xref: /openbmc/linux/arch/sparc/kernel/irq_64.c (revision d0b73b48)
1 /* irq.c: UltraSparc IRQ handling/init/registry.
2  *
3  * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
4  * Copyright (C) 1998  Eddie C. Dost    (ecd@skynet.be)
5  * Copyright (C) 1998  Jakub Jelinek    (jj@ultra.linux.cz)
6  */
7 
8 #include <linux/sched.h>
9 #include <linux/linkage.h>
10 #include <linux/ptrace.h>
11 #include <linux/errno.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/signal.h>
14 #include <linux/mm.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/random.h>
18 #include <linux/init.h>
19 #include <linux/delay.h>
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/ftrace.h>
23 #include <linux/irq.h>
24 #include <linux/kmemleak.h>
25 
26 #include <asm/ptrace.h>
27 #include <asm/processor.h>
28 #include <linux/atomic.h>
29 #include <asm/irq.h>
30 #include <asm/io.h>
31 #include <asm/iommu.h>
32 #include <asm/upa.h>
33 #include <asm/oplib.h>
34 #include <asm/prom.h>
35 #include <asm/timer.h>
36 #include <asm/smp.h>
37 #include <asm/starfire.h>
38 #include <asm/uaccess.h>
39 #include <asm/cache.h>
40 #include <asm/cpudata.h>
41 #include <asm/auxio.h>
42 #include <asm/head.h>
43 #include <asm/hypervisor.h>
44 #include <asm/cacheflush.h>
45 
46 #include "entry.h"
47 #include "cpumap.h"
48 #include "kstack.h"
49 
50 #define NUM_IVECS	(IMAP_INR + 1)
51 
52 struct ino_bucket *ivector_table;
53 unsigned long ivector_table_pa;
54 
55 /* On several sun4u processors, it is illegal to mix bypass and
56  * non-bypass accesses.  Therefore we access all INO buckets
57  * using bypass accesses only.
58  */
59 static unsigned long bucket_get_chain_pa(unsigned long bucket_pa)
60 {
61 	unsigned long ret;
62 
63 	__asm__ __volatile__("ldxa	[%1] %2, %0"
64 			     : "=&r" (ret)
65 			     : "r" (bucket_pa +
66 				    offsetof(struct ino_bucket,
67 					     __irq_chain_pa)),
68 			       "i" (ASI_PHYS_USE_EC));
69 
70 	return ret;
71 }
72 
73 static void bucket_clear_chain_pa(unsigned long bucket_pa)
74 {
75 	__asm__ __volatile__("stxa	%%g0, [%0] %1"
76 			     : /* no outputs */
77 			     : "r" (bucket_pa +
78 				    offsetof(struct ino_bucket,
79 					     __irq_chain_pa)),
80 			       "i" (ASI_PHYS_USE_EC));
81 }
82 
83 static unsigned int bucket_get_irq(unsigned long bucket_pa)
84 {
85 	unsigned int ret;
86 
87 	__asm__ __volatile__("lduwa	[%1] %2, %0"
88 			     : "=&r" (ret)
89 			     : "r" (bucket_pa +
90 				    offsetof(struct ino_bucket,
91 					     __irq)),
92 			       "i" (ASI_PHYS_USE_EC));
93 
94 	return ret;
95 }
96 
97 static void bucket_set_irq(unsigned long bucket_pa, unsigned int irq)
98 {
99 	__asm__ __volatile__("stwa	%0, [%1] %2"
100 			     : /* no outputs */
101 			     : "r" (irq),
102 			       "r" (bucket_pa +
103 				    offsetof(struct ino_bucket,
104 					     __irq)),
105 			       "i" (ASI_PHYS_USE_EC));
106 }
107 
108 #define irq_work_pa(__cpu)	&(trap_block[(__cpu)].irq_worklist_pa)
109 
110 static struct {
111 	unsigned int dev_handle;
112 	unsigned int dev_ino;
113 	unsigned int in_use;
114 } irq_table[NR_IRQS];
115 static DEFINE_SPINLOCK(irq_alloc_lock);
116 
117 unsigned char irq_alloc(unsigned int dev_handle, unsigned int dev_ino)
118 {
119 	unsigned long flags;
120 	unsigned char ent;
121 
122 	BUILD_BUG_ON(NR_IRQS >= 256);
123 
124 	spin_lock_irqsave(&irq_alloc_lock, flags);
125 
126 	for (ent = 1; ent < NR_IRQS; ent++) {
127 		if (!irq_table[ent].in_use)
128 			break;
129 	}
130 	if (ent >= NR_IRQS) {
131 		printk(KERN_ERR "IRQ: Out of virtual IRQs.\n");
