xref: /openbmc/linux/arch/sparc/kernel/kprobes.c (revision 94d964e5)
1 // SPDX-License-Identifier: GPL-2.0
2 /* arch/sparc64/kernel/kprobes.c
3  *
4  * Copyright (C) 2004 David S. Miller <davem@davemloft.net>
5  */
6 
7 #include <linux/kernel.h>
8 #include <linux/kprobes.h>
9 #include <linux/extable.h>
10 #include <linux/kdebug.h>
11 #include <linux/slab.h>
12 #include <linux/context_tracking.h>
13 #include <asm/signal.h>
14 #include <asm/cacheflush.h>
15 #include <linux/uaccess.h>
16 
17 /* We do not have hardware single-stepping on sparc64.
18  * So we implement software single-stepping with breakpoint
19  * traps.  The top-level scheme is similar to that used
20  * in the x86 kprobes implementation.
21  *
22  * In the kprobe->ainsn.insn[] array we store the original
23  * instruction at index zero and a break instruction at
24  * index one.
25  *
26  * When we hit a kprobe we:
27  * - Run the pre-handler
28  * - Remember "regs->tnpc" and interrupt level stored in
29  *   "regs->tstate" so we can restore them later
30  * - Disable PIL interrupts
31  * - Set regs->tpc to point to kprobe->ainsn.insn[0]
32  * - Set regs->tnpc to point to kprobe->ainsn.insn[1]
33  * - Mark that we are actively in a kprobe
34  *
35  * At this point we wait for the second breakpoint at
36  * kprobe->ainsn.insn[1] to hit.  When it does we:
37  * - Run the post-handler
38  * - Set regs->tpc to "remembered" regs->tnpc stored above,
39  *   restore the PIL interrupt level in "regs->tstate" as well
40  * - Make any adjustments necessary to regs->tnpc in order
41  *   to handle relative branches correctly.  See below.
42  * - Mark that we are no longer actively in a kprobe.
43  */
44 
45 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
46 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
47 
48 struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
49 
50 int __kprobes arch_prepare_kprobe(struct kprobe *p)
51 {
52 	if ((unsigned long) p->addr & 0x3UL)
53 		return -EILSEQ;
54 
55 	p->ainsn.insn[0] = *p->addr;
56 	flushi(&p->ainsn.insn[0]);
57 
58 	p->ainsn.insn[1] = BREAKPOINT_INSTRUCTION_2;
59 	flushi(&p->ainsn.insn[1]);
60 
61 	p->opcode = *p->addr;
62 	return 0;
63 }
64 
65 void __kprobes arch_arm_kprobe(struct kprobe *p)
66 {
67 	*p->addr = BREAKPOINT_INSTRUCTION;
68 	flushi(p->addr);
69 }
70 
71 void __kprobes arch_disarm_kprobe(struct kprobe *p)
72 {
73 	*p->addr = p->opcode;
74 	flushi(p->addr);
75 }
76 
77 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
78 {
79 	kcb->prev_kprobe.kp = kprobe_running();
80 	kcb->prev_kprobe.status = kcb->kprobe_status;
81 	kcb->prev_kprobe.orig_tnpc = kcb->kprobe_orig_tnpc;
82 	kcb->prev_kprobe.orig_tstate_pil = kcb->kprobe_orig_tstate_pil;
83 }
84 
85 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
86 {
87 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
88 	kcb->kprobe_status = kcb->prev_kprobe.status;
89 	kcb->kprobe_orig_tnpc = kcb->prev_kprobe.orig_tnpc;
90 	kcb->kprobe_orig_tstate_pil = kcb->prev_kprobe.orig_tstate_pil;
91 }
92 
93 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
94 				struct kprobe_ctlblk *kcb)
95 {
96 	__this_cpu_write(current_kprobe, p);
97 	kcb->kprobe_orig_tnpc = regs->tnpc;
98 	kcb->kprobe_orig_tstate_pil = (regs->tstate & TSTATE_PIL);
99 }
100 
101 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs,
102 			struct kprobe_ctlblk *kcb)
103 {
104 	regs->tstate |= TSTATE_PIL;
105 
106 	/*single step inline, if it a breakpoint instruction*/
107 	if (p->opcode == BREAKPOINT_INSTRUCTION) {
108 		regs->tpc = (unsigned long) p->addr;
109 		regs->tnpc = kcb->kprobe_orig_tnpc;
110 	} else {
111 		regs->tpc = (unsigned long) &p->ainsn.insn[0];
112 		regs->tnpc = (unsigned long) &p->ainsn.insn[1];
113 	}
114 }
115 
116 static int __kprobes kprobe_handler(struct pt_regs *regs)
117 {
118 	struct kprobe *p;
119 	void *addr = (void *) regs->tpc;
120 	int ret = 0;
121 	struct kprobe_ctlblk *kcb;
122 
123 	/*
124 	 * We don't want to be preempted for the entire
125 	 * duration of kprobe processing
126 	 */
127 	preempt_disable();
128 	kcb = get_kprobe_ctlblk();
129 
130 	if (kprobe_running()) {
131 		p = get_kprobe(addr);
132 		if (p) {
133 			if (kcb->kprobe_status == KPROBE_HIT_SS) {
134 				regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
135 					kcb->kprobe_orig_tstate_pil);
136 				goto no_kprobe;
137 			}
138 			/* We have reentered the kprobe_handler(), since
139 			 * another probe was hit while within the handler.
