xref: /openbmc/linux/arch/sparc/kernel/irq_64.c (revision e8f6f3b4)
1 /* irq.c: UltraSparc IRQ handling/init/registry.
2  *
3  * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
4  * Copyright (C) 1998  Eddie C. Dost    (ecd@skynet.be)
5  * Copyright (C) 1998  Jakub Jelinek    (jj@ultra.linux.cz)
6  */
7 
8 #include <linux/sched.h>
9 #include <linux/linkage.h>
10 #include <linux/ptrace.h>
11 #include <linux/errno.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/signal.h>
14 #include <linux/mm.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/random.h>
18 #include <linux/init.h>
19 #include <linux/delay.h>
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/ftrace.h>
23 #include <linux/irq.h>
24 #include <linux/kmemleak.h>
25 
26 #include <asm/ptrace.h>
27 #include <asm/processor.h>
28 #include <linux/atomic.h>
29 #include <asm/irq.h>
30 #include <asm/io.h>
31 #include <asm/iommu.h>
32 #include <asm/upa.h>
33 #include <asm/oplib.h>
34 #include <asm/prom.h>
35 #include <asm/timer.h>
36 #include <asm/smp.h>
37 #include <asm/starfire.h>
38 #include <asm/uaccess.h>
39 #include <asm/cache.h>
40 #include <asm/cpudata.h>
41 #include <asm/auxio.h>
42 #include <asm/head.h>
43 #include <asm/hypervisor.h>
44 #include <asm/cacheflush.h>
45 
46 #include "entry.h"
47 #include "cpumap.h"
48 #include "kstack.h"
49 
50 struct ino_bucket *ivector_table;
51 unsigned long ivector_table_pa;
52 
53 /* On several sun4u processors, it is illegal to mix bypass and
54  * non-bypass accesses.  Therefore we access all INO buckets
55  * using bypass accesses only.
56  */
57 static unsigned long bucket_get_chain_pa(unsigned long bucket_pa)
58 {
59 	unsigned long ret;
60 
61 	__asm__ __volatile__("ldxa	[%1] %2, %0"
62 			     : "=&r" (ret)
63 			     : "r" (bucket_pa +
64 				    offsetof(struct ino_bucket,
65 					     __irq_chain_pa)),
66 			       "i" (ASI_PHYS_USE_EC));
67 
68 	return ret;
69 }
70 
71 static void bucket_clear_chain_pa(unsigned long bucket_pa)
72 {
73 	__asm__ __volatile__("stxa	%%g0, [%0] %1"
74 			     : /* no outputs */
75 			     : "r" (bucket_pa +
76 				    offsetof(struct ino_bucket,
77 					     __irq_chain_pa)),
78 			       "i" (ASI_PHYS_USE_EC));
79 }
80 
81 static unsigned int bucket_get_irq(unsigned long bucket_pa)
82 {
83 	unsigned int ret;
84 
85 	__asm__ __volatile__("lduwa	[%1] %2, %0"
86 			     : "=&r" (ret)
87 			     : "r" (bucket_pa +
88 				    offsetof(struct ino_bucket,
89 					     __irq)),
90 			       "i" (ASI_PHYS_USE_EC));
91 
92 	return ret;
93 }
94 
95 static void bucket_set_irq(unsigned long bucket_pa, unsigned int irq)
96 {
97 	__asm__ __volatile__("stwa	%0, [%1] %2"
98 			     : /* no outputs */
99 			     : "r" (irq),
100 			       "r" (bucket_pa +
101 				    offsetof(struct ino_bucket,
102 					     __irq)),
103 			       "i" (ASI_PHYS_USE_EC));
104 }
105 
106 #define irq_work_pa(__cpu)	&(trap_block[(__cpu)].irq_worklist_pa)
107 
108 static unsigned long hvirq_major __initdata;
109 static int __init early_hvirq_major(char *p)
110 {
111 	int rc = kstrtoul(p, 10, &hvirq_major);
112 
113 	return rc;
114 }
115 early_param("hvirq", early_hvirq_major);
116 
117 static int hv_irq_version;
118 
119 /* Major version 2.0 of HV_GRP_INTR added support for the VIRQ cookie
120  * based interfaces, but:
121  *
122  * 1) Several OSs, Solaris and Linux included, use them even when only
123  *    negotiating version 1.0 (or failing to negotiate at all).  So the
124  *    hypervisor has a workaround that provides the VIRQ interfaces even
125  *    when only verion 1.0 of the API is in use.
126  *
127  * 2) Second, and more importantly, with major version 2.0 these VIRQ
128  *    interfaces only were actually hooked up for LDC interrupts, even
129  *    though the Hypervisor specification clearly stated:
130  *
131  *	The new interrupt API functions will be available to a guest
132  *	when it negotiates version 2.0 in the interrupt API group 0x2. When
133  *	a guest negotiates version 2.0, all interrupt sources will only
134  *	support using the cookie interface, and any attempt to use the
135  *	version 1.0 interrupt APIs numbered 0xa0 to 0xa6 will result in the
136  *	ENOTSUPPORTED error being returned.
137  *
138  *   with an emphasis on "all interrupt sources".
