcb->kprobe_status == KPROBE_HIT_SS) {
134 				regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
135 					kcb->kprobe_orig_tstate_pil);
136 				goto no_kprobe;
137 			}
138 			/* We have reentered the kprobe_handler(), since
139 			 * another probe was hit while within the handler.
140 			 * We here save the original kprobes variables and
141 			 * just single step on the instruction of the new probe
142 			 * without calling any user handlers.
143 			 */
144 			save_previous_kprobe(kcb);
145 			set_current_kprobe(p, regs, kcb);
146 			kprobes_inc_nmissed_count(p);
147 			kcb->kprobe_status = KPROBE_REENTER;
148 			prepare_singlestep(p, regs, kcb);
149 			return 1;
150 		} else if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) {
151 			/* The breakpoint instruction was removed by
152 			 * another cpu right after we hit, no further
153 			 * handling of this interrupt is appropriate
154 			 */
155 			ret = 1;
156 		}
157 		goto no_kprobe;
158 	}
159 
160 	p = get_kprobe(addr);
161 	if (!p) {
162 		if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) {
163 			/*
164 			 * The breakpoint instruction was removed right
165 			 * after we hit it.  Another cpu has removed
166 			 * either a probepoint or a debugger breakpoint
167 			 * at this address.  In either case, no further
168 			 * handling of this interrupt is appropriate.
169 			 */
170 			ret = 1;
171 		}
172 		/* Not one of ours: let kernel handle it */
173 		goto no_kprobe;
174 	}
175 
176 	set_current_kprobe(p, regs, kcb);
177 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
178 	if (p->pre_handler && p->pre_handler(p, regs)) {
179 		reset_current_kprobe();
180 		preempt_enable_no_resched();
181 		return 1;
182 	}
183 
184 	prepare_singlestep(p, regs, kcb);
185 	kcb->kprobe_status = KPROBE_HIT_SS;
186 	return 1;
187 
188 no_kprobe:
189 	preempt_enable_no_resched();
190 	return ret;
191 }
192 
193 /* If INSN is a relative control transfer instruction,
194  * return the corrected branch destination value.
195  *
196  * regs->tpc and regs->tnpc still hold the values of the
197  * program counters at the time of trap due to the execution
198  * of the BREAKPOINT_INSTRUCTION_2 at p->ainsn.insn[1]
199  *
200  */
201 static unsigned long __kprobes relbranch_fixup(u32 insn, struct kprobe *p,
202 					       struct pt_regs *regs)
203 {
204 	unsigned long real_pc = (unsigned long) p->addr;
205 
206 	/* Branch not taken, no mods necessary.  */
207 	if (regs->tnpc == regs->tpc + 0x4UL)
208 		return real_pc + 0x8UL;
209 
210 	/* The three cases are call, branch w/prediction,
211 	 * and traditional branch.
212 	 */
213 	if ((insn & 0xc0000000) == 0x40000000 ||
214 	    (insn & 0xc1c00000) == 0x00400000 ||
215 	    (insn & 0xc1c00000) == 0x00800000) {
216 		unsigned long ainsn_addr;
217 
218 		ainsn_addr = (unsigned long) &p->ainsn.insn[0];
219 
220 		/* The instruction did all the work for us
221 		 * already, just apply the offset to the correct
222 		 * instruction location.
223 		 */
224 		return (real_pc + (regs->tnpc - ainsn_addr));
225 	}
226 
227 	/* It is jmpl or some other absolute PC modification instruction,
228 	 * leave NPC as-is.
229 	 */
230 	return regs->tnpc;
231 }
232 
233 /* If INSN is an instruction which writes it's PC location
234  * into a destination register, fix that up.
235  */
236 static void __kprobes retpc_fixup(struct pt_regs *regs, u32 insn,
237 				  unsigned long real_pc)
238 {
239 	unsigned long *slot = NULL;
240 
241 	/* Simplest case is 'call', which always uses %o7 */
242 	if ((insn & 0xc0000000) == 0x40000000) {
243 		slot = &regs->u_regs[UREG_I7];
244 	}
245 
246 	/* 'jmpl' encodes the register inside of the opcode */
247 	if ((insn & 0xc1f80000) == 0x81c00000) {
248 		unsigned long rd = ((insn >> 25) & 0x1f);
249 
250 		if (rd <= 15) {
251 			slot = &regs->u_regs[rd];
252 		} else {
253 			/* Hard case, it goes onto the stack. */
254 			flushw_all();
255 
256 			rd -= 16;
257 			slot = (unsigned long *)
258 				(regs->u_regs[UREG_FP] + STACK_BIAS);
259 			slot += rd;
260 		}
261 	}
262 	if (slot != NULL)
263 		*slot = real_pc;
264 }
265 
266 /*
267  * Called after single-stepping.  p->addr is the address of the
268  * instruction which has been replaced by the breakpoint
269  * instruction.  To avoid the SMP problems that can occur when we
270  * temporarily put back the original opcode to single-step, we
271  * single-stepped a copy of the instruction.  The address of this
272  * copy is &p->ainsn.insn[0].
