1 /* irq.c: UltraSparc IRQ handling/init/registry. 2 * 3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net) 4 * Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be) 5 * Copyright (C) 1998 Jakub Jelinek (jj@ultra.linux.cz) 6 */ 7 8 #include <linux/sched.h> 9 #include <linux/linkage.h> 10 #include <linux/ptrace.h> 11 #include <linux/errno.h> 12 #include <linux/kernel_stat.h> 13 #include <linux/signal.h> 14 #include <linux/mm.h> 15 #include <linux/interrupt.h> 16 #include <linux/slab.h> 17 #include <linux/random.h> 18 #include <linux/init.h> 19 #include <linux/delay.h> 20 #include <linux/proc_fs.h> 21 #include <linux/seq_file.h> 22 #include <linux/ftrace.h> 23 #include <linux/irq.h> 24 #include <linux/kmemleak.h> 25 26 #include <asm/ptrace.h> 27 #include <asm/processor.h> 28 #include <linux/atomic.h> 29 #include <asm/irq.h> 30 #include <asm/io.h> 31 #include <asm/iommu.h> 32 #include <asm/upa.h> 33 #include <asm/oplib.h> 34 #include <asm/prom.h> 35 #include <asm/timer.h> 36 #include <asm/smp.h> 37 #include <asm/starfire.h> 38 #include <linux/uaccess.h> 39 #include <asm/cache.h> 40 #include <asm/cpudata.h> 41 #include <asm/auxio.h> 42 #include <asm/head.h> 43 #include <asm/hypervisor.h> 44 #include <asm/cacheflush.h> 45 46 #include "entry.h" 47 #include "cpumap.h" 48 #include "kstack.h" 49 50 struct ino_bucket *ivector_table; 51 unsigned long ivector_table_pa; 52 53 /* On several sun4u processors, it is illegal to mix bypass and 54 * non-bypass accesses. Therefore we access all INO buckets 55 * using bypass accesses only. 56 */ 57 static unsigned long bucket_get_chain_pa(unsigned long bucket_pa) 58 { 59 unsigned long ret; 60 61 __asm__ __volatile__("ldxa [%1] %2, %0" 62 : "=&r" (ret) 63 : "r" (bucket_pa + 64 offsetof(struct ino_bucket, 65 __irq_chain_pa)), 66 "i" (ASI_PHYS_USE_EC)); 67 68 return ret; 69 } 70 71 static void bucket_clear_chain_pa(unsigned long bucket_pa) 72 { 73 __asm__ __volatile__("stxa %%g0, [%0] %1" 74 : /* no outputs */ 75 : "r" (bucket_pa + 76 offsetof(struct ino_bucket, 77 __irq_chain_pa)), 78 "i" (ASI_PHYS_USE_EC)); 79 } 80 81 static unsigned int bucket_get_irq(unsigned long bucket_pa) 82 { 83 unsigned int ret; 84 85 __asm__ __volatile__("lduwa [%1] %2, %0" 86 : "=&r" (ret) 87 : "r" (bucket_pa + 88 offsetof(struct ino_bucket, 89 __irq)), 90 "i" (ASI_PHYS_USE_EC)); 91 92 return ret; 93 } 94 95 static void bucket_set_irq(unsigned long bucket_pa, unsigned int irq) 96 { 97 __asm__ __volatile__("stwa %0, [%1] %2" 98 : /* no outputs */ 99 : "r" (irq), 100 "r" (bucket_pa + 101 offsetof(struct ino_bucket, 102 __irq)), 103 "i" (ASI_PHYS_USE_EC)); 104 } 105 106 #define irq_work_pa(__cpu) &(trap_block[(__cpu)].irq_worklist_pa) 107 108 static unsigned long hvirq_major __initdata; 109 static int __init early_hvirq_major(char *p) 110 { 111 int rc = kstrtoul(p, 10, &hvirq_major); 112 113 return rc; 114 } 115 early_param("hvirq", early_hvirq_major); 116 117 static int hv_irq_version; 118 119 /* Major version 2.0 of HV_GRP_INTR added support for the VIRQ cookie 120 * based interfaces, but: 121 * 122 * 1) Several OSs, Solaris and Linux included, use them even when only 123 * negotiating version 1.0 (or failing to negotiate at all). So the 124 * hypervisor has a workaround that provides the VIRQ interfaces even 125 * when only verion 1.0 of the API is in use. 126 * 127 * 2) Second, and more importantly, with major version 2.0 these VIRQ 128 * interfaces only were actually hooked up for LDC interrupts, even 129 * though the Hypervisor specification clearly stated: 130 * 131 * The new interrupt API functions will be available to a guest 132 * when it negotiates version 2.0 in the interrupt API group 0x2. When 133 * a guest negotiates version 2.0, all interrupt sources will only 134 * support using the cookie interface, and any attempt to use the 135 * version 1.0 interrupt APIs numbered 0xa0 to 0xa6 will result in the 136 * ENOTSUPPORTED error being returned. 