139  *
140  * To correct this, major version 3.0 was created which does actually
141  * support VIRQs for all interrupt sources (not just LDC devices).  So
142  * if we want to move completely over the cookie based VIRQs we must
143  * negotiate major version 3.0 or later of HV_GRP_INTR.
144  */
145 static bool sun4v_cookie_only_virqs(void)
146 {
147 	if (hv_irq_version >= 3)
148 		return true;
149 	return false;
150 }
151 
152 static void __init irq_init_hv(void)
153 {
154 	unsigned long hv_error, major, minor = 0;
155 
156 	if (tlb_type != hypervisor)
157 		return;
158 
159 	if (hvirq_major)
160 		major = hvirq_major;
161 	else
162 		major = 3;
163 
164 	hv_error = sun4v_hvapi_register(HV_GRP_INTR, major, &minor);
165 	if (!hv_error)
166 		hv_irq_version = major;
167 	else
168 		hv_irq_version = 1;
169 
170 	pr_info("SUN4V: Using IRQ API major %d, cookie only virqs %s\n",
171 		hv_irq_version,
172 		sun4v_cookie_only_virqs() ? "enabled" : "disabled");
173 }
174 
175 /* This function is for the timer interrupt.*/
176 int __init arch_probe_nr_irqs(void)
177 {
178 	return 1;
179 }
180 
181 #define DEFAULT_NUM_IVECS	(0xfffU)
182 static unsigned int nr_ivec = DEFAULT_NUM_IVECS;
183 #define NUM_IVECS (nr_ivec)
184 
185 static unsigned int __init size_nr_ivec(void)
186 {
187 	if (tlb_type == hypervisor) {
188 		switch (sun4v_chip_type) {
189 		/* Athena's devhandle|devino is large.*/
190 		case SUN4V_CHIP_SPARC64X:
191 			nr_ivec = 0xffff;
192 			break;
193 		}
194 	}
195 	return nr_ivec;
196 }
197 
198 struct irq_handler_data {
199 	union {
200 		struct {
201 			unsigned int dev_handle;
202 			unsigned int dev_ino;
203 		};
204 		unsigned long sysino;
205 	};
206 	struct ino_bucket bucket;
207 	unsigned long	iclr;
208 	unsigned long	imap;
209 };
210 
211 static inline unsigned int irq_data_to_handle(struct irq_data *data)
212 {
213 	struct irq_handler_data *ihd = data->handler_data;
214 
215 	return ihd->dev_handle;
216 }
217 
218 static inline unsigned int irq_data_to_ino(struct irq_data *data)
219 {
220 	struct irq_handler_data *ihd = data->handler_data;
221 
222 	return ihd->dev_ino;
223 }
224 
225 static inline unsigned long irq_data_to_sysino(struct irq_data *data)
226 {
227 	struct irq_handler_data *ihd = data->handler_data;
228 
229 	return ihd->sysino;
230 }
231 
232 void irq_free(unsigned int irq)
233 {
234 	void *data = irq_get_handler_data(irq);
235 
236 	kfree(data);
237 	irq_set_handler_data(irq, NULL);
238 	irq_free_descs(irq, 1);
239 }
240 
241 unsigned int irq_alloc(unsigned int dev_handle, unsigned int dev_ino)
242 {
243 	int irq;
244 
245 	irq = __irq_alloc_descs(-1, 1, 1, numa_node_id(), NULL);
246 	if (irq <= 0)
247 		goto out;
248 
249 	return irq;
250 out:
251 	return 0;
252 }
253 
254 static unsigned int cookie_exists(u32 devhandle, unsigned int devino)
255 {
256 	unsigned long hv_err, cookie;
257 	struct ino_bucket *bucket;
258 	unsigned int irq = 0U;
259 
260 	hv_err = sun4v_vintr_get_cookie(devhandle, devino, &cookie);
261 	if (hv_err) {
262 		pr_err("HV get cookie failed hv_err = %ld\n", hv_err);
263 		goto out;
264 	}
265 
266 	if (cookie & ((1UL << 63UL))) {
267 		cookie = ~cookie;
268 		bucket = (struct ino_bucket *) __va(cookie);
269 		irq = bucket->__irq;
270 	}
271 out:
272 	return irq;
273 }
274 
275 static unsigned int sysino_exists(u32 devhandle, unsigned int devino)
276 {
277 	unsigned long sysino = sun4v_devino_to_sysino(devhandle, devino);
278 	struct ino_bucket *bucket;
279 	unsigned int irq;
280 
281 	bucket = &ivector_table[sysino];
282 	irq = bucket_get_irq(__pa(bucket));
283 
284 	return irq;
285 }
286 
287 void ack_bad_irq(unsigned int irq)
288 {
289 	pr_crit("BAD IRQ ack %d\n", irq);
290 }
291 
292 void irq_install_pre_handler(int irq,
293 			     void (*func)(unsigned int, void *, void *),
294 			     void *arg1, void *arg2)
295 {
296 	pr_warn("IRQ pre handler NOT supported.\n");
297 }
298 
299 /*
300  * /proc/interrupts printing:
301  */
302 int arch_show_interrupts(struct seq_file *p, int prec)
303 {