140 			 * We here save the original kprobes variables and
141 			 * just single step on the instruction of the new probe
142 			 * without calling any user handlers.
143 			 */
144 			save_previous_kprobe(kcb);
145 			set_current_kprobe(p, regs, kcb);
146 			kprobes_inc_nmissed_count(p);
147 			kcb->kprobe_status = KPROBE_REENTER;
148 			prepare_singlestep(p, regs, kcb);
149 			return 1;
150 		} else if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) {
151 			/* The breakpoint instruction was removed by
152 			 * another cpu right after we hit, no further
153 			 * handling of this interrupt is appropriate
154 			 */
155 			ret = 1;
156 		}
157 		goto no_kprobe;
158 	}
159 
160 	p = get_kprobe(addr);
161 	if (!p) {
162 		if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) {
163 			/*
164 			 * The breakpoint instruction was removed right
165 			 * after we hit it.  Another cpu has removed
166 			 * either a probepoint or a debugger breakpoint
167 			 * at this address.  In either case, no further
168 			 * handling of this interrupt is appropriate.
169 			 */
170 			ret = 1;
171 		}
172 		/* Not one of ours: let kernel handle it */
173 		goto no_kprobe;
174 	}
175 
176 	set_current_kprobe(p, regs, kcb);
177 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
178 	if (p->pre_handler && p->pre_handler(p, regs)) {
179 		reset_current_kprobe();
180 		preempt_enable_no_resched();
181 		return 1;
182 	}
183 
184 	prepare_singlestep(p, regs, kcb);
185 	kcb->kprobe_status = KPROBE_HIT_SS;
186 	return 1;
187 
188 no_kprobe:
189 	preempt_enable_no_resched();
190 	return ret;
191 }
192 
193 /* If INSN is a relative control transfer instruction,
194  * return the corrected branch destination value.
195  *
196  * regs->tpc and regs->tnpc still hold the values of the
197  * program counters at the time of trap due to the execution
198  * of the BREAKPOINT_INSTRUCTION_2 at p->ainsn.insn[1]
199  *
200  */
201 static unsigned long __kprobes relbranch_fixup(u32 insn, struct kprobe *p,
202 					       struct pt_regs *regs)
203 {
204 	unsigned long real_pc = (unsigned long) p->addr;
205 
206 	/* Branch not taken, no mods necessary.  */
207 	if (regs->tnpc == regs->tpc + 0x4UL)
208 		return real_pc + 0x8UL;
209 
210 	/* The three cases are call, branch w/prediction,
211 	 * and traditional branch.
212 	 */
213 	if ((insn & 0xc0000000) == 0x40000000 ||
214 	    (insn & 0xc1c00000) == 0x00400000 ||
215 	    (insn & 0xc1c00000) == 0x00800000) {
216 		unsigned long ainsn_addr;
217 
218 		ainsn_addr = (unsigned long) &p->ainsn.insn[0];
219 
220 		/* The instruction did all the work for us
221 		 * already, just apply the offset to the correct
222 		 * instruction location.
223 		 */
224 		return (real_pc + (regs->tnpc - ainsn_addr));
225 	}
226 
227 	/* It is jmpl or some other absolute PC modification instruction,
228 	 * leave NPC as-is.