137 * 138 * with an emphasis on "all interrupt sources". 139 * 140 * To correct this, major version 3.0 was created which does actually 141 * support VIRQs for all interrupt sources (not just LDC devices). So 142 * if we want to move completely over the cookie based VIRQs we must 143 * negotiate major version 3.0 or later of HV_GRP_INTR. 144 */ 145 static bool sun4v_cookie_only_virqs(void) 146 { 147 if (hv_irq_version >= 3) 148 return true; 149 return false; 150 } 151 152 static void __init irq_init_hv(void) 153 { 154 unsigned long hv_error, major, minor = 0; 155 156 if (tlb_type != hypervisor) 157 return; 158 159 if (hvirq_major) 160 major = hvirq_major; 161 else 162 major = 3; 163 164 hv_error = sun4v_hvapi_register(HV_GRP_INTR, major, &minor); 165 if (!hv_error) 166 hv_irq_version = major; 167 else 168 hv_irq_version = 1; 169 170 pr_info("SUN4V: Using IRQ API major %d, cookie only virqs %s\n", 171 hv_irq_version, 172 sun4v_cookie_only_virqs() ? "enabled" : "disabled"); 173 } 174 175 /* This function is for the timer interrupt.*/ 176 int __init arch_probe_nr_irqs(void) 177 { 178 return 1; 179 } 180 181 #define DEFAULT_NUM_IVECS (0xfffU) 182 static unsigned int nr_ivec = DEFAULT_NUM_IVECS; 183 #define NUM_IVECS (nr_ivec) 184 185 static unsigned int __init size_nr_ivec(void) 186 { 187 if (tlb_type == hypervisor) { 188 switch (sun4v_chip_type) { 189 /* Athena's devhandle|devino is large.*/ 190 case SUN4V_CHIP_SPARC64X: 191 nr_ivec = 0xffff; 192 break; 193 } 194 } 195 return nr_ivec; 196 } 197 198 struct irq_handler_data { 199 union { 200 struct { 201 unsigned int dev_handle; 202 unsigned int dev_ino; 203 }; 204 unsigned long sysino; 205 }; 206 struct ino_bucket bucket; 207 unsigned long iclr; 208 unsigned long imap; 209 }; 210 211 static inline unsigned int irq_data_to_handle(struct irq_data *data) 212 { 213 struct irq_handler_data *ihd = irq_data_get_irq_handler_data(data); 214 215 return ihd->dev_handle; 216 } 217 218 static inline unsigned int irq_data_to_ino(struct irq_data *data) 219 { 220 struct irq_handler_data *ihd = irq_data_get_irq_handler_data(data); 221 222 return ihd->dev_ino; 223 } 224 225 static inline unsigned long irq_data_to_sysino(struct irq_data *data) 226 { 227 struct irq_handler_data *ihd = irq_data_get_irq_handler_data(data); 228 229 return ihd->sysino; 230 } 231 232 void irq_free(unsigned int irq) 233 { 234 void *data = irq_get_handler_data(irq); 235 236 kfree(data); 237 irq_set_handler_data(irq, NULL); 238 irq_free_descs(irq, 1); 239 } 240 241 unsigned int irq_alloc(unsigned int dev_handle, unsigned int dev_ino) 242 { 243 int irq; 244 245 irq = __irq_alloc_descs(-1, 1, 1, numa_node_id(), NULL, NULL); 246 if (irq <= 0) 247 goto out; 248 249 return irq; 250 out: 251 return 0; 252 } 253 254 static unsigned int cookie_exists(u32 devhandle, unsigned int devino) 255 { 256 unsigned long hv_err, cookie; 257 struct ino_bucket *bucket; 258 unsigned int irq = 0U; 259 260 hv_err = sun4v_vintr_get_cookie(devhandle, devino, &cookie); 261 if (hv_err) { 262 pr_err("HV get cookie failed hv_err = %ld\n", hv_err); 263 goto out; 264 } 265 266 if (cookie & ((1UL << 63UL))) { 267 cookie = ~cookie; 268 bucket = (struct ino_bucket *) __va(cookie); 269 irq = bucket->__irq; 270 } 271 out: 272 return irq; 273 } 274 275 static unsigned int sysino_exists(u32 devhandle, unsigned int devino) 276 { 277 unsigned long sysino = sun4v_devino_to_sysino(devhandle, devino); 278 struct ino_bucket *bucket; 279 unsigned int irq; 280 281 bucket = &ivector_table[sysino]; 282 irq = bucket_get_irq(__pa(bucket)); 283 284 return irq; 285 } 286 287 void ack_bad_irq(unsigned int irq) 288 { 289 pr_crit("BAD IRQ ack %d\n", irq); 290 } 291 292 void irq_install_pre_handler(int irq, 293 void (*func)(unsigned int, void *, void *), 294 void *arg1, void *arg2) 295 { 296 pr_warn("IRQ pre handler NOT supported.