304 	int j;
305 
306 	seq_printf(p, "NMI: ");
307 	for_each_online_cpu(j)
308 		seq_printf(p, "%10u ", cpu_data(j).__nmi_count);
309 	seq_printf(p, "     Non-maskable interrupts\n");
310 	return 0;
311 }
312 
313 static unsigned int sun4u_compute_tid(unsigned long imap, unsigned long cpuid)
314 {
315 	unsigned int tid;
316 
317 	if (this_is_starfire) {
318 		tid = starfire_translate(imap, cpuid);
319 		tid <<= IMAP_TID_SHIFT;
320 		tid &= IMAP_TID_UPA;
321 	} else {
322 		if (tlb_type == cheetah || tlb_type == cheetah_plus) {
323 			unsigned long ver;
324 
325 			__asm__ ("rdpr %%ver, %0" : "=r" (ver));
326 			if ((ver >> 32UL) == __JALAPENO_ID ||
327 			    (ver >> 32UL) == __SERRANO_ID) {
328 				tid = cpuid << IMAP_TID_SHIFT;
329 				tid &= IMAP_TID_JBUS;
330 			} else {
331 				unsigned int a = cpuid & 0x1f;
332 				unsigned int n = (cpuid >> 5) & 0x1f;
333 
334 				tid = ((a << IMAP_AID_SHIFT) |
335 				       (n << IMAP_NID_SHIFT));
336 				tid &= (IMAP_AID_SAFARI |
337 					IMAP_NID_SAFARI);
338 			}
339 		} else {
340 			tid = cpuid << IMAP_TID_SHIFT;
341 			tid &= IMAP_TID_UPA;
342 		}
343 	}
344 
345 	return tid;
346 }
347 
348 #ifdef CONFIG_SMP
349 static int irq_choose_cpu(unsigned int irq, const struct cpumask *affinity)
350 {
351 	cpumask_t mask;
352 	int cpuid;
353 
354 	cpumask_copy(&mask, affinity);
355 	if (cpumask_equal(&mask, cpu_online_mask)) {
356 		cpuid = map_to_cpu(irq);
357 	} else {
358 		cpumask_t tmp;
359 
360 		cpumask_and(&tmp, cpu_online_mask, &mask);
361 		cpuid = cpumask_empty(&tmp) ? map_to_cpu(irq) : cpumask_first(&tmp);
362 	}
363 
364 	return cpuid;
365 }
366 #else
367 #define irq_choose_cpu(irq, affinity)	\
368 	real_hard_smp_processor_id()
369 #endif
370 
371 static void sun4u_irq_enable(struct irq_data *data)
372 {
373 	struct irq_handler_data *handler_data = data->handler_data;
374 
375 	if (likely(handler_data)) {
376 		unsigned long cpuid, imap, val;
377 		unsigned int tid;
378 
379 		cpuid = irq_choose_cpu(data->irq, data->affinity);
380 		imap = handler_data->imap;
381 
382 		tid = sun4u_compute_tid(imap, cpuid);
383 
384 		val = upa_readq(imap);
385 		val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
386 			 IMAP_AID_SAFARI | IMAP_NID_SAFARI);
387 		val |= tid | IMAP_VALID;
388 		upa_writeq(val, imap);
389 		upa_writeq(ICLR_IDLE, handler_data->iclr);
390 	}
391 }
392 
393 static int sun4u_set_affinity(struct irq_data *data,
394 			       const struct cpumask *mask, bool force)
395 {
396 	struct irq_handler_data *handler_data = data->handler_data;
397 
398 	if (likely(handler_data)) {
399 		unsigned long cpuid, imap, val;
400 		unsigned int tid;
401 
402 		cpuid = irq_choose_cpu(data->irq, mask);
403 		imap = handler_data->imap;
404 
405 		tid = sun4u_compute_tid(imap, cpuid);
406 
407 		val = upa_readq(imap);
408 		val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
409 			 IMAP_AID_SAFARI | IMAP_NID_SAFARI);
410 		val |= tid | IMAP_VALID;
411 		upa_writeq(val, imap);
412 		upa_writeq(ICLR_IDLE, handler_data->iclr);
413 	}
414 
415 	return 0;
416 }
417 
418 /* Don't do anything.  The desc->status check for IRQ_DISABLED in
419  * handler_irq() will skip the handler call and that will leave the
420  * interrupt in the sent state.  The next ->enable() call will hit the
421  * ICLR register to reset the state machine.
422  *
423  * This scheme is necessary, instead of clearing the Valid bit in the
424  * IMAP register, to handle the case of IMAP registers being shared by
425  * multiple INOs (and thus ICLR registers).  Since we use a different
426  * virtual IRQ for each shared IMAP instance, the generic code thinks
427  * there is only one user so it prematurely calls ->disable() on
428  * free_irq().
429  *
430  * We have to provide an explicit ->disable() method instead of using
431  * NULL to get the default.  The reason is that if the generic code
432  * sees that, it also hooks up a default ->shutdown method which
433  * invokes ->mask() which we do not want.  See irq_chip_set_defaults().