229 	 */
230 	return regs->tnpc;
231 }
232 
233 /* If INSN is an instruction which writes it's PC location
234  * into a destination register, fix that up.
235  */
236 static void __kprobes retpc_fixup(struct pt_regs *regs, u32 insn,
237 				  unsigned long real_pc)
238 {
239 	unsigned long *slot = NULL;
240 
241 	/* Simplest case is 'call', which always uses %o7 */
242 	if ((insn & 0xc0000000) == 0x40000000) {
243 		slot = &regs->u_regs[UREG_I7];
244 	}
245 
246 	/* 'jmpl' encodes the register inside of the opcode */
247 	if ((insn & 0xc1f80000) == 0x81c00000) {
248 		unsigned long rd = ((insn >> 25) & 0x1f);
249 
250 		if (rd <= 15) {
251 			slot = &regs->u_regs[rd];
252 		} else {
253 			/* Hard case, it goes onto the stack. */
254 			flushw_all();
255 
256 			rd -= 16;
257 			slot = (unsigned long *)
258 				(regs->u_regs[UREG_FP] + STACK_BIAS);
259 			slot += rd;
260 		}
261 	}
262 	if (slot != NULL)
263 		*slot = real_pc;
264 }
265 
266 /*
267  * Called after single-stepping.  p->addr is the address of the
268  * instruction which has been replaced by the breakpoint
269  * instruction.  To avoid the SMP problems that can occur when we
270  * temporarily put back the original opcode to single-step, we
271  * single-stepped a copy of the instruction.  The address of this
272  * copy is &p->ainsn.insn[0].
273  *
274  * This function prepares to return from the post-single-step
275  * breakpoint trap.
276  */
277 static void __kprobes resume_execution(struct kprobe *p,
278 		struct pt_regs *regs, struct kprobe_ctlblk *kcb)
279 {
280 	u32 insn = p->ainsn.insn[0];
281 
282 	regs->tnpc = relbranch_fixup(insn, p, regs);
283 
284 	/* This assignment must occur after relbranch_fixup() */
285 	regs->tpc = kcb->kprobe_orig_tnpc;
286 
287 	retpc_fixup(regs, insn, (unsigned long) p->addr);
288 
289 	regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
290 			kcb->kprobe_orig_tstate_pil);
291 }
292 
293 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
294 {
295 	struct kprobe *cur = kprobe_running();
296 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
297 
298 	if (!cur)
299 		return 0;
300 
301 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
302 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
303 		cur->post_handler(cur, regs, 0);
304 	}
305 
306 	resume_execution(cur, regs, kcb);
307 
308 	/*Restore back the original saved kprobes variables and continue. */
309 	if (kcb->kprobe_status == KPROBE_REENTER) {
310 		restore_previous_kprobe(kcb);
311 		goto out;
312 	}
313 	reset_current_kprobe();
314 out:
315 	preempt_enable_no_resched();
316 
317 	return 1;
318 }
319 
320 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
321 {
322 	struct kprobe *cur = kprobe_running();
323 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
324 	const struct exception_table_entry *entry;
325 
326 	switch(kcb->kprobe_status) {
327 	case KPROBE_HIT_SS:
328 	case KPROBE_REENTER:
329 		/*
330 		 * We are here because the instruction being single
331 		 * stepped caused a page fault. We reset the current
332 		 * kprobe and the tpc points back to the probe address
333 		 * and allow the page fault handler to continue as a
334 		 * normal page fault.
335 		 */
336 		regs->tpc = (unsigned long)cur->addr;
337 		regs->tnpc = kcb->kprobe_orig_tnpc;
338 		regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
339 				kcb->kprobe_orig_tstate_pil);
340 		if (kcb->kprobe_status == KPROBE_REENTER)
341 			restore_previous_kprobe(kcb);
342 		else
343 			reset_current_kprobe();
344 		preempt_enable_no_resched();
345 		break;
346 	case KPROBE_HIT_ACTIVE:
347 	case KPROBE_HIT_SSDONE:
348 		/*
349 		 * In case the user-specified fault handler returned
350 		 * zero, try to fix up.