\n"); 297 } 298 299 /* 300 * /proc/interrupts printing: 301 */ 302 int arch_show_interrupts(struct seq_file *p, int prec) 303 { 304 int j; 305 306 seq_printf(p, "NMI: "); 307 for_each_online_cpu(j) 308 seq_printf(p, "%10u ", cpu_data(j).__nmi_count); 309 seq_printf(p, " Non-maskable interrupts\n"); 310 return 0; 311 } 312 313 static unsigned int sun4u_compute_tid(unsigned long imap, unsigned long cpuid) 314 { 315 unsigned int tid; 316 317 if (this_is_starfire) { 318 tid = starfire_translate(imap, cpuid); 319 tid <<= IMAP_TID_SHIFT; 320 tid &= IMAP_TID_UPA; 321 } else { 322 if (tlb_type == cheetah || tlb_type == cheetah_plus) { 323 unsigned long ver; 324 325 __asm__ ("rdpr %%ver, %0" : "=r" (ver)); 326 if ((ver >> 32UL) == __JALAPENO_ID || 327 (ver >> 32UL) == __SERRANO_ID) { 328 tid = cpuid << IMAP_TID_SHIFT; 329 tid &= IMAP_TID_JBUS; 330 } else { 331 unsigned int a = cpuid & 0x1f; 332 unsigned int n = (cpuid >> 5) & 0x1f; 333 334 tid = ((a << IMAP_AID_SHIFT) | 335 (n << IMAP_NID_SHIFT)); 336 tid &= (IMAP_AID_SAFARI | 337 IMAP_NID_SAFARI); 338 } 339 } else { 340 tid = cpuid << IMAP_TID_SHIFT; 341 tid &= IMAP_TID_UPA; 342 } 343 } 344 345 return tid; 346 } 347 348 #ifdef CONFIG_SMP 349 static int irq_choose_cpu(unsigned int irq, const struct cpumask *affinity) 350 { 351 cpumask_t mask; 352 int cpuid; 353 354 cpumask_copy(&mask, affinity); 355 if (cpumask_equal(&mask, cpu_online_mask)) { 356 cpuid = map_to_cpu(irq); 357 } else { 358 cpumask_t tmp; 359 360 cpumask_and(&tmp, cpu_online_mask, &mask); 361 cpuid = cpumask_empty(&tmp) ? map_to_cpu(irq) : cpumask_first(&tmp); 362 } 363 364 return cpuid; 365 } 366 #else 367 #define irq_choose_cpu(irq, affinity) \ 368 real_hard_smp_processor_id() 369 #endif 370 371 static void sun4u_irq_enable(struct irq_data *data) 372 { 373 struct irq_handler_data *handler_data; 374 375 handler_data = irq_data_get_irq_handler_data(data); 376 if (likely(handler_data)) { 377 unsigned long cpuid, imap, val; 378 unsigned int tid; 379 380 cpuid = irq_choose_cpu(data->irq, 381 irq_data_get_affinity_mask(data)); 382 imap = handler_data->imap; 383 384 tid = sun4u_compute_tid(imap, cpuid); 385 386 val = upa_readq(imap); 387 val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS | 388 IMAP_AID_SAFARI | IMAP_NID_SAFARI); 389 val |= tid | IMAP_VALID; 390 upa_writeq(val, imap); 391 upa_writeq(ICLR_IDLE, handler_data->iclr); 392 } 393 } 394 395 static int sun4u_set_affinity(struct irq_data *data, 396 const struct cpumask *mask, bool force) 397 { 398 struct irq_handler_data *handler_data; 399 400 handler_data = irq_data_get_irq_handler_data(data); 401 if (likely(handler_data)) { 402 unsigned long cpuid, imap, val; 403 unsigned int tid; 404 405 cpuid = irq_choose_cpu(data->irq, mask); 406 imap = handler_data->imap; 407 408 tid = sun4u_compute_tid(imap, cpuid); 409 410 val = upa_readq(imap); 411 val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS | 412 IMAP_AID_SAFARI | IMAP_NID_SAFARI); 413 val |= tid | IMAP_VALID; 414 upa_writeq(val, imap); 415 upa_writeq(ICLR_IDLE, handler_data->iclr); 416 } 417 418 return 0; 419 } 420 421 /* Don't do anything. The desc->status check for IRQ_DISABLED in 422 * handler_irq() will skip the handler call and that will leave the 423 * interrupt in the sent state. The next ->enable() call will hit the 424 * ICLR register to reset the state machine. 425 * 426 * This scheme is necessary, instead of clearing the Valid bit in the 427 * IMAP register, to handle the case of IMAP registers being shared by 428 * multiple INOs (and thus ICLR registers). Since we use a different 429 * virtual IRQ for each shared IMAP instance, the generic code thinks 430 * there is only one user so it prematurely calls ->disable() on 431 * free_irq(). 432 * 433 * We have to provide an explicit ->disable() method instead of using 434 * NULL to get the default. The reason is that if the generic code 435 * sees that, it also hooks up a default ->shutdown method which 436 * invokes ->mask() which we do not want. See irq_chip_set_defaults(). 