434  */
435 static void sun4u_irq_disable(struct irq_data *data)
436 {
437 }
438 
439 static void sun4u_irq_eoi(struct irq_data *data)
440 {
441 	struct irq_handler_data *handler_data = data->handler_data;
442 
443 	if (likely(handler_data))
444 		upa_writeq(ICLR_IDLE, handler_data->iclr);
445 }
446 
447 static void sun4v_irq_enable(struct irq_data *data)
448 {
449 	unsigned long cpuid = irq_choose_cpu(data->irq, data->affinity);
450 	unsigned int ino = irq_data_to_sysino(data);
451 	int err;
452 
453 	err = sun4v_intr_settarget(ino, cpuid);
454 	if (err != HV_EOK)
455 		printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
456 		       "err(%d)\n", ino, cpuid, err);
457 	err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
458 	if (err != HV_EOK)
459 		printk(KERN_ERR "sun4v_intr_setstate(%x): "
460 		       "err(%d)\n", ino, err);
461 	err = sun4v_intr_setenabled(ino, HV_INTR_ENABLED);
462 	if (err != HV_EOK)
463 		printk(KERN_ERR "sun4v_intr_setenabled(%x): err(%d)\n",
464 		       ino, err);
465 }
466 
467 static int sun4v_set_affinity(struct irq_data *data,
468 			       const struct cpumask *mask, bool force)
469 {
470 	unsigned long cpuid = irq_choose_cpu(data->irq, mask);
471 	unsigned int ino = irq_data_to_sysino(data);
472 	int err;
473 
474 	err = sun4v_intr_settarget(ino, cpuid);
475 	if (err != HV_EOK)
476 		printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
477 		       "err(%d)\n", ino, cpuid, err);
478 
479 	return 0;
480 }
481 
482 static void sun4v_irq_disable(struct irq_data *data)
483 {
484 	unsigned int ino = irq_data_to_sysino(data);
485 	int err;
486 
487 	err = sun4v_intr_setenabled(ino, HV_INTR_DISABLED);
488 	if (err != HV_EOK)
489 		printk(KERN_ERR "sun4v_intr_setenabled(%x): "
490 		       "err(%d)\n", ino, err);
491 }
492 
493 static void sun4v_irq_eoi(struct irq_data *data)
494 {
495 	unsigned int ino = irq_data_to_sysino(data);
496 	int err;
497 
498 	err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
499 	if (err != HV_EOK)
500 		printk(KERN_ERR "sun4v_intr_setstate(%x): "
501 		       "err(%d)\n", ino, err);
502 }
503 
504 static void sun4v_virq_enable(struct irq_data *data)
505 {
506 	unsigned long dev_handle = irq_data_to_handle(data);
507 	unsigned long dev_ino = irq_data_to_ino(data);
508 	unsigned long cpuid;
509 	int err;
510 
511 	cpuid = irq_choose_cpu(data->irq, data->affinity);
512 
513 	err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
514 	if (err != HV_EOK)
515 		printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
516 		       "err(%d)\n",
517 		       dev_handle, dev_ino, cpuid, err);
518 	err = sun4v_vintr_set_state(dev_handle, dev_ino,
519 				    HV_INTR_STATE_IDLE);
520 	if (err != HV_EOK)
521 		printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
522 		       "HV_INTR_STATE_IDLE): err(%d)\n",
523 		       dev_handle, dev_ino, err);
524 	err = sun4v_vintr_set_valid(dev_handle, dev_ino,
525 				    HV_INTR_ENABLED);
526 	if (err != HV_EOK)
527 		printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
528 		       "HV_INTR_ENABLED): err(%d)\n",
529 		       dev_handle, dev_ino, err);
530 }
531 
532 static int sun4v_virt_set_affinity(struct irq_data *data,
533 				    const struct cpumask *mask, bool force)
534 {
535 	unsigned long dev_handle = irq_data_to_handle(data);
536 	unsigned long dev_ino = irq_data_to_ino(data);
537 	unsigned long cpuid;
538 	int err;
539 
540 	cpuid = irq_choose_cpu(data->irq, mask);
541 
542 	err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
543 	if (err != HV_EOK)
544 		printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
545 		       "err(%d)\n",
546 		       dev_handle, dev_ino, cpuid, err);
547 
548 	return 0;
549 }
550 
551 static void sun4v_virq_disable(struct irq_data *data)
552 {
553 	unsigned long dev_handle = irq_data_to_handle(data);
