xref: /openbmc/linux/arch/sparc/kernel/kprobes.c (revision 7dd65feb)
1 /* arch/sparc64/kernel/kprobes.c
2  *
3  * Copyright (C) 2004 David S. Miller <davem@davemloft.net>
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/kprobes.h>
8 #include <linux/module.h>
9 #include <linux/kdebug.h>
10 #include <asm/signal.h>
11 #include <asm/cacheflush.h>
12 #include <asm/uaccess.h>
13 
14 /* We do not have hardware single-stepping on sparc64.
15  * So we implement software single-stepping with breakpoint
16  * traps.  The top-level scheme is similar to that used
17  * in the x86 kprobes implementation.
18  *
19  * In the kprobe->ainsn.insn[] array we store the original
20  * instruction at index zero and a break instruction at
21  * index one.
22  *
23  * When we hit a kprobe we:
24  * - Run the pre-handler
25  * - Remember "regs->tnpc" and interrupt level stored in
26  *   "regs->tstate" so we can restore them later
27  * - Disable PIL interrupts
28  * - Set regs->tpc to point to kprobe->ainsn.insn[0]
29  * - Set regs->tnpc to point to kprobe->ainsn.insn[1]
30  * - Mark that we are actively in a kprobe
31  *
32  * At this point we wait for the second breakpoint at
33  * kprobe->ainsn.insn[1] to hit.  When it does we:
34  * - Run the post-handler
35  * - Set regs->tpc to "remembered" regs->tnpc stored above,
36  *   restore the PIL interrupt level in "regs->tstate" as well
37  * - Make any adjustments necessary to regs->tnpc in order
38  *   to handle relative branches correctly.  See below.
39  * - Mark that we are no longer actively in a kprobe.
40  */
41 
42 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
43 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
44 
45 struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
46 
47 int __kprobes arch_prepare_kprobe(struct kprobe *p)
48 {
49 	if ((unsigned long) p->addr & 0x3UL)
50 		return -EILSEQ;
51 
52 	p->ainsn.insn[0] = *p->addr;
53 	flushi(&p->ainsn.insn[0]);
54 
55 	p->ainsn.insn[1] = BREAKPOINT_INSTRUCTION_2;
56 	flushi(&p->ainsn.insn[1]);
57 
58 	p->opcode = *p->addr;
59 	return 0;
60 }
61 
62 void __kprobes arch_arm_kprobe(struct kprobe *p)
63 {
64 	*p->addr = BREAKPOINT_INSTRUCTION;
65 	flushi(p->addr);
66 }
67 
68 void __kprobes arch_disarm_kprobe(struct kprobe *p)
69 {
70 	*p->addr = p->opcode;
71 	flushi(p->addr);
72 }
73 
74 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
75 {
76 	kcb->prev_kprobe.kp = kprobe_running();
77 	kcb->prev_kprobe.status = kcb->kprobe_status;
78 	kcb->prev_kprobe.orig_tnpc = kcb->kprobe_orig_tnpc;
79 	kcb->prev_kprobe.orig_tstate_pil = kcb->kprobe_orig_tstate_pil;
80 }
81 
82 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
83 {
84 	__get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
85 	kcb->kprobe_status = kcb->prev_kprobe.status;
86 	kcb->kprobe_orig_tnpc = kcb->prev_kprobe.orig_tnpc;
87 	kcb->kprobe_orig_tstate_pil = kcb->prev_kprobe.orig_tstate_pil;
88 }
89 
90 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
91 				struct kprobe_ctlblk *kcb)
92 {
93 	__get_cpu_var(current_kprobe) = p;
94 	kcb->kprobe_orig_tnpc = regs->tnpc;
95 	kcb->kprobe_orig_tstate_pil = (regs->tstate & TSTATE_PIL);
96 }
97 
98 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs,
99 			struct kprobe_ctlblk *kcb)
100 {
101 	regs->tstate |= TSTATE_PIL;
102 
103 	/*single step inline, if it a breakpoint instruction*/
104 	if (p->opcode == BREAKPOINT_INSTRUCTION) {
105 		regs->tpc = (unsigned long) p->addr;
106 		regs->tnpc = kcb->kprobe_orig_tnpc;
107 	} else {
108 		regs->tpc = (unsigned long) &p->ainsn.insn[0];
109 		regs->tnpc = (unsigned long) &p->ainsn.insn[1];
110 	}
111 }
112 
113 static int __kprobes kprobe_handler(struct pt_regs *regs)
114 {
115 	struct kprobe *p;
116 	void *addr = (void *) regs->tpc;
117 	int ret = 0;
118 	struct kprobe_ctlblk *kcb;
119 
120 	/*
121 	 * We don't want to be preempted for the entire
122 	 * duration of kprobe processing
123 	 */
124 	preempt_disable();
125 	kcb = get_kprobe_ctlblk();
126 
127 	if (kprobe_running()) {
128 		p = get_kprobe(addr);
129 		if (p) {
130 			if (kcb->kprobe_status == KPROBE_HIT_SS) {
131 				regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
132 					kcb->kprobe_orig_tstate_pil);
133 				goto no_kprobe;
134 			}
135 			/* We have reentered the kprobe_handler(), since
136 			 * another probe was hit while within the handler.