437 */ 438 static void sun4u_irq_disable(struct irq_data *data) 439 { 440 } 441 442 static void sun4u_irq_eoi(struct irq_data *data) 443 { 444 struct irq_handler_data *handler_data; 445 446 handler_data = irq_data_get_irq_handler_data(data); 447 if (likely(handler_data)) 448 upa_writeq(ICLR_IDLE, handler_data->iclr); 449 } 450 451 static void sun4v_irq_enable(struct irq_data *data) 452 { 453 unsigned long cpuid = irq_choose_cpu(data->irq, 454 irq_data_get_affinity_mask(data)); 455 unsigned int ino = irq_data_to_sysino(data); 456 int err; 457 458 err = sun4v_intr_settarget(ino, cpuid); 459 if (err != HV_EOK) 460 printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): " 461 "err(%d)\n", ino, cpuid, err); 462 err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE); 463 if (err != HV_EOK) 464 printk(KERN_ERR "sun4v_intr_setstate(%x): " 465 "err(%d)\n", ino, err); 466 err = sun4v_intr_setenabled(ino, HV_INTR_ENABLED); 467 if (err != HV_EOK) 468 printk(KERN_ERR "sun4v_intr_setenabled(%x): err(%d)\n", 469 ino, err); 470 } 471 472 static int sun4v_set_affinity(struct irq_data *data, 473 const struct cpumask *mask, bool force) 474 { 475 unsigned long cpuid = irq_choose_cpu(data->irq, mask); 476 unsigned int ino = irq_data_to_sysino(data); 477 int err; 478 479 err = sun4v_intr_settarget(ino, cpuid); 480 if (err != HV_EOK) 481 printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): " 482 "err(%d)\n", ino, cpuid, err); 483 484 return 0; 485 } 486 487 static void sun4v_irq_disable(struct irq_data *data) 488 { 489 unsigned int ino = irq_data_to_sysino(data); 490 int err; 491 492 err = sun4v_intr_setenabled(ino, HV_INTR_DISABLED); 493 if (err != HV_EOK) 494 printk(KERN_ERR "sun4v_intr_setenabled(%x): " 495 "err(%d)\n", ino, err); 496 } 497 498 static void sun4v_irq_eoi(struct irq_data *data) 499 { 500 unsigned int ino = irq_data_to_sysino(data); 501 int err; 502 503 err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE); 504 if (err != HV_EOK) 505 printk(KERN_ERR "sun4v_intr_setstate(%x): " 506 "err(%d)\n", ino, err); 507 } 508 509 static void sun4v_virq_enable(struct irq_data *data) 510 { 511 unsigned long dev_handle = irq_data_to_handle(data); 512 unsigned long dev_ino = irq_data_to_ino(data); 513 unsigned long cpuid; 514 int err; 515 516 cpuid = irq_choose_cpu(data->irq, irq_data_get_affinity_mask(data)); 517 518 err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid); 519 if (err != HV_EOK) 520 printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): " 521 "err(%d)\n", 522 dev_handle, dev_ino, cpuid, err); 523 err = sun4v_vintr_set_state(dev_handle, dev_ino, 524 HV_INTR_STATE_IDLE); 525 if (err != HV_EOK) 526 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx," 527 "HV_INTR_STATE_IDLE): err(%d)\n", 528 dev_handle, dev_ino, err); 529 err = sun4v_vintr_set_valid(dev_handle, dev_ino, 530 HV_INTR_ENABLED); 531 if (err != HV_EOK) 532 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx," 533 "HV_INTR_ENABLED): err(%d)\n", 534 dev_handle, dev_ino, err); 535 } 536 537 static int sun4v_virt_set_affinity(struct irq_data *data, 538 const struct cpumask *mask, bool force) 539 { 540 unsigned long dev_handle = irq_data_to_handle(data); 541 unsigned long dev_ino = irq_data_to_ino(data); 542 unsigned long cpuid; 543 int err; 544 545 cpuid = irq_choose_cpu(data->irq, mask); 546 547 err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid); 548 if (err != HV_EOK) 549 printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): " 550 "err(%d)\n", 551 dev_handle, dev_ino, cpuid, err); 552 553 return 0; 554 } 555 556 static void sun4v_virq_disable(struct irq_data *data) 557 { 558 unsigned long dev_handle = irq_data_to_handle(data); 559 unsigned long dev_ino = irq_data_to_ino(data); 560 int err; 561 562 563 err = sun4v_vintr_set_valid(dev_handle, dev_ino, 564 HV_INTR_DISABLED); 565 if (err != HV_EOK) 566 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx," 567 "HV_INTR_DISABLED): err(%d)\n", 568 