554 	unsigned long dev_ino = irq_data_to_ino(data);
555 	int err;
556 
557 
558 	err = sun4v_vintr_set_valid(dev_handle, dev_ino,
559 				    HV_INTR_DISABLED);
560 	if (err != HV_EOK)
561 		printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
562 		       "HV_INTR_DISABLED): err(%d)\n",
563 		       dev_handle, dev_ino, err);
564 }
565 
566 static void sun4v_virq_eoi(struct irq_data *data)
567 {
568 	unsigned long dev_handle = irq_data_to_handle(data);
569 	unsigned long dev_ino = irq_data_to_ino(data);
570 	int err;
571 
572 	err = sun4v_vintr_set_state(dev_handle, dev_ino,
573 				    HV_INTR_STATE_IDLE);
574 	if (err != HV_EOK)
575 		printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
576 		       "HV_INTR_STATE_IDLE): err(%d)\n",
577 		       dev_handle, dev_ino, err);
578 }
579 
580 static struct irq_chip sun4u_irq = {
581 	.name			= "sun4u",
582 	.irq_enable		= sun4u_irq_enable,
583 	.irq_disable		= sun4u_irq_disable,
584 	.irq_eoi		= sun4u_irq_eoi,
585 	.irq_set_affinity	= sun4u_set_affinity,
586 	.flags			= IRQCHIP_EOI_IF_HANDLED,
587 };
588 
589 static struct irq_chip sun4v_irq = {
590 	.name			= "sun4v",
591 	.irq_enable		= sun4v_irq_enable,
592 	.irq_disable		= sun4v_irq_disable,
593 	.irq_eoi		= sun4v_irq_eoi,
594 	.irq_set_affinity	= sun4v_set_affinity,
595 	.flags			= IRQCHIP_EOI_IF_HANDLED,
596 };
597 
598 static struct irq_chip sun4v_virq = {
599 	.name			= "vsun4v",
600 	.irq_enable		= sun4v_virq_enable,
601 	.irq_disable		= sun4v_virq_disable,
602 	.irq_eoi		= sun4v_virq_eoi,
603 	.irq_set_affinity	= sun4v_virt_set_affinity,
604 	.flags			= IRQCHIP_EOI_IF_HANDLED,
605 };
606 
607 unsigned int build_irq(int inofixup, unsigned long iclr, unsigned long imap)
608 {
609 	struct irq_handler_data *handler_data;
610 	struct ino_bucket *bucket;
611 	unsigned int irq;
612 	int ino;
613 
614 	BUG_ON(tlb_type == hypervisor);
615 
616 	ino = (upa_readq(imap) & (IMAP_IGN | IMAP_INO)) + inofixup;
617 	bucket = &ivector_table[ino];
618 	irq = bucket_get_irq(__pa(bucket));
619 	if (!irq) {
620 		irq = irq_alloc(0, ino);
621 		bucket_set_irq(__pa(bucket), irq);
622 		irq_set_chip_and_handler_name(irq, &sun4u_irq,
623 					      handle_fasteoi_irq, "IVEC");
624 	}
625 
626 	handler_data = irq_get_handler_data(irq);
627 	if (unlikely(handler_data))
628 		goto out;
629 
630 	handler_data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
631 	if (unlikely(!handler_data)) {
632 		prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
633 		prom_halt();
634 	}
635 	irq_set_handler_data(irq, handler_data);
636 
637 	handler_data->imap  = imap;
638 	handler_data->iclr  = iclr;
639 
640 out:
641 	return irq;
642 }
643 
644 static unsigned int sun4v_build_common(u32 devhandle, unsigned int devino,
645 		void (*handler_data_init)(struct irq_handler_data *data,
646 		u32 devhandle, unsigned int devino),
647 		struct irq_chip *chip)
648 {
649 	struct irq_handler_data *data;
650 	unsigned int irq;
651 
652 	irq = irq_alloc(devhandle, devino);
653 	if (!irq)
654 		goto out;
655 
656 	data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
657 	if (unlikely(!data)) {
658 		pr_err("IRQ handler data allocation failed.\n");
659 		irq_free(irq);
660 		irq = 0;
661 		goto out;
662 	}
663 
664 	irq_set_handler_data(irq, data);
665 	handler_data_init(data, devhandle, devino);
666 	irq_set_chip_and_handler_name(irq, chip, handle_fasteoi_irq, "IVEC");
667 	data->imap = ~0UL;
668 	data->iclr = ~0UL;
669 out:
670 	return irq;
671 }
672 
673 static unsigned long cookie_assign(unsigned int irq, u32 devhandle,
674 		unsigned int devino)
675 {
676 	struct irq_handler_data *ihd = irq_get_handler_data(irq);
677 	unsigned long hv_error, cookie;
678 
679 	/* handler_irq needs to find the irq. cookie is seen signed in
680 	 * sun4v_dev_mondo and treated as a non ivector_table delivery.