137 			 * We here save the original kprobes variables and
138 			 * just single step on the instruction of the new probe
139 			 * without calling any user handlers.
140 			 */
141 			save_previous_kprobe(kcb);
142 			set_current_kprobe(p, regs, kcb);
143 			kprobes_inc_nmissed_count(p);
144 			kcb->kprobe_status = KPROBE_REENTER;
145 			prepare_singlestep(p, regs, kcb);
146 			return 1;
147 		} else {
148 			if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) {
149 			/* The breakpoint instruction was removed by
150 			 * another cpu right after we hit, no further
151 			 * handling of this interrupt is appropriate
152 			 */
153 				ret = 1;
154 				goto no_kprobe;
155 			}
156 			p = __get_cpu_var(current_kprobe);
157 			if (p->break_handler && p->break_handler(p, regs))
158 				goto ss_probe;
159 		}
160 		goto no_kprobe;
161 	}
162 
163 	p = get_kprobe(addr);
164 	if (!p) {
165 		if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) {
166 			/*
167 			 * The breakpoint instruction was removed right
168 			 * after we hit it.  Another cpu has removed
169 			 * either a probepoint or a debugger breakpoint
170 			 * at this address.  In either case, no further
171 			 * handling of this interrupt is appropriate.
172 			 */
173 			ret = 1;
174 		}
175 		/* Not one of ours: let kernel handle it */
176 		goto no_kprobe;
177 	}
178 
179 	set_current_kprobe(p, regs, kcb);
180 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
181 	if (p->pre_handler && p->pre_handler(p, regs))
182 		return 1;
183 
184 ss_probe:
185 	prepare_singlestep(p, regs, kcb);
186 	kcb->kprobe_status = KPROBE_HIT_SS;
187 	return 1;
188 
189 no_kprobe:
190 	preempt_enable_no_resched();
191 	return ret;
192 }
193 
194 /* If INSN is a relative control transfer instruction,
195  * return the corrected branch destination value.
196  *
197  * regs->tpc and regs->tnpc still hold the values of the
198  * program counters at the time of trap due to the execution
199  * of the BREAKPOINT_INSTRUCTION_2 at p->ainsn.insn[1]
200  *
201  */
202 static unsigned long __kprobes relbranch_fixup(u32 insn, struct kprobe *p,
203 					       struct pt_regs *regs)
204 {
205 	unsigned long real_pc = (unsigned long) p->addr;
206 
207 	/* Branch not taken, no mods necessary.  */
208 	if (regs->tnpc == regs->tpc + 0x4UL)
209 		return real_pc + 0x8UL;
210 
211 	/* The three cases are call, branch w/prediction,
212 	 * and traditional branch.
213 	 */
214 	if ((insn & 0xc0000000) == 0x40000000 ||
215 	    (insn & 0xc1c00000) == 0x00400000 ||
216 	    (insn & 0xc1c00000) == 0x00800000) {
217 		unsigned long ainsn_addr;
218 
219 		ainsn_addr = (unsigned long) &p->ainsn.insn[0];
220 
221 		/* The instruction did all the work for us
222 		 * already, just apply the offset to the correct
223 		 * instruction location.