dev_handle, dev_ino, err); 569 } 570 571 static void sun4v_virq_eoi(struct irq_data *data) 572 { 573 unsigned long dev_handle = irq_data_to_handle(data); 574 unsigned long dev_ino = irq_data_to_ino(data); 575 int err; 576 577 err = sun4v_vintr_set_state(dev_handle, dev_ino, 578 HV_INTR_STATE_IDLE); 579 if (err != HV_EOK) 580 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx," 581 "HV_INTR_STATE_IDLE): err(%d)\n", 582 dev_handle, dev_ino, err); 583 } 584 585 static struct irq_chip sun4u_irq = { 586 .name = "sun4u", 587 .irq_enable = sun4u_irq_enable, 588 .irq_disable = sun4u_irq_disable, 589 .irq_eoi = sun4u_irq_eoi, 590 .irq_set_affinity = sun4u_set_affinity, 591 .flags = IRQCHIP_EOI_IF_HANDLED, 592 }; 593 594 static struct irq_chip sun4v_irq = { 595 .name = "sun4v", 596 .irq_enable = sun4v_irq_enable, 597 .irq_disable = sun4v_irq_disable, 598 .irq_eoi = sun4v_irq_eoi, 599 .irq_set_affinity = sun4v_set_affinity, 600 .flags = IRQCHIP_EOI_IF_HANDLED, 601 }; 602 603 static struct irq_chip sun4v_virq = { 604 .name = "vsun4v", 605 .irq_enable = sun4v_virq_enable, 606 .irq_disable = sun4v_virq_disable, 607 .irq_eoi = sun4v_virq_eoi, 608 .irq_set_affinity = sun4v_virt_set_affinity, 609 .flags = IRQCHIP_EOI_IF_HANDLED, 610 }; 611 612 unsigned int build_irq(int inofixup, unsigned long iclr, unsigned long imap) 613 { 614 struct irq_handler_data *handler_data; 615 struct ino_bucket *bucket; 616 unsigned int irq; 617 int ino; 618 619 BUG_ON(tlb_type == hypervisor); 620 621 ino = (upa_readq(imap) & (IMAP_IGN | IMAP_INO)) + inofixup; 622 bucket = &ivector_table[ino]; 623 irq = bucket_get_irq(__pa(bucket)); 624 if (!irq) { 625 irq = irq_alloc(0, ino); 626 bucket_set_irq(__pa(bucket), irq); 627 irq_set_chip_and_handler_name(irq, &sun4u_irq, 628 handle_fasteoi_irq, "IVEC"); 629 } 630 631 handler_data = irq_get_handler_data(irq); 632 if (unlikely(handler_data)) 633 goto out; 634 635 handler_data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC); 636 if (unlikely(!handler_data)) { 637 prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n"); 638 prom_halt(); 639 } 640 irq_set_handler_data(irq, handler_data); 641 642 handler_data->imap = imap; 643 handler_data->iclr = iclr; 644 645 out: 646 return irq; 647 } 648 649 static unsigned int sun4v_build_common(u32 devhandle, unsigned int devino, 650 void (*handler_data_init)(struct irq_handler_data *data, 651 u32 devhandle, unsigned int devino), 652 struct irq_chip *chip) 653 { 654 struct irq_handler_data *data; 655 unsigned int irq; 656 657 irq = irq_alloc(devhandle, devino); 658 if (!irq) 659 goto out; 660 661 data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC); 662 if (unlikely(!data)) { 663 pr_err("IRQ handler data allocation failed.\n"); 664 irq_free(irq); 665 irq = 0; 666 goto out; 667 } 668 669 irq_set_handler_data(irq, data); 670 handler_data_init(data, devhandle, devino); 671 irq_set_chip_and_handler_name(irq, chip, handle_fasteoi_irq, "IVEC"); 672 data->imap = ~0UL; 673 data->iclr = ~0UL; 674 out: 675 return irq; 676 } 677 678 static unsigned long cookie_assign(unsigned int irq, u32 devhandle, 679 unsigned int devino) 680 { 681 struct irq_handler_data *ihd = irq_get_handler_data(irq); 682 unsigned long hv_error, cookie; 683 684 /* handler_irq needs to find the irq. cookie is seen signed in 685 * sun4v_dev_mondo and treated as a non ivector_table delivery. 686 */ 687 ihd->bucket.