681 	 */
682 	ihd->bucket.__irq = irq;
683 	cookie = ~__pa(&ihd->bucket);
684 
685 	hv_error = sun4v_vintr_set_cookie(devhandle, devino, cookie);
686 	if (hv_error)
687 		pr_err("HV vintr set cookie failed = %ld\n", hv_error);
688 
689 	return hv_error;
690 }
691 
692 static void cookie_handler_data(struct irq_handler_data *data,
693 				u32 devhandle, unsigned int devino)
694 {
695 	data->dev_handle = devhandle;
696 	data->dev_ino = devino;
697 }
698 
699 static unsigned int cookie_build_irq(u32 devhandle, unsigned int devino,
700 				     struct irq_chip *chip)
701 {
702 	unsigned long hv_error;
703 	unsigned int irq;
704 
705 	irq = sun4v_build_common(devhandle, devino, cookie_handler_data, chip);
706 
707 	hv_error = cookie_assign(irq, devhandle, devino);
708 	if (hv_error) {
709 		irq_free(irq);
710 		irq = 0;
711 	}
712 
713 	return irq;
714 }
715 
716 static unsigned int sun4v_build_cookie(u32 devhandle, unsigned int devino)
717 {
718 	unsigned int irq;
719 
720 	irq = cookie_exists(devhandle, devino);
721 	if (irq)
722 		goto out;
723 
724 	irq = cookie_build_irq(devhandle, devino, &sun4v_virq);
725 
726 out:
727 	return irq;
728 }
729 
730 static void sysino_set_bucket(unsigned int irq)
731 {
732 	struct irq_handler_data *ihd = irq_get_handler_data(irq);
733 	struct ino_bucket *bucket;
734 	unsigned long sysino;
735 
736 	sysino = sun4v_devino_to_sysino(ihd->dev_handle, ihd->dev_ino);
737 	BUG_ON(sysino >= nr_ivec);
738 	bucket = &ivector_table[sysino];
739 	bucket_set_irq(__pa(bucket), irq);
740 }
741 
742 static void sysino_handler_data(struct irq_handler_data *data,
743 				u32 devhandle, unsigned int devino)
744 {
745 	unsigned long sysino;
746 
747 	sysino = sun4v_devino_to_sysino(devhandle, devino);
748 	data->sysino = sysino;
749 }
750 
751 static unsigned int sysino_build_irq(u32 devhandle, unsigned int devino,
752 				     struct irq_chip *chip)
753 {
754 	unsigned int irq;
755 
756 	irq = sun4v_build_common(devhandle, devino, sysino_handler_data, chip);
757 	if (!irq)
758 		goto out;
759 
760 	sysino_set_bucket(irq);
761 out:
762 	return irq;
763 }
764 
765 static int sun4v_build_sysino(u32 devhandle, unsigned int devino)
766 {
767 	int irq;
768 
769 	irq = sysino_exists(devhandle, devino);
770 	if (irq)
771 		goto out;
772 
773 	irq = sysino_build_irq(devhandle, devino, &sun4v_irq);
774 out:
775 	return irq;
776 }
777 
778 unsigned int sun4v_build_irq(u32 devhandle, unsigned int devino)
779 {
780 	unsigned int irq;
781 
782 	if (sun4v_cookie_only_virqs())
783 		irq = sun4v_build_cookie(devhandle, devino);
784 	else
785 		irq = sun4v_build_sysino(devhandle, devino);
786 
787 	return irq;
788 }
789 
790 unsigned int sun4v_build_virq(u32 devhandle, unsigned int devino)
791 {
792 	int irq;
793 
794 	irq = cookie_build_irq(devhandle, devino, &sun4v_virq);
795 	if (!irq)
796 		goto out;
797 
798 	/* This is borrowed from the original function.
799 	 */
800 	irq_set_status_flags(irq, IRQ_NOAUTOEN);
801 
802 out:
803 	return irq;
804 }
805 
806 void *hardirq_stack[NR_CPUS];
807 void *softirq_stack[NR_CPUS];
808 
809 void __irq_entry handler_irq(int pil, struct pt_regs *regs)
810 {
811 	unsigned long pstate, bucket_pa;
812 	struct pt_regs *old_regs;
813 	void *orig_sp;
814 
815 	clear_softint(1 << pil);
816 
817 	old_regs = set_irq_regs(regs);
818 	irq_enter();
819 
820 	/* Grab an atomic snapshot of the pending IVECs.  */
821 	__asm__ __volatile__("rdpr	%%pstate, %0\n\t"
822 			     "wrpr	%0, %3, %%pstate\n\t"
823 			     "ldx	[%2], %1\n\t"
824 			     "stx	%%g0, [%2]\n\t"
825 			     "wrpr	%0, 0x0, %%pstate\n\t"
826 			     : "=&r" (pstate), "=&r" (bucket_pa)
827 			     : "r" (irq_work_pa(smp_processor_id())),
828 			       "i" (PSTATE_IE)
829 			     : "memory");
830 
831 	orig_sp = set_hardirq_stack();
832 
833 	while (bucket_pa) {
834 		unsigned long next_pa;
835 		unsigned int irq;
836 
837 		next_pa = bucket_get_chain_pa(bucket_pa);
838 		irq = bucket_get_irq(bucket_pa);
839 		bucket_clear_chain_pa(bucket_pa);
840 
841 		generic_handle_irq(irq);
842 
843 		bucket_pa = next_pa;
844 	}
845 
846 	restore_hardirq_stack(orig_sp);
847 
848 	irq_exit();
849 	set_irq_regs(old_regs);
850 }
851 
852 void do_softirq_own_stack(void)
853 {
854 	void *orig_sp, *sp = softirq_stack[smp_processor_id()];
855 
856 	sp += THREAD_SIZE - 192 - STACK_BIAS;
857 
858 	__asm__ __volatile__("mov %%sp, %0\n\t"
859 			     "mov %1, %%sp"
860 			     : "=&r" (orig_sp)
861 			     : "r" (sp));
862 	__do_softirq();
863 	__asm__ __volatile__("mov %0, %%sp"
864 			     : : "r" (orig_sp));
865 }
866 
867 #ifdef CONFIG_HOTPLUG_CPU
868 void fixup_irqs(void)
869 {
870 	unsigned int irq;
871 
872 	for (irq = 0; irq < NR_IRQS; irq++) {
873 		struct irq_desc *desc = irq_to_desc(irq);
874 		struct irq_data *data;
875 		unsigned long flags;
876 
877 		if (!desc)
878 			continue;
879 		data = irq_desc_get_irq_data(desc);
880 		raw_spin_lock_irqsave(&desc->lock, flags);
881 		if (desc->action && !irqd_is_per_cpu(data)) {
882 			if (data->chip->irq_set_affinity)
883 				data->chip->irq_set_affinity(data,
884 							     data->affinity,
885 							     false);
886 		}
887 		raw_spin_unlock_irqrestore(&desc->lock, flags);
888 	}
889 
890 	tick_ops->disable_irq();
891 }
892 #endif
893 
894 struct sun5_timer {
895 	u64	count0;
896 	u64	limit0;
897 	u64	count1;
898 	u64	limit1;
899 };
900 
901 static struct sun5_timer *prom_timers;
902 static u64 prom_limit0, prom_limit1;
903 
904 static void map_prom_timers(void)
905 {
906 	struct device_node *dp;
907 	const unsigned int *addr;
908 
909 	/* PROM timer node hangs out in the top level of device siblings... */
910 	dp = of_find_node_by_path("/");
911 	dp = dp->child;
912 	while (dp) {
913 		if (!strcmp(dp->name, "counter-timer"))
914 			break;
915 		dp = dp->sibling;
916 	}
917 
918 	/* Assume if node is not present, PROM uses different tick mechanism
919 	 * which we should not care about.