224 		 */
225 		return (real_pc + (regs->tnpc - ainsn_addr));
226 	}
227 
228 	/* It is jmpl or some other absolute PC modification instruction,
229 	 * leave NPC as-is.
230 	 */
231 	return regs->tnpc;
232 }
233 
234 /* If INSN is an instruction which writes it's PC location
235  * into a destination register, fix that up.
236  */
237 static void __kprobes retpc_fixup(struct pt_regs *regs, u32 insn,
238 				  unsigned long real_pc)
239 {
240 	unsigned long *slot = NULL;
241 
242 	/* Simplest case is 'call', which always uses %o7 */
243 	if ((insn & 0xc0000000) == 0x40000000) {
244 		slot = &regs->u_regs[UREG_I7];
245 	}
246 
247 	/* 'jmpl' encodes the register inside of the opcode */
248 	if ((insn & 0xc1f80000) == 0x81c00000) {
249 		unsigned long rd = ((insn >> 25) & 0x1f);
250 
251 		if (rd <= 15) {
252 			slot = &regs->u_regs[rd];
253 		} else {
254 			/* Hard case, it goes onto the stack. */
255 			flushw_all();
256 
257 			rd -= 16;
258 			slot = (unsigned long *)
259 				(regs->u_regs[UREG_FP] + STACK_BIAS);
260 			slot += rd;
261 		}
262 	}
263 	if (slot != NULL)
264 		*slot = real_pc;
265 }
266 
267 /*
268  * Called after single-stepping.  p->addr is the address of the
269  * instruction which has been replaced by the breakpoint
270  * instruction.  To avoid the SMP problems that can occur when we
271  * temporarily put back the original opcode to single-step, we
272  * single-stepped a copy of the instruction.  The address of this
273  * copy is &p->ainsn.insn[0].
274  *
275  * This function prepares to return from the post-single-step
276  * breakpoint trap.
277  */
278 static void __kprobes resume_execution(struct kprobe *p,
279 		struct pt_regs *regs, struct kprobe_ctlblk *kcb)
280 {
281 	u32 insn = p->ainsn.insn[0];
282 
283 	regs->tnpc = relbranch_fixup(insn, p, regs);
284 
285 	/* This assignment must occur after relbranch_fixup() */
286 	regs->tpc = kcb->kprobe_orig_tnpc;
287 
288 	retpc_fixup(regs, insn, (unsigned long) p->addr);
289 
290 	regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
291 			kcb->kprobe_orig_tstate_pil);
292 }
293 
294 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
295 {
296 	struct kprobe *cur = kprobe_running();
297 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
298 
299 	if (!cur)
300 		return 0;
301 
302 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
303 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
304 		cur->post_handler(cur, regs, 0);
305 	}
306 
307 	resume_execution(cur, regs, kcb);
308 
309 	/*Restore back the original saved kprobes variables and continue. */
310 	if (kcb->kprobe_status == KPROBE_REENTER) {
311 		restore_previous_kprobe(kcb);
312 		goto out;
313 	}
314 	reset_current_kprobe();
315 out:
316 	preempt_enable_no_resched();
317 
318 	return 1;
319 }
320 
321 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
322 {
323 	struct kprobe *cur = kprobe_running();
324 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
325 	const struct exception_table_entry *entry;
326 
327 	switch(kcb->kprobe_status) {
328 	case KPROBE_HIT_SS:
329 	case KPROBE_REENTER:
330 		/*
331 		 * We are here because the instruction being single
332 		 * stepped caused a page fault. We reset the current
333 		 * kprobe and the tpc points back to the probe address
334 		 * and allow the page fault handler to continue as a
335 		 * normal page fault.