132 		ent = 0;
133 	} else {
134 		irq_table[ent].dev_handle = dev_handle;
135 		irq_table[ent].dev_ino = dev_ino;
136 		irq_table[ent].in_use = 1;
137 	}
138 
139 	spin_unlock_irqrestore(&irq_alloc_lock, flags);
140 
141 	return ent;
142 }
143 
144 #ifdef CONFIG_PCI_MSI
145 void irq_free(unsigned int irq)
146 {
147 	unsigned long flags;
148 
149 	if (irq >= NR_IRQS)
150 		return;
151 
152 	spin_lock_irqsave(&irq_alloc_lock, flags);
153 
154 	irq_table[irq].in_use = 0;
155 
156 	spin_unlock_irqrestore(&irq_alloc_lock, flags);
157 }
158 #endif
159 
160 /*
161  * /proc/interrupts printing:
162  */
163 int arch_show_interrupts(struct seq_file *p, int prec)
164 {
165 	int j;
166 
167 	seq_printf(p, "NMI: ");
168 	for_each_online_cpu(j)
169 		seq_printf(p, "%10u ", cpu_data(j).__nmi_count);
170 	seq_printf(p, "     Non-maskable interrupts\n");
171 	return 0;
172 }
173 
174 static unsigned int sun4u_compute_tid(unsigned long imap, unsigned long cpuid)
175 {
176 	unsigned int tid;
177 
178 	if (this_is_starfire) {
179 		tid = starfire_translate(imap, cpuid);
180 		tid <<= IMAP_TID_SHIFT;
181 		tid &= IMAP_TID_UPA;
182 	} else {
183 		if (tlb_type == cheetah || tlb_type == cheetah_plus) {
184 			unsigned long ver;
185 
186 			__asm__ ("rdpr %%ver, %0" : "=r" (ver));
187 			if ((ver >> 32UL) == __JALAPENO_ID ||
188 			    (ver >> 32UL) == __SERRANO_ID) {
189 				tid = cpuid << IMAP_TID_SHIFT;
190 				tid &= IMAP_TID_JBUS;
191 			} else {
192 				unsigned int a = cpuid & 0x1f;
193 				unsigned int n = (cpuid >> 5) & 0x1f;
194 
195 				tid = ((a << IMAP_AID_SHIFT) |
196 				       (n << IMAP_NID_SHIFT));
197 				tid &= (IMAP_AID_SAFARI |
198 					IMAP_NID_SAFARI);
199 			}
200 		} else {
201 			tid = cpuid << IMAP_TID_SHIFT;
202 			tid &= IMAP_TID_UPA;
203 		}
204 	}
205 
206 	return tid;
207 }
208 
209 struct irq_handler_data {
210 	unsigned long	iclr;
211 	unsigned long	imap;
212 
213 	void		(*pre_handler)(unsigned int, void *, void *);
214 	void		*arg1;
215 	void		*arg2;
216 };
217 
218 #ifdef CONFIG_SMP
219 static int irq_choose_cpu(unsigned int irq, const struct cpumask *affinity)
220 {
221 	cpumask_t mask;
222 	int cpuid;
223 
224 	cpumask_copy(&mask, affinity);
225 	if (cpumask_equal(&mask, cpu_online_mask)) {
226 		cpuid = map_to_cpu(irq);
227 	} else {
228 		cpumask_t tmp;
229 
230 		cpumask_and(&tmp, cpu_online_mask, &mask);
231 		cpuid = cpumask_empty(&tmp) ? map_to_cpu(irq) : cpumask_first(&tmp);
232 	}
233 
234 	return cpuid;
235 }
236 #else
237 #define irq_choose_cpu(irq, affinity)	\
238 	real_hard_smp_processor_id()
239 #endif
240 
241 static void sun4u_irq_enable(struct irq_data *data)
242 {
243 	struct irq_handler_data *handler_data = data->handler_data;
244 
245 	if (likely(handler_data)) {
246 		unsigned long cpuid, imap, val;
247 		unsigned int tid;
248 
249 		cpuid = irq_choose_cpu(data->irq, data->affinity);
250 		imap = handler_data->imap;
251 
252 		tid = sun4u_compute_tid(imap, cpuid);
253 
254 		val = upa_readq(imap);
255 		val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
256 			 IMAP_AID_SAFARI | IMAP_NID_SAFARI);
257 		val |= tid | IMAP_VALID;
258 		upa_writeq(val, imap);
259 		upa_writeq(ICLR_IDLE, handler_data->iclr);
260 	}
261 }
262 
263 static int sun4u_set_affinity(struct irq_data *data,
264 			       const struct cpumask *mask, bool force)
265 {
266 	struct irq_handler_data *handler_data = data->handler_data;
267 
268 	if (likely(handler_data)) {
269 		unsigned long cpuid, imap, val;
270 		unsigned int tid;