920 	 */
921 	if (!dp) {
922 		prom_timers = (struct sun5_timer *) 0;
923 		return;
924 	}
925 
926 	/* If PROM is really using this, it must be mapped by him. */
927 	addr = of_get_property(dp, "address", NULL);
928 	if (!addr) {
929 		prom_printf("PROM does not have timer mapped, trying to continue.\n");
930 		prom_timers = (struct sun5_timer *) 0;
931 		return;
932 	}
933 	prom_timers = (struct sun5_timer *) ((unsigned long)addr[0]);
934 }
935 
936 static void kill_prom_timer(void)
937 {
938 	if (!prom_timers)
939 		return;
940 
941 	/* Save them away for later. */
942 	prom_limit0 = prom_timers->limit0;
943 	prom_limit1 = prom_timers->limit1;
944 
945 	/* Just as in sun4c PROM uses timer which ticks at IRQ 14.
946 	 * We turn both off here just to be paranoid.
947 	 */
948 	prom_timers->limit0 = 0;
949 	prom_timers->limit1 = 0;
950 
951 	/* Wheee, eat the interrupt packet too... */
952 	__asm__ __volatile__(
953 "	mov	0x40, %%g2\n"
954 "	ldxa	[%%g0] %0, %%g1\n"
955 "	ldxa	[%%g2] %1, %%g1\n"
956 "	stxa	%%g0, [%%g0] %0\n"
957 "	membar	#Sync\n"
958 	: /* no outputs */
959 	: "i" (ASI_INTR_RECEIVE), "i" (ASI_INTR_R)
960 	: "g1", "g2");
961 }
962 
963 void notrace init_irqwork_curcpu(void)
964 {
965 	int cpu = hard_smp_processor_id();
966 
967 	trap_block[cpu].irq_worklist_pa = 0UL;
968 }
969 
970 /* Please be very careful with register_one_mondo() and
971  * sun4v_register_mondo_queues().
972  *
973  * On SMP this gets invoked from the CPU trampoline before
974  * the cpu has fully taken over the trap table from OBP,
975  * and it's kernel stack + %g6 thread register state is
976  * not fully cooked yet.
977  *
978  * Therefore you cannot make any OBP calls, not even prom_printf,
979  * from these two routines.
980  */
981 static void notrace register_one_mondo(unsigned long paddr, unsigned long type,
982 				       unsigned long qmask)
983 {
984 	unsigned long num_entries = (qmask + 1) / 64;
985 	unsigned long status;
986 
987 	status = sun4v_cpu_qconf(type, paddr, num_entries);
988 	if (status != HV_EOK) {
989 		prom_printf("SUN4V: sun4v_cpu_qconf(%lu:%lx:%lu) failed, "
990 			    "err %lu\n", type, paddr, num_entries, status);
991 		prom_halt();
992 	}
993 }
994 
995 void notrace sun4v_register_mondo_queues(int this_cpu)
996 {
997 	struct trap_per_cpu *tb = &trap_block[this_cpu];
998 
999 	register_one_mondo(tb->cpu_mondo_pa, HV_CPU_QUEUE_CPU_MONDO,
1000 			   tb->cpu_mondo_qmask);
1001 	register_one_mondo(tb->dev_mondo_pa, HV_CPU_QUEUE_DEVICE_MONDO,
1002 			   tb->dev_mondo_qmask);
1003 	register_one_mondo(tb->resum_mondo_pa, HV_CPU_QUEUE_RES_ERROR,
1004 			   tb->resum_qmask);
1005 	register_one_mondo(tb->nonresum_mondo_pa, HV_CPU_QUEUE_NONRES_ERROR,
1006 			   tb->nonresum_qmask);
1007 }
1008 
1009 /* Each queue region must be a power of 2 multiple of 64 bytes in
1010  * size.  The base real address must be aligned to the size of the
1011  * region.  Thus, an 8KB queue must be 8KB aligned, for example.