336 		 */
337 		regs->tpc = (unsigned long)cur->addr;
338 		regs->tnpc = kcb->kprobe_orig_tnpc;
339 		regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
340 				kcb->kprobe_orig_tstate_pil);
341 		if (kcb->kprobe_status == KPROBE_REENTER)
342 			restore_previous_kprobe(kcb);
343 		else
344 			reset_current_kprobe();
345 		preempt_enable_no_resched();
346 		break;
347 	case KPROBE_HIT_ACTIVE:
348 	case KPROBE_HIT_SSDONE:
349 		/*
350 		 * We increment the nmissed count for accounting,
351 		 * we can also use npre/npostfault count for accouting
352 		 * these specific fault cases.
353 		 */
354 		kprobes_inc_nmissed_count(cur);
355 
356 		/*
357 		 * We come here because instructions in the pre/post
358 		 * handler caused the page_fault, this could happen
359 		 * if handler tries to access user space by
360 		 * copy_from_user(), get_user() etc. Let the
361 		 * user-specified handler try to fix it first.
362 		 */
363 		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
364 			return 1;
365 
366 		/*
367 		 * In case the user-specified fault handler returned
368 		 * zero, try to fix up.
369 		 */
370 
371 		entry = search_exception_tables(regs->tpc);
372 		if (entry) {
373 			regs->tpc = entry->fixup;
374 			regs->tnpc = regs->tpc + 4;
375 			return 1;
376 		}
377 
378 		/*
379 		 * fixup_exception() could not handle it,
380 		 * Let do_page_fault() fix it.
381 		 */
382 		break;
383 	default:
384 		break;
385 	}
386 
387 	return 0;
388 }
389 
390 /*
391  * Wrapper routine to for handling exceptions.
392  */
393 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
394 				       unsigned long val, void *data)
395 {
396 	struct die_args *args = (struct die_args *)data;
397 	int ret = NOTIFY_DONE;
398 
399 	if (args->regs && user_mode(args->regs))
400 		return ret;
401 
402 	switch (val) {
403 	case DIE_DEBUG:
404 		if (kprobe_handler(args->regs))
405 			ret = NOTIFY_STOP;
406 		break;
407 	case DIE_DEBUG_2:
408 		if (post_kprobe_handler(args->regs))
409 			ret = NOTIFY_STOP;
410 		break;
411 	default:
412 		break;
413 	}
414 	return ret;
415 }
416 
417 asmlinkage void __kprobes kprobe_trap(unsigned long trap_level,
418 				      struct pt_regs *regs)
419 {
420 	BUG_ON(trap_level != 0x170 && trap_level != 0x171);
421 
422 	if (user_mode(regs)) {
423 		local_irq_enable();
424 		bad_trap(regs, trap_level);
425 		return;
426 	}
427 
428 	/* trap_level == 0x170 --> ta 0x70
429 	 * trap_level == 0x171 --> ta 0x71
430 	 */
431 	if (notify_die((trap_level == 0x170) ? DIE_DEBUG : DIE_DEBUG_2,
432 		       (trap_level == 0x170) ? "debug" : "debug_2",
433 		       regs, 0, trap_level, SIGTRAP) != NOTIFY_STOP)
434 		bad_trap(regs, trap_level);
435 }
436 
437 /* Jprobes support.  */
438 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
439 {
440 	struct jprobe *jp = container_of(p, struct jprobe, kp);
441 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
442 
443 	memcpy(&(kcb->jprobe_saved_regs), regs, sizeof(*regs));
444 
445 	regs->tpc  = (unsigned long) jp->entry;
446 	regs->tnpc = ((unsigned long) jp->entry) + 0x4UL;
447 	regs->tstate |= TSTATE_PIL;
448 
449 	return 1;
450 }
451 
452 void __kprobes jprobe_return(void)
453 {
454 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
455 	register unsigned long orig_fp asm("g1");
456 
457 	orig_fp = kcb->jprobe_saved_regs.u_regs[UREG_FP];
458 	__asm__ __volatile__("\n"
459 "1:	cmp		%%sp, %0\n\t"
460 	"blu,a,pt	%%xcc, 1b\n\t"
461 	" restore\n\t"
462 	".globl		jprobe_return_trap_instruction\n"
463 "jprobe_return_trap_instruction:\n\t"
464 	"ta		0x70"
465 	: /* no outputs */
466 	: "r" (orig_fp));
467 }
468 
469 extern void jprobe_return_trap_instruction(void);
470 
471 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
472 {
473 	u32 *addr = (u32 *) regs->tpc;
474 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
475 
476 	if (addr == (u32 *) jprobe_return_trap_instruction) {
477 		memcpy(regs, &(kcb->jprobe_saved_regs), sizeof(*regs));
478 		preempt_enable_no_resched();
479 		return 1;
480 	}
481 	return 0;
482 }
483 
484 /* The value stored in the return address register is actually 2
485  * instructions before where the callee will return to.