351 		 */
352 
353 		entry = search_exception_tables(regs->tpc);
354 		if (entry) {
355 			regs->tpc = entry->fixup;
356 			regs->tnpc = regs->tpc + 4;
357 			return 1;
358 		}
359 
360 		/*
361 		 * fixup_exception() could not handle it,
362 		 * Let do_page_fault() fix it.
363 		 */
364 		break;
365 	default:
366 		break;
367 	}
368 
369 	return 0;
370 }
371 
372 /*
373  * Wrapper routine to for handling exceptions.
374  */
375 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
376 				       unsigned long val, void *data)
377 {
378 	struct die_args *args = (struct die_args *)data;
379 	int ret = NOTIFY_DONE;
380 
381 	if (args->regs && user_mode(args->regs))
382 		return ret;
383 
384 	switch (val) {
385 	case DIE_DEBUG:
386 		if (kprobe_handler(args->regs))
387 			ret = NOTIFY_STOP;
388 		break;
389 	case DIE_DEBUG_2:
390 		if (post_kprobe_handler(args->regs))
391 			ret = NOTIFY_STOP;
392 		break;
393 	default:
394 		break;
395 	}
396 	return ret;
397 }
398 
399 asmlinkage void __kprobes kprobe_trap(unsigned long trap_level,
400 				      struct pt_regs *regs)
401 {
402 	enum ctx_state prev_state = exception_enter();
403 
404 	BUG_ON(trap_level != 0x170 && trap_level != 0x171);
405 
406 	if (user_mode(regs)) {
407 		local_irq_enable();
408 		bad_trap(regs, trap_level);
409 		goto out;
410 	}
411 
412 	/* trap_level == 0x170 --> ta 0x70
413 	 * trap_level == 0x171 --> ta 0x71
414 	 */
415 	if (notify_die((trap_level == 0x170) ? DIE_DEBUG : DIE_DEBUG_2,
416 		       (trap_level == 0x170) ? "debug" : "debug_2",
417 		       regs, 0, trap_level, SIGTRAP) != NOTIFY_STOP)
418 		bad_trap(regs, trap_level);
419 out:
420 	exception_exit(prev_state);
421 }
422 
423 /* The value stored in the return address register is actually 2
424  * instructions before where the callee will return to.
425  * Sequences usually look something like this
426  *
427  *		call	some_function	<--- return register points here
428  *		 nop			<--- call delay slot
429  *		whatever		<--- where callee returns to
430  *
431  * To keep trampoline_probe_handler logic simpler, we normalize the
432  * value kept in ri->ret_addr so we don't need to keep adjusting it
433  * back and forth.
434  */
435 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
436 				      struct pt_regs *regs)
437 {
438 	ri->ret_addr = (kprobe_opcode_t *)(regs->u_regs[UREG_RETPC] + 8);
439 	ri->fp = NULL;
440 
441 	/* Replace the return addr with trampoline addr */
442 	regs->u_regs[UREG_RETPC] =
443 		((unsigned long)__kretprobe_trampoline) - 8;
444 }
445 
446 /*
447  * Called when the probe at kretprobe trampoline is hit
448  */
449 static int __kprobes trampoline_probe_handler(struct kprobe *p,
450 					      struct pt_regs *regs)
451 {
452 	unsigned long orig_ret_address = 0;
453 
454 	orig_ret_address = __kretprobe_trampoline_handler(regs, NULL);
455 	regs->tpc = orig_ret_address;
456 	regs->tnpc = orig_ret_address + 4;
457 
458 	/*
459 	 * By returning a non-zero value, we are telling
460 	 * kprobe_handler() that we don't want the post_handler
461 	 * to run (and have re-enabled preemption)
462 	 */
463 	return 1;
464 }
465 
466 static void __used kretprobe_trampoline_holder(void)
467 {
468 	asm volatile(".global __kretprobe_trampoline\n"
469 		     "__kretprobe_trampoline:\n"
470 		     "\tnop\n"
471 		     "\tnop\n");
472 }
473 static struct kprobe trampoline_p = {
474 	.addr = (kprobe_opcode_t *) &__kretprobe_trampoline,
475 	.pre_handler = trampoline_probe_handler
476 };
477 
478 int __init arch_init_kprobes(void)
479 {
480 	return register_kprobe(&trampoline_p);
481 }
482 
483 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
484 {
485 	if (p->addr == (kprobe_opcode_t *)&__kretprobe_trampoline)
486 		return 1;
487 
488 	return 0;
489 }
490