273  *
274  * This function prepares to return from the post-single-step
275  * breakpoint trap.
276  */
277 static void __kprobes resume_execution(struct kprobe *p,
278 		struct pt_regs *regs, struct kprobe_ctlblk *kcb)
279 {
280 	u32 insn = p->ainsn.insn[0];
281 
282 	regs->tnpc = relbranch_fixup(insn, p, regs);
283 
284 	/* This assignment must occur after relbranch_fixup() */
285 	regs->tpc = kcb->kprobe_orig_tnpc;
286 
287 	retpc_fixup(regs, insn, (unsigned long) p->addr);
288 
289 	regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
290 			kcb->kprobe_orig_tstate_pil);
291 }
292 
293 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
294 {
295 	struct kprobe *cur = kprobe_running();
296 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
297 
298 	if (!cur)
299 		return 0;
300 
301 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
302 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
303 		cur->post_handler(cur, regs, 0);
304 	}
305 
306 	resume_execution(cur, regs, kcb);
307 
308 	/*Restore back the original saved kprobes variables and continue. */
309 	if (kcb->kprobe_status == KPROBE_REENTER) {
310 		restore_previous_kprobe(kcb);
311 		goto out;
312 	}
313 	reset_current_kprobe();
314 out:
315 	preempt_enable_no_resched();
316 
317 	return 1;
318 }
319 
320 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
321 {
322 	struct kprobe *cur = kprobe_running();
323 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
324 	const struct exception_table_entry *entry;
325 
326 	switch(kcb->kprobe_status) {
327 	case KPROBE_HIT_SS:
328 	case KPROBE_REENTER:
329 		/*
330 		 * We are here because the instruction being single
331 		 * stepped caused a page fault. We reset the current
332 		 * kprobe and the tpc points back to the probe address
333 		 * and allow the page fault handler to continue as a
334 		 * normal page fault.
335 		 */
336 		regs->tpc = (unsigned long)cur->addr;
337 		regs->tnpc = kcb->kprobe_orig_tnpc;
338 		regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
339 				kcb->kprobe_orig_tstate_pil);
340 		if (kcb->kprobe_status == KPROBE_REENTER)
341 			restore_previous_kprobe(kcb);
342 		else
343 			reset_current_kprobe();
344 		preempt_enable_no_resched();
345 		break;
346 	case KPROBE_HIT_ACTIVE:
347 	case KPROBE_HIT_SSDONE:
348 		/*
349 		 * We increment the nmissed count for accounting,
350 		 * we can also use npre/npostfault count for accounting
351 		 * these specific fault cases.
352 		 */
353 		kprobes_inc_nmissed_count(cur);
354 
355 		/*
356 		 * We come here because instructions in the pre/post
357 		 * handler caused the page_fault, this could happen
358 		 * if handler tries to access user space by
359 		 * copy_from_user(), get_user() etc. Let the
360 		 * user-specified handler try to fix it first.
361 		 */
362 		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
363 			return 1;
364 
365 		/*
366 		 * In case the user-specified fault handler returned
367 		 * zero, try to fix up.
368 		 */
369 
370 		entry = search_exception_tables(regs->tpc);
371 		if (entry) {
372 			regs->tpc = entry->fixup;
373 			regs->tnpc = regs->tpc + 4;
374 			return 1;
375 		}
376 
377 		/*
378 		 * fixup_exception() could not handle it,
379 		 * Let do_page_fault() fix it.
380 		 */
381 		break;
382 	default:
383 		break;
384 	}
385 
386 	return 0;
387 }
388 
389 /*
390  * Wrapper routine to for handling exceptions.