486  * Sequences usually look something like this
487  *
488  *		call	some_function	<--- return register points here
489  *		 nop			<--- call delay slot
490  *		whatever		<--- where callee returns to
491  *
492  * To keep trampoline_probe_handler logic simpler, we normalize the
493  * value kept in ri->ret_addr so we don't need to keep adjusting it
494  * back and forth.
495  */
496 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
497 				      struct pt_regs *regs)
498 {
499 	ri->ret_addr = (kprobe_opcode_t *)(regs->u_regs[UREG_RETPC] + 8);
500 
501 	/* Replace the return addr with trampoline addr */
502 	regs->u_regs[UREG_RETPC] =
503 		((unsigned long)kretprobe_trampoline) - 8;
504 }
505 
506 /*
507  * Called when the probe at kretprobe trampoline is hit
508  */
509 int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
510 {
511 	struct kretprobe_instance *ri = NULL;
512 	struct hlist_head *head, empty_rp;
513 	struct hlist_node *node, *tmp;
514 	unsigned long flags, orig_ret_address = 0;
515 	unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
516 
517 	INIT_HLIST_HEAD(&empty_rp);
518 	kretprobe_hash_lock(current, &head, &flags);
519 
520 	/*
521 	 * It is possible to have multiple instances associated with a given
522 	 * task either because an multiple functions in the call path
523 	 * have a return probe installed on them, and/or more than one return
524 	 * return probe was registered for a target function.
525 	 *
526 	 * We can handle this because:
527 	 *     - instances are always inserted at the head of the list
528 	 *     - when multiple return probes are registered for the same
529 	 *       function, the first instance's ret_addr will point to the
530 	 *       real return address, and all the rest will point to
531 	 *       kretprobe_trampoline
532 	 */
533 	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
534 		if (ri->task != current)
535 			/* another task is sharing our hash bucket */
536 			continue;
537 
538 		if (ri->rp && ri->rp->handler)
539 			ri->rp->handler(ri, regs);
540 
541 		orig_ret_address = (unsigned long)ri->ret_addr;
542 		recycle_rp_inst(ri, &empty_rp);
543 
544 		if (orig_ret_address != trampoline_address)
545 			/*
546 			 * This is the real return address. Any other
547 			 * instances associated with this task are for
548 			 * other calls deeper on the call stack
549 			 */
550 			break;
551 	}
552 
553 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
554 	regs->tpc = orig_ret_address;
555 	regs->tnpc = orig_ret_address + 4;
556 
557 	reset_current_kprobe();
558 	kretprobe_hash_unlock(current, &flags);
559 	preempt_enable_no_resched();
560 
561 	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
562 		hlist_del(&ri->hlist);
563 		kfree(ri);
564 	}
565 	/*
566 	 * By returning a non-zero value, we are telling
567 	 * kprobe_handler() that we don't want the post_handler
568 	 * to run (and have re-enabled preemption)
569 	 */
570 	return 1;
571 }
572 
573 void kretprobe_trampoline_holder(void)
574 {
575 	asm volatile(".global kretprobe_trampoline\n"
576 		     "kretprobe_trampoline:\n"
577 		     "\tnop\n"
578 		     "\tnop\n");
579 }
580 static struct kprobe trampoline_p = {
581 	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
582 	.pre_handler = trampoline_probe_handler
583 };
584 
585 int __init arch_init_kprobes(void)
586 {
587 	return register_kprobe(&trampoline_p);
588 }
589 
590 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
591 {
592 	if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline)
593 		return 1;
594 
595 	return 0;
596 }
597