__irq = irq; 688 cookie = ~__pa(&ihd->bucket); 689 690 hv_error = sun4v_vintr_set_cookie(devhandle, devino, cookie); 691 if (hv_error) 692 pr_err("HV vintr set cookie failed = %ld\n", hv_error); 693 694 return hv_error; 695 } 696 697 static void cookie_handler_data(struct irq_handler_data *data, 698 u32 devhandle, unsigned int devino) 699 { 700 data->dev_handle = devhandle; 701 data->dev_ino = devino; 702 } 703 704 static unsigned int cookie_build_irq(u32 devhandle, unsigned int devino, 705 struct irq_chip *chip) 706 { 707 unsigned long hv_error; 708 unsigned int irq; 709 710 irq = sun4v_build_common(devhandle, devino, cookie_handler_data, chip); 711 712 hv_error = cookie_assign(irq, devhandle, devino); 713 if (hv_error) { 714 irq_free(irq); 715 irq = 0; 716 } 717 718 return irq; 719 } 720 721 static unsigned int sun4v_build_cookie(u32 devhandle, unsigned int devino) 722 { 723 unsigned int irq; 724 725 irq = cookie_exists(devhandle, devino); 726 if (irq) 727 goto out; 728 729 irq = cookie_build_irq(devhandle, devino, &sun4v_virq); 730 731 out: 732 return irq; 733 } 734 735 static void sysino_set_bucket(unsigned int irq) 736 { 737 struct irq_handler_data *ihd = irq_get_handler_data(irq); 738 struct ino_bucket *bucket; 739 unsigned long sysino; 740 741 sysino = sun4v_devino_to_sysino(ihd->dev_handle, ihd->dev_ino); 742 BUG_ON(sysino >= nr_ivec); 743 bucket = &ivector_table[sysino]; 744 bucket_set_irq(__pa(bucket), irq); 745 } 746 747 static void sysino_handler_data(struct irq_handler_data *data, 748 u32 devhandle, unsigned int devino) 749 { 750 unsigned long sysino; 751 752 sysino = sun4v_devino_to_sysino(devhandle, devino); 753 data->sysino = sysino; 754 } 755 756 static unsigned int sysino_build_irq(u32 devhandle, unsigned int devino, 757 struct irq_chip *chip) 758 { 759 unsigned int irq; 760 761 irq = sun4v_build_common(devhandle, devino, sysino_handler_data, chip); 762 if (!irq) 763 goto out; 764 765 sysino_set_bucket(irq); 766 out: 767 return irq; 768 } 769 770 static int sun4v_build_sysino(u32 devhandle, unsigned int devino) 771 { 772 int irq; 773 774 irq = sysino_exists(devhandle, devino); 775 if (irq) 776 goto out; 777 778 irq = sysino_build_irq(devhandle, devino, &sun4v_irq); 779 out: 780 return irq; 781 } 782 783 unsigned int sun4v_build_irq(u32 devhandle, unsigned int devino) 784 { 785 unsigned int irq; 786 787 if (sun4v_cookie_only_virqs()) 788 irq = sun4v_build_cookie(devhandle, devino); 789 else 790 irq = sun4v_build_sysino(devhandle, devino); 791 792 return irq; 793 } 794 795 unsigned int sun4v_build_virq(u32 devhandle, unsigned int devino) 796 { 797 int irq; 798 799 irq = cookie_build_irq(devhandle, devino, &sun4v_virq); 800 if (!irq) 801 goto out; 802 803 /* This is borrowed from the original function. 804 */ 805 irq_set_status_flags(irq, IRQ_NOAUTOEN); 806 807 out: 808 return irq; 809 } 810 811 void *hardirq_stack[NR_CPUS]; 812 void *softirq_stack[NR_CPUS]; 813 814 void __irq_entry handler_irq(int pil, struct pt_regs *regs) 815 { 816 unsigned long pstate, bucket_pa; 817 struct pt_regs *old_regs; 818 void *orig_sp; 819 820 clear_softint(1 << pil); 821 822 old_regs = set_irq_regs(regs); 823 irq_enter(); 824 825 /* Grab an atomic snapshot of the pending IVECs. */ 826 __asm__ __volatile__("rdpr %%pstate, %0\n\t" 827 "wrpr %0, %3, %%pstate\n\t" 828 "ldx [%2], %1\n\t" 829 "stx %%g0, [%2]\n\t" 830 "wrpr %0, 0x0, %%pstate\n\t" 831 : "=&r" (pstate), "=&r" (bucket_pa) 832 : "r" (irq_work_pa(smp_processor_id())), 833 "i" (PSTATE_IE) 834 : "memory"); 835 836 orig_sp = set_hardirq_stack(); 837 838 while (bucket_pa) { 839 unsigned long next_pa; 840 unsigned int irq; 841 842 next_pa = bucket_get_chain_pa(bucket_pa); 843 irq = bucket_get_irq(bucket_pa); 844 bucket_clear_chain_pa(bucket_pa); 845 846 generic_handle_irq(irq); 847 848 bucket_pa = next_pa; 849 } 850 851 restore_hardirq_stack(orig_sp); 852 853 irq_exit(); 854 set_irq_regs(old_regs); 855 } 856 857 void do_softirq_own_stack(void) 858 { 859 void *orig_sp, *sp = softirq_stack[smp_processor_id()]; 860 861 sp += THREAD_SIZE - 192 - STACK_BIAS; 862 863 __asm__ __volatile__("mov %%sp, %0\n\t" 864 "mov %1, %%sp" 865 : "=&r" (orig_sp) 866 : "r" (sp)); 867 __do_softirq(); 868 __asm__ __volatile__("mov %0, %%sp" 869 : : "r" (orig_sp)); 870 } 871 872 #ifdef CONFIG_HOTPLUG_CPU 873 void fixup_irqs(void) 874 { 875 unsigned int irq; 876 877 for (irq = 0; irq < NR_IRQS; irq++) { 878 struct irq_desc *desc = irq_to_desc(irq); 879 struct irq_data *data; 880 unsigned long flags; 881 882 