271 
272 		cpuid = irq_choose_cpu(data->irq, mask);
273 		imap = handler_data->imap;
274 
275 		tid = sun4u_compute_tid(imap, cpuid);
276 
277 		val = upa_readq(imap);
278 		val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
279 			 IMAP_AID_SAFARI | IMAP_NID_SAFARI);
280 		val |= tid | IMAP_VALID;
281 		upa_writeq(val, imap);
282 		upa_writeq(ICLR_IDLE, handler_data->iclr);
283 	}
284 
285 	return 0;
286 }
287 
288 /* Don't do anything.  The desc->status check for IRQ_DISABLED in
289  * handler_irq() will skip the handler call and that will leave the
290  * interrupt in the sent state.  The next ->enable() call will hit the
291  * ICLR register to reset the state machine.
292  *
293  * This scheme is necessary, instead of clearing the Valid bit in the
294  * IMAP register, to handle the case of IMAP registers being shared by
295  * multiple INOs (and thus ICLR registers).  Since we use a different
296  * virtual IRQ for each shared IMAP instance, the generic code thinks
297  * there is only one user so it prematurely calls ->disable() on
298  * free_irq().
299  *
300  * We have to provide an explicit ->disable() method instead of using
301  * NULL to get the default.  The reason is that if the generic code
302  * sees that, it also hooks up a default ->shutdown method which
303  * invokes ->mask() which we do not want.  See irq_chip_set_defaults().
304  */
305 static void sun4u_irq_disable(struct irq_data *data)
306 {
307 }
308 
309 static void sun4u_irq_eoi(struct irq_data *data)
310 {
311 	struct irq_handler_data *handler_data = data->handler_data;
312 
313 	if (likely(handler_data))
314 		upa_writeq(ICLR_IDLE, handler_data->iclr);
315 }
316 
317 static void sun4v_irq_enable(struct irq_data *data)
318 {
319 	unsigned int ino = irq_table[data->irq].dev_ino;
320 	unsigned long cpuid = irq_choose_cpu(data->irq, data->affinity);
321 	int err;
322 
323 	err = sun4v_intr_settarget(ino, cpuid);
324 	if (err != HV_EOK)
325 		printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
326 		       "err(%d)\n", ino, cpuid, err);
327 	err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
328 	if (err != HV_EOK)
329 		printk(KERN_ERR "sun4v_intr_setstate(%x): "
330 		       "err(%d)\n", ino, err);
331 	err = sun4v_intr_setenabled(ino, HV_INTR_ENABLED);
332 	if (err != HV_EOK)
333 		printk(KERN_ERR "sun4v_intr_setenabled(%x): err(%d)\n",
334 		       ino, err);
335 }
336 
337 static int sun4v_set_affinity(struct irq_data *data,
338 			       const struct cpumask *mask, bool force)
339 {
340 	unsigned int ino = irq_table[data->irq].dev_ino;
341 	unsigned long cpuid = irq_choose_cpu(data->irq, mask);
342 	int err;
343 
344 	err = sun4v_intr_settarget(ino, cpuid);
345 	if (err != HV_EOK)
346 		printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
347 		       "err(%d)\n", ino, cpuid, err);
348 
349 	return 0;
350 }
351 
352 static void sun4v_irq_disable(struct irq_data *data)
353 {
354 	unsigned int ino = irq_table[data->irq].dev_ino;
355 	int err;
356 
357 	err = sun4v_intr_setenabled(ino, HV_INTR_DISABLED);
358 	if (err != HV_EOK)
359 		printk(KERN_ERR "sun4v_intr_setenabled(%x): "
360 		       "err(%d)\n", ino, err);
361 }
362 
363 static void sun4v_irq_eoi(struct irq_data *data)
364 {
365 	unsigned int ino = irq_table[data->irq].dev_ino;
366 	int err;
367 
368 	err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
369 	if (err != HV_EOK)
370 		printk(KERN_ERR "sun4v_intr_setstate(%x): "
371 		       "err(%d)\n", ino, err);
372 }
373 