391  */
392 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
393 				       unsigned long val, void *data)
394 {
395 	struct die_args *args = (struct die_args *)data;
396 	int ret = NOTIFY_DONE;
397 
398 	if (args->regs && user_mode(args->regs))
399 		return ret;
400 
401 	switch (val) {
402 	case DIE_DEBUG:
403 		if (kprobe_handler(args->regs))
404 			ret = NOTIFY_STOP;
405 		break;
406 	case DIE_DEBUG_2:
407 		if (post_kprobe_handler(args->regs))
408 			ret = NOTIFY_STOP;
409 		break;
410 	default:
411 		break;
412 	}
413 	return ret;
414 }
415 
416 asmlinkage void __kprobes kprobe_trap(unsigned long trap_level,
417 				      struct pt_regs *regs)
418 {
419 	enum ctx_state prev_state = exception_enter();
420 
421 	BUG_ON(trap_level != 0x170 && trap_level != 0x171);
422 
423 	if (user_mode(regs)) {
424 		local_irq_enable();
425 		bad_trap(regs, trap_level);
426 		goto out;
427 	}
428 
429 	/* trap_level == 0x170 --> ta 0x70
430 	 * trap_level == 0x171 --> ta 0x71
431 	 */
432 	if (notify_die((trap_level == 0x170) ? DIE_DEBUG : DIE_DEBUG_2,
433 		       (trap_level == 0x170) ? "debug" : "debug_2",
434 		       regs, 0, trap_level, SIGTRAP) != NOTIFY_STOP)
435 		bad_trap(regs, trap_level);
436 out:
437 	exception_exit(prev_state);
438 }
439 
440 /* The value stored in the return address register is actually 2
441  * instructions before where the callee will return to.
442  * Sequences usually look something like this
443  *
444  *		call	some_function	<--- return register points here
445  *		 nop			<--- call delay slot
446  *		whatever		<--- where callee returns to
447  *
448  * To keep trampoline_probe_handler logic simpler, we normalize the
449  * value kept in ri->ret_addr so we don't need to keep adjusting it
450  * back and forth.
451  */
452 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
453 				      struct pt_regs *regs)
454 {
455 	ri->ret_addr = (kprobe_opcode_t *)(regs->u_regs[UREG_RETPC] + 8);
456 
457 	/* Replace the return addr with trampoline addr */
458 	regs->u_regs[UREG_RETPC] =
459 		((unsigned long)kretprobe_trampoline) - 8;
460 }
461 
462 /*
463  * Called when the probe at kretprobe trampoline is hit
464  */
465 static int __kprobes trampoline_probe_handler(struct kprobe *p,
466 					      struct pt_regs *regs)
467 {
468 	struct kretprobe_instance *ri = NULL;
469 	struct hlist_head *head, empty_rp;
470 	struct hlist_node *tmp;
471 	unsigned long flags, orig_ret_address = 0;
472 	unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
473 
474 	INIT_HLIST_HEAD(&empty_rp);
475 	kretprobe_hash_lock(current, &head, &flags);
476 
477 	/*
478 	 * It is possible to have multiple instances associated with a given
479 	 * task either because an multiple functions in the call path
480 	 * have a return probe installed on them, and/or more than one return
481 	 * return probe was registered for a target function.
482 	 *
483 	 * We can handle this because:
484 	 *     - instances are always inserted at the head of the list
485 	 *     - when multiple return probes are registered for the same
486 	 *       function, the first instance's ret_addr will point to the
487 	 *       real return address, and all the rest will point to
488 	 *       kretprobe_trampoline
489 	 */
490 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
491 		if (ri->task != current)
492 			/* another task is sharing our hash bucket */
493 			continue;
494 
495 		if (ri->rp && ri->rp->handler)
496 			ri->rp->handler(ri, regs);
497 
498 		orig_ret_address = (unsigned long)ri->ret_addr;
499 		recycle_rp_inst(ri, &empty_rp);
500 
501 		if (orig_ret_address != trampoline_address)
502 			/*
503 			 * This is the real return address. Any other
504 			 * instances associated with this task are for
505 			 * other calls deeper on the call stack
506 			 */
507 			break;
508 	}
509 
510 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
511 	regs->tpc = orig_ret_address;
512 	regs->tnpc = orig_ret_address + 4;
513 
514 	kretprobe_hash_unlock(current, &flags);
515 
516 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
517 		hlist_del(&ri->hlist);
518 		kfree(ri);
519 	}
520 	/*
521 	 * By returning a non-zero value, we are telling
522 	 * kprobe_handler() that we don't want the post_handler
523 	 * to run (and have re-enabled preemption)
524 	 */
525 	return 1;
526 }
527 
528 static void __used kretprobe_trampoline_holder(void)
529 {
530 	asm volatile(".global kretprobe_trampoline\n"
531 		     "kretprobe_trampoline:\n"
532 		     "\tnop\n"
533 		     "\tnop\n");
534 }
535 static struct kprobe trampoline_p = {
536 	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
537 	.pre_handler = trampoline_probe_handler
538 };
539 
540 int __init arch_init_kprobes(void)
541 {
542 	return register_kprobe(&trampoline_p);
543 }
544 
545 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
546 {
547 	if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline)
548 		return 1;
549 
550 	return 0;
551 }
552