if (!desc) 883 continue; 884 data = irq_desc_get_irq_data(desc); 885 raw_spin_lock_irqsave(&desc->lock, flags); 886 if (desc->action && !irqd_is_per_cpu(data)) { 887 if (data->chip->irq_set_affinity) 888 data->chip->irq_set_affinity(data, 889 irq_data_get_affinity_mask(data), 890 false); 891 } 892 raw_spin_unlock_irqrestore(&desc->lock, flags); 893 } 894 895 tick_ops->disable_irq(); 896 } 897 #endif 898 899 struct sun5_timer { 900 u64 count0; 901 u64 limit0; 902 u64 count1; 903 u64 limit1; 904 }; 905 906 static struct sun5_timer *prom_timers; 907 static u64 prom_limit0, prom_limit1; 908 909 static void map_prom_timers(void) 910 { 911 struct device_node *dp; 912 const unsigned int *addr; 913 914 /* PROM timer node hangs out in the top level of device siblings... */ 915 dp = of_find_node_by_path("/"); 916 dp = dp->child; 917 while (dp) { 918 if (!strcmp(dp->name, "counter-timer")) 919 break; 920 dp = dp->sibling; 921 } 922 923 /* Assume if node is not present, PROM uses different tick mechanism 924 * which we should not care about. 925 */ 926 if (!dp) { 927 prom_timers = (struct sun5_timer *) 0; 928 return; 929 } 930 931 /* If PROM is really using this, it must be mapped by him. */ 932 addr = of_get_property(dp, "address", NULL); 933 if (!addr) { 934 prom_printf("PROM does not have timer mapped, trying to continue.\n"); 935 prom_timers = (struct sun5_timer *) 0; 936 return; 937 } 938 prom_timers = (struct sun5_timer *) ((unsigned long)addr[0]); 939 } 940 941 static void kill_prom_timer(void) 942 { 943 if (!prom_timers) 944 return; 945 946 /* Save them away for later. */ 947 prom_limit0 = prom_timers->limit0; 948 prom_limit1 = prom_timers->limit1; 949 950 /* Just as in sun4c PROM uses timer which ticks at IRQ 14. 951 * We turn both off here just to be paranoid. 952 */ 953 prom_timers->limit0 = 0; 954 prom_timers->limit1 = 0; 955 956 /* Wheee, eat the interrupt packet too... */ 957 __asm__ __volatile__( 958 " mov 0x40, %%g2\n" 959 " ldxa [%%g0] %0, %%g1\n" 960 " ldxa [%%g2] %1, %%g1\n" 961 " stxa %%g0, [%%g0] %0\n" 962 " membar #Sync\n" 963 : /* no outputs */ 964 : "i" (ASI_INTR_RECEIVE), "i" (ASI_INTR_R) 965 : "g1", "g2"); 966 } 967 968 void notrace init_irqwork_curcpu(void) 969 { 970 int cpu = hard_smp_processor_id(); 971 972 trap_block[cpu].irq_worklist_pa = 0UL; 973 } 974 975 /* Please be very careful with register_one_mondo() and 976 * sun4v_register_mondo_queues(). 977 * 978 * On SMP this gets invoked from the CPU trampoline before 979 * the cpu has fully taken over the trap table from OBP, 980 * and it's kernel stack + %g6 thread register state is 981 * not fully cooked yet. 982 * 983 * Therefore you cannot make any OBP calls, not even prom_printf, 984 * from these two routines. 985 */ 986 static void notrace register_one_mondo(unsigned long paddr, unsigned long type, 987 unsigned long qmask) 988 { 989 unsigned long num_entries = (qmask + 1) / 64; 990 unsigned long status; 991 992 status = sun4v_cpu_qconf(type, paddr, num_entries); 993 if (status != HV_EOK) { 994 prom_printf("SUN4V: sun4v_cpu_qconf(%lu:%lx:%lu) failed, " 995 "err %lu\n", type, paddr, num_entries, status); 996 prom_halt(); 997 } 998 } 999 1000 void notrace sun4v_register_mondo_queues(int this_cpu) 1001 { 1002 struct trap_per_cpu *tb = &trap_block[this_cpu]; 1003 1004 register_one_mondo(tb->cpu_mondo_pa, HV_CPU_QUEUE_CPU_MONDO, 1005 tb->cpu_mondo_qmask); 1006 register_one_mondo(tb->dev_mondo_pa, HV_CPU_QUEUE_DEVICE_MONDO, 1007 tb->dev_mondo_qmask); 1008 register_one_mondo(tb->resum_mondo_pa, HV_CPU_QUEUE_RES_ERROR, 1009 tb->resum_qmask); 1010 register_one_mondo(tb->nonresum_mondo_pa, HV_CPU_QUEUE_NONRES_ERROR, 1011 tb->nonresum_qmask); 1012 } 1013 1014 /* Each queue region must be a power of 2 multiple of 64 bytes in 1015 * size. The base real address must be aligned to the size of the 1016 * region. Thus, an 8KB queue must be 8KB aligned, for example. 