374 static void sun4v_virq_enable(struct irq_data *data)
375 {
376 	unsigned long cpuid, dev_handle, dev_ino;
377 	int err;
378 
379 	cpuid = irq_choose_cpu(data->irq, data->affinity);
380 
381 	dev_handle = irq_table[data->irq].dev_handle;
382 	dev_ino = irq_table[data->irq].dev_ino;
383 
384 	err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
385 	if (err != HV_EOK)
386 		printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
387 		       "err(%d)\n",
388 		       dev_handle, dev_ino, cpuid, err);
389 	err = sun4v_vintr_set_state(dev_handle, dev_ino,
390 				    HV_INTR_STATE_IDLE);
391 	if (err != HV_EOK)
392 		printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
393 		       "HV_INTR_STATE_IDLE): err(%d)\n",
394 		       dev_handle, dev_ino, err);
395 	err = sun4v_vintr_set_valid(dev_handle, dev_ino,
396 				    HV_INTR_ENABLED);
397 	if (err != HV_EOK)
398 		printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
399 		       "HV_INTR_ENABLED): err(%d)\n",
400 		       dev_handle, dev_ino, err);
401 }
402 
403 static int sun4v_virt_set_affinity(struct irq_data *data,
404 				    const struct cpumask *mask, bool force)
405 {
406 	unsigned long cpuid, dev_handle, dev_ino;
407 	int err;
408 
409 	cpuid = irq_choose_cpu(data->irq, mask);
410 
411 	dev_handle = irq_table[data->irq].dev_handle;
412 	dev_ino = irq_table[data->irq].dev_ino;
413 
414 	err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
415 	if (err != HV_EOK)
416 		printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
417 		       "err(%d)\n",
418 		       dev_handle, dev_ino, cpuid, err);
419 
420 	return 0;
421 }
422 
423 static void sun4v_virq_disable(struct irq_data *data)
424 {
425 	unsigned long dev_handle, dev_ino;
426 	int err;
427 
428 	dev_handle = irq_table[data->irq].dev_handle;
429 	dev_ino = irq_table[data->irq].dev_ino;
430 
431 	err = sun4v_vintr_set_valid(dev_handle, dev_ino,
432 				    HV_INTR_DISABLED);
433 	if (err != HV_EOK)
434 		printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
435 		       "HV_INTR_DISABLED): err(%d)\n",
436 		       dev_handle, dev_ino, err);
437 }
438 
439 static void sun4v_virq_eoi(struct irq_data *data)
440 {
441 	unsigned long dev_handle, dev_ino;
442 	int err;
443 
444 	dev_handle = irq_table[data->irq].dev_handle;
445 	dev_ino = irq_table[data->irq].dev_ino;
446 
447 	err = sun4v_vintr_set_state(dev_handle, dev_ino,
448 				    HV_INTR_STATE_IDLE);
449 	if (err != HV_EOK)
450 		printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
451 		       "HV_INTR_STATE_IDLE): err(%d)\n",
452 		       dev_handle, dev_ino, err);
453 }
454 
455 static struct irq_chip sun4u_irq = {
456 	.name			= "sun4u",
457 	.irq_enable		= sun4u_irq_enable,
458 	.irq_disable		= sun4u_irq_disable,
459 	.irq_eoi		= sun4u_irq_eoi,
460 	.irq_set_affinity	= sun4u_set_affinity,
461 	.flags			= IRQCHIP_EOI_IF_HANDLED,
462 };
463 
464 static struct irq_chip sun4v_irq = {
465 	.name			= "sun4v",
466 	.irq_enable		= sun4v_irq_enable,
467 	.irq_disable		= sun4v_irq_disable,
468 	.irq_eoi		= sun4v_irq_eoi,
469 	.irq_set_affinity	= sun4v_set_affinity,
470 	.flags			= IRQCHIP_EOI_IF_HANDLED,
471 };
472 
473 static struct irq_chip sun4v_virq = {
474 	.name			= "vsun4v",
475 	.irq_enable		= sun4v_virq_enable,
476 	.irq_disable		= sun4v_virq_disable,
477 	.irq_eoi		= sun4v_virq_eoi,
478 	.irq_set_affinity	= sun4v_virt_set_affinity,
479 	.flags			= IRQCHIP_EOI_IF_HANDLED,
480 };
481 
482 static void pre_flow_handler(struct irq_data *d)
483 {