1012  */
1013 static void __init alloc_one_queue(unsigned long *pa_ptr, unsigned long qmask)
1014 {
1015 	unsigned long size = PAGE_ALIGN(qmask + 1);
1016 	unsigned long order = get_order(size);
1017 	unsigned long p;
1018 
1019 	p = __get_free_pages(GFP_KERNEL, order);
1020 	if (!p) {
1021 		prom_printf("SUN4V: Error, cannot allocate queue.\n");
1022 		prom_halt();
1023 	}
1024 
1025 	*pa_ptr = __pa(p);
1026 }
1027 
1028 static void __init init_cpu_send_mondo_info(struct trap_per_cpu *tb)
1029 {
1030 #ifdef CONFIG_SMP
1031 	unsigned long page;
1032 
1033 	BUILD_BUG_ON((NR_CPUS * sizeof(u16)) > (PAGE_SIZE - 64));
1034 
1035 	page = get_zeroed_page(GFP_KERNEL);
1036 	if (!page) {
1037 		prom_printf("SUN4V: Error, cannot allocate cpu mondo page.\n");
1038 		prom_halt();
1039 	}
1040 
1041 	tb->cpu_mondo_block_pa = __pa(page);
1042 	tb->cpu_list_pa = __pa(page + 64);
1043 #endif
1044 }
1045 
1046 /* Allocate mondo and error queues for all possible cpus.  */
1047 static void __init sun4v_init_mondo_queues(void)
1048 {
1049 	int cpu;
1050 
1051 	for_each_possible_cpu(cpu) {
1052 		struct trap_per_cpu *tb = &trap_block[cpu];
1053 
1054 		alloc_one_queue(&tb->cpu_mondo_pa, tb->cpu_mondo_qmask);
1055 		alloc_one_queue(&tb->dev_mondo_pa, tb->dev_mondo_qmask);
1056 		alloc_one_queue(&tb->resum_mondo_pa, tb->resum_qmask);
1057 		alloc_one_queue(&tb->resum_kernel_buf_pa, tb->resum_qmask);
1058 		alloc_one_queue(&tb->nonresum_mondo_pa, tb->nonresum_qmask);
1059 		alloc_one_queue(&tb->nonresum_kernel_buf_pa,
1060 				tb->nonresum_qmask);
1061 	}
1062 }
1063 
1064 static void __init init_send_mondo_info(void)
1065 {
1066 	int cpu;
1067 
1068 	for_each_possible_cpu(cpu) {
1069 		struct trap_per_cpu *tb = &trap_block[cpu];
1070 
1071 		init_cpu_send_mondo_info(tb);
1072 	}
1073 }
1074 
1075 static struct irqaction timer_irq_action = {
1076 	.name = "timer",
1077 };
1078 
1079 static void __init irq_ivector_init(void)
1080 {
1081 	unsigned long size, order;
1082 	unsigned int ivecs;
1083 
1084 	/* If we are doing cookie only VIRQs then we do not need the ivector
1085 	 * table to process interrupts.
1086 	 */
1087 	if (sun4v_cookie_only_virqs())
1088 		return;
1089 
1090 	ivecs = size_nr_ivec();
1091 	size = sizeof(struct ino_bucket) * ivecs;
1092 	order = get_order(size);
1093 	ivector_table = (struct ino_bucket *)
1094 		__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
1095 	if (!ivector_table) {
1096 		prom_printf("Fatal error, cannot allocate ivector_table\n");
1097 		prom_halt();
1098 	}
1099 	__flush_dcache_range((unsigned long) ivector_table,
1100 			     ((unsigned long) ivector_table) + size);
1101 
1102 	ivector_table_pa = __pa(ivector_table);
1103 }
1104 
1105 /* Only invoked on boot processor.*/
1106 void __init init_IRQ(void)
1107 {
1108 	irq_init_hv();
1109 	irq_ivector_init();
1110 	map_prom_timers();
1111 	kill_prom_timer();
1112 
1113 	if (tlb_type == hypervisor)
1114 		sun4v_init_mondo_queues();
1115 
1116 	init_send_mondo_info();
1117 
1118 	if (tlb_type == hypervisor) {
1119 		/* Load up the boot cpu's entries.  */
1120 		sun4v_register_mondo_queues(hard_smp_processor_id());
1121 	}
1122 
1123 	/* We need to clear any IRQ's pending in the soft interrupt
1124 	 * registers, a spurious one could be left around from the
1125 	 * PROM timer which we just disabled.
1126 	 */
1127 	clear_softint(get_softint());
1128 
1129 	/* Now that ivector table is initialized, it is safe
1130 	 * to receive IRQ vector traps.  We will normally take
1131 	 * one or two right now, in case some device PROM used
1132 	 * to boot us wants to speak to us.  We just ignore them.
1133 	 */
1134 	__asm__ __volatile__("rdpr	%%pstate, %%g1\n\t"
1135 			     "or	%%g1, %0, %%g1\n\t"
1136 			     "wrpr	%%g1, 0x0, %%pstate"
1137 			     : /* No outputs */
1138 			     : "i" (PSTATE_IE)
1139 			     : "g1");
1140 
1141 	irq_to_desc(0)->action = &timer_irq_action;
1142 }
1143