1017 */ 1018 static void __init alloc_one_queue(unsigned long *pa_ptr, unsigned long qmask) 1019 { 1020 unsigned long size = PAGE_ALIGN(qmask + 1); 1021 unsigned long order = get_order(size); 1022 unsigned long p; 1023 1024 p = __get_free_pages(GFP_KERNEL | __GFP_ZERO, order); 1025 if (!p) { 1026 prom_printf("SUN4V: Error, cannot allocate queue.\n"); 1027 prom_halt(); 1028 } 1029 1030 *pa_ptr = __pa(p); 1031 } 1032 1033 static void __init init_cpu_send_mondo_info(struct trap_per_cpu *tb) 1034 { 1035 #ifdef CONFIG_SMP 1036 unsigned long page; 1037 void *mondo, *p; 1038 1039 BUILD_BUG_ON((NR_CPUS * sizeof(u16)) > PAGE_SIZE); 1040 1041 /* Make sure mondo block is 64byte aligned */ 1042 p = kzalloc(127, GFP_KERNEL); 1043 if (!p) { 1044 prom_printf("SUN4V: Error, cannot allocate mondo block.\n"); 1045 prom_halt(); 1046 } 1047 mondo = (void *)(((unsigned long)p + 63) & ~0x3f); 1048 tb->cpu_mondo_block_pa = __pa(mondo); 1049 1050 page = get_zeroed_page(GFP_KERNEL); 1051 if (!page) { 1052 prom_printf("SUN4V: Error, cannot allocate cpu list page.\n"); 1053 prom_halt(); 1054 } 1055 1056 tb->cpu_list_pa = __pa(page); 1057 #endif 1058 } 1059 1060 /* Allocate mondo and error queues for all possible cpus. */ 1061 static void __init sun4v_init_mondo_queues(void) 1062 { 1063 int cpu; 1064 1065 for_each_possible_cpu(cpu) { 1066 struct trap_per_cpu *tb = &trap_block[cpu]; 1067 1068 alloc_one_queue(&tb->cpu_mondo_pa, tb->cpu_mondo_qmask); 1069 alloc_one_queue(&tb->dev_mondo_pa, tb->dev_mondo_qmask); 1070 alloc_one_queue(&tb->resum_mondo_pa, tb->resum_qmask); 1071 alloc_one_queue(&tb->resum_kernel_buf_pa, tb->resum_qmask); 1072 alloc_one_queue(&tb->nonresum_mondo_pa, tb->nonresum_qmask); 1073 alloc_one_queue(&tb->nonresum_kernel_buf_pa, 1074 tb->nonresum_qmask); 1075 } 1076 } 1077 1078 static void __init init_send_mondo_info(void) 1079 { 1080 int cpu; 1081 1082 for_each_possible_cpu(cpu) { 1083 struct trap_per_cpu *tb = &trap_block[cpu]; 1084 1085 init_cpu_send_mondo_info(tb); 1086 } 1087 } 1088 1089 static struct irqaction timer_irq_action = { 1090 .name = "timer", 1091 }; 1092 1093 static void __init irq_ivector_init(void) 1094 { 1095 unsigned long size, order; 1096 unsigned int ivecs; 1097 1098 /* If we are doing cookie only VIRQs then we do not need the ivector 1099 * table to process interrupts. 1100 */ 1101 if (sun4v_cookie_only_virqs()) 1102 return; 1103 1104 ivecs = size_nr_ivec(); 1105 size = sizeof(struct ino_bucket) * ivecs; 1106 order = get_order(size); 1107 ivector_table = (struct ino_bucket *) 1108 __get_free_pages(GFP_KERNEL | __GFP_ZERO, order); 1109 if (!ivector_table) { 1110 prom_printf("Fatal error, cannot allocate ivector_table\n"); 1111 prom_halt(); 1112 } 1113 __flush_dcache_range((unsigned long) ivector_table, 1114 ((unsigned long) ivector_table) + size); 1115 1116 ivector_table_pa = __pa(ivector_table); 1117 } 1118 1119 /* Only invoked on boot processor.*/ 1120 void __init init_IRQ(void) 1121 { 1122 irq_init_hv(); 1123 irq_ivector_init(); 1124 map_prom_timers(); 1125 kill_prom_timer(); 1126 1127 if (tlb_type == hypervisor) 1128 sun4v_init_mondo_queues(); 1129 1130 init_send_mondo_info(); 1131 1132 if (tlb_type == hypervisor) { 1133 /* Load up the boot cpu's entries. */ 1134 sun4v_register_mondo_queues(hard_smp_processor_id()); 1135 } 1136 1137 /* We need to clear any IRQ's pending in the soft interrupt 1138 * registers, a spurious one could be left around from the 1139 * PROM timer which we just disabled. 1140 */ 1141 clear_softint(get_softint()); 1142 1143 /* Now that ivector table is initialized, it is safe 1144 * to receive IRQ vector traps. We will normally take 1145 * one or two right now, in case some device PROM used 1146 * to boot us wants to speak to us. We just ignore them. 1147 */ 1148 __asm__ __volatile__("rdpr %%pstate, %%g1\n\t" 1149 "or %%g1, %0, %%g1\n\t" 1150 "wrpr %%g1, 0x0, %%pstate" 1151 : /* No outputs */ 1152 : "i" (PSTATE_IE) 1153 : "g1"); 1154 1155 irq_to_desc(0)->action = &timer_irq_action; 1156 } 1157