484 	struct irq_handler_data *handler_data = irq_data_get_irq_handler_data(d);
485 	unsigned int ino = irq_table[d->irq].dev_ino;
486 
487 	handler_data->pre_handler(ino, handler_data->arg1, handler_data->arg2);
488 }
489 
490 void irq_install_pre_handler(int irq,
491 			     void (*func)(unsigned int, void *, void *),
492 			     void *arg1, void *arg2)
493 {
494 	struct irq_handler_data *handler_data = irq_get_handler_data(irq);
495 
496 	handler_data->pre_handler = func;
497 	handler_data->arg1 = arg1;
498 	handler_data->arg2 = arg2;
499 
500 	__irq_set_preflow_handler(irq, pre_flow_handler);
501 }
502 
503 unsigned int build_irq(int inofixup, unsigned long iclr, unsigned long imap)
504 {
505 	struct ino_bucket *bucket;
506 	struct irq_handler_data *handler_data;
507 	unsigned int irq;
508 	int ino;
509 
510 	BUG_ON(tlb_type == hypervisor);
511 
512 	ino = (upa_readq(imap) & (IMAP_IGN | IMAP_INO)) + inofixup;
513 	bucket = &ivector_table[ino];
514 	irq = bucket_get_irq(__pa(bucket));
515 	if (!irq) {
516 		irq = irq_alloc(0, ino);
517 		bucket_set_irq(__pa(bucket), irq);
518 		irq_set_chip_and_handler_name(irq, &sun4u_irq,
519 					      handle_fasteoi_irq, "IVEC");
520 	}
521 
522 	handler_data = irq_get_handler_data(irq);
523 	if (unlikely(handler_data))
524 		goto out;
525 
526 	handler_data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
527 	if (unlikely(!handler_data)) {
528 		prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
529 		prom_halt();
530 	}
531 	irq_set_handler_data(irq, handler_data);
532 
533 	handler_data->imap  = imap;
534 	handler_data->iclr  = iclr;
535 
536 out:
537 	return irq;
538 }
539 
540 static unsigned int sun4v_build_common(unsigned long sysino,
541 				       struct irq_chip *chip)
542 {
543 	struct ino_bucket *bucket;
544 	struct irq_handler_data *handler_data;
545 	unsigned int irq;
546 
547 	BUG_ON(tlb_type != hypervisor);
548 
549 	bucket = &ivector_table[sysino];
550 	irq = bucket_get_irq(__pa(bucket));
551 	if (!irq) {
552 		irq = irq_alloc(0, sysino);
553 		bucket_set_irq(__pa(bucket), irq);
554 		irq_set_chip_and_handler_name(irq, chip, handle_fasteoi_irq,
555 					      "IVEC");
556 	}
557 
558 	handler_data = irq_get_handler_data(irq);
559 	if (unlikely(handler_data))
560 		goto out;
561 
562 	handler_data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
563 	if (unlikely(!handler_data)) {
564 		prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
565 		prom_halt();
566 	}
567 	irq_set_handler_data(irq, handler_data);
568 
569 	/* Catch accidental accesses to these things.  IMAP/ICLR handling
570 	 * is done by hypervisor calls on sun4v platforms, not by direct
571 	 * register accesses.
572 	 */
573 	handler_data->imap = ~0UL;
574 	handler_data->iclr = ~0UL;
575 
576 out:
577 	return irq;
578 }
579 
580 unsigned int sun4v_build_irq(u32 devhandle, unsigned int devino)
581 {
582 	unsigned long sysino = sun4v_devino_to_sysino(devhandle, devino);
583 
584 	return sun4v_build_common(sysino, &sun4v_irq);
585 }
586 
587 unsigned int sun4v_build_virq(u32 devhandle, unsigned int devino)
588 {
589 	struct irq_handler_data *handler_data;
590 	unsigned long hv_err, cookie;
591 	struct ino_bucket *bucket;
592 	unsigned int irq;
593 
594 	bucket = kzalloc(sizeof(struct ino_bucket), GFP_ATOMIC);
595 	if (unlikely(!bucket))
596 		return 0;
597 
598 	/* The only reference we store to the IRQ bucket is
599 	 * by physical address which kmemleak can't see, tell
600 	 * it that this object explicitly is not a leak and
601 	 * should be scanned.
602 	 */
603 	kmemleak_not_leak(bucket);
604 
605 	__flush_dcache_range((unsigned long) bucket,
606 			     ((unsigned long) bucket +
607 			      sizeof(struct ino_bucket)));
608 
609 	irq = irq_alloc(devhandle, devino);
610 	bucket_set_irq(__pa(bucket), irq);
611 
612 	irq_set_chip_and_handler_name(irq, &sun4v_virq, handle_fasteoi_irq,
613 				      "IVEC");
614 
615 	handler_data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
616 	if (unlikely(!handler_data))
617 		return 0;
618 
619 	/* In order to make the LDC channel startup sequence easier,
620 	 * especially wrt. locking, we do not let request_irq() enable
621 	 * the interrupt.
622 	 */
623 	irq_set_status_flags(irq, IRQ_NOAUTOEN);
624 	irq_set_handler_data(irq, handler_data);
625 
626 	/* Catch accidental accesses to these things.  IMAP/ICLR handling
627 	 * is done by hypervisor calls on sun4v platforms, not by direct
628 	 * register accesses.
629 	 */
630 	handler_data->imap = ~0UL;
631 	handler_data->iclr = ~0UL;
632 
633 	cookie = ~__pa(bucket);
634 	hv_err = sun4v_vintr_set_cookie(devhandle, devino, cookie);
635 	if (hv_err) {
636 		prom_printf("IRQ: Fatal, cannot set cookie for [%x:%x] "
637 			    "err=%lu\n", devhandle, devino, hv_err);
638 		prom_halt();
639 	}
640 
641 	return irq;
642 }
643 
644 void ack_bad_irq(unsigned int irq)
645 {
646 	unsigned int ino = irq_table[irq].dev_ino;
647 
648 	if (!ino)
649 		ino = 0xdeadbeef;
650 
651 	printk(KERN_CRIT "Unexpected IRQ from ino[%x] irq[%u]\n",
652 	       ino, irq);
653 }
654 
655 void *hardirq_stack[NR_CPUS];
656 void *softirq_stack[NR_CPUS];
657 
658 void __irq_entry handler_irq(int pil, struct pt_regs *regs)
659 {
660 	unsigned long pstate, bucket_pa;
661 	struct pt_regs *old_regs;
662 	void *orig_sp;
663 
664 	clear_softint(1 << pil);
665 
666 	old_regs = set_irq_regs(regs);
667 	irq_enter();
668 
669 	/* Grab an atomic snapshot of the pending IVECs.  */
670 	__asm__ __volatile__("rdpr	%%pstate, %0\n\t"
671 			     "wrpr	%0, %3, %%pstate\n\t"
672 			     "ldx	[%2], %1\n\t"
673 			     "stx	%%g0, [%2]\n\t"
674 			     "wrpr	%0, 0x0, %%pstate\n\t"
675 			     : "=&r" (pstate), "=&r" (bucket_pa)
676 			     : "r" (irq_work_pa(smp_processor_id())),
677 			       "i" (PSTATE_IE)
678 			     : "memory");
679 
680 	orig_sp = set_hardirq_stack();
681 
682 	while (bucket_pa) {
683 		unsigned long next_pa;
684 		unsigned int irq;
685 
686 		next_pa = bucket_get_chain_pa(bucket_pa);
687 		irq = bucket_get_irq(bucket_pa);
688 		bucket_clear_chain_pa(bucket_pa);
689 
690 		generic_handle_irq(irq);
691 
692 		bucket_pa = next_pa;
693 	}
694 
695 	restore_hardirq_stack(orig_sp);
696 
697 	irq_exit();
698 	set_irq_regs(old_regs);
699 }
700 
701 void do_softirq(void)
702 {
703 	unsigned long flags;
704 
705 	if (in_interrupt())
706 		return;
707 
708 	local_irq_save(flags);
709 
710 	if (local_softirq_pending()) {
711 		void *orig_sp, *sp = softirq_stack[smp_processor_id()];
712 
713 		sp += THREAD_SIZE - 192 - STACK_BIAS;
714 
715 		__asm__ __volatile__("mov %%sp, %0\n\t"
716 				     "mov %1, %%sp"
717 				     : "=&r" (orig_sp)
718 				     : "r" (sp));
719 		__do_softirq();
720 		__asm__ __volatile__("mov %0, %%sp"
721 				     : : "r" (orig_sp));
722 	}
723 
724 	local_irq_restore(flags);
725 }
726 
727 #ifdef CONFIG_HOTPLUG_CPU
728 void fixup_irqs(void)
729 {
730 	unsigned int irq;
731 
732 	for (irq = 0; irq < NR_IRQS; irq++) {
733 		struct irq_desc *desc = irq_to_desc(irq);
734 		struct irq_data *data = irq_desc_get_irq_data(desc);
735 		unsigned long flags;
736 
737 		raw_spin_lock_irqsave(&desc->lock, flags);
738 		if (desc->action && !irqd_is_per_cpu(data)) {
739 			if (data->chip->irq_set_affinity)
740 				data->chip->irq_set_affinity(data,
741 							     data->affinity,
742 							     false);
743 		}
744 		raw_spin_unlock_irqrestore(&desc->lock, flags);
745 	}
746 
747 	tick_ops->disable_irq();
748 }
749 #endif
750 
751 struct sun5_timer {
752 	u64	count0;
753 	u64	limit0;
754 	u64	count1;
755 	u64	limit1;
756 };
757 
758 static struct sun5_timer *prom_timers;
759 static u64 prom_limit0, prom_limit1;
760 
761 static void map_prom_timers(void)
762 {
763 	struct device_node *dp;
764 	const unsigned int *addr;
765 
766 	/* PROM timer node hangs out in the top level of device siblings... */
767 	dp = of_find_node_by_path("/");
768 	dp = dp->child;
769 	while (dp) {
770 		if (!strcmp(dp->name, "counter-timer"))
771 			break;
772 		dp = dp->sibling;
773 	}
774 
775 	/* Assume if node is not present, PROM uses different tick mechanism
776 	 * which we should not care about.
777 	 */
778 	if (!dp) {
779 		prom_timers = (struct sun5_timer *) 0;
780 		return;
781 	}
782 
783 	/* If PROM is really using this, it must be mapped by him. */
784 	addr = of_get_property(dp, "address", NULL);
785 	if (!addr) {
786 		prom_printf("PROM does not have timer mapped, trying to continue.\n");
787 		prom_timers = (struct sun5_timer *) 0;
788 		return;
789 	}
790 	prom_timers = (struct sun5_timer *) ((unsigned long)addr[0]);
791 }
792 
793 static void kill_prom_timer(void)
794 {
795 	if (!prom_timers)
796 		return;
797 
798 	/* Save them away for later. */
799 	prom_limit0 = prom_timers->limit0;
800 	prom_limit1 = prom_timers->limit1;
801 
802 	/* Just as in sun4c PROM uses timer which ticks at IRQ 14.
803 	 * We turn both off here just to be paranoid.
804 	 */
805 	prom_timers->limit0 = 0;
806 	prom_timers->limit1 = 0;
807 
808 	/* Wheee, eat the interrupt packet too... */
809 	__asm__ __volatile__(
810 "	mov	0x40, %%g2\n"
811 "	ldxa	[%%g0] %0, %%g1\n"
812 "	ldxa	[%%g2] %1, %%g1\n"
813 "	stxa	%%g0, [%%g0] %0\n"
814 "	membar	#Sync\n"
815 	: /* no outputs */
816 	: "i" (ASI_INTR_RECEIVE), "i" (ASI_INTR_R)
817 	: "g1", "g2");
818 }
819 
820 void notrace init_irqwork_curcpu(void)
821 {
822 	int cpu = hard_smp_processor_id();
823 
824 	trap_block[cpu].irq_worklist_pa = 0UL;
825 }
826 
827 /* Please be very careful with register_one_mondo() and
828  * sun4v_register_mondo_queues().
829  *
830  * On SMP this gets invoked from the CPU trampoline before
831  * the cpu has fully taken over the trap table from OBP,
832  * and it's kernel stack + %g6 thread register state is
833  * not fully cooked yet.
834  *
835  * Therefore you cannot make any OBP calls, not even prom_printf,
836  * from these two routines.
837  */
838 static void __cpuinit notrace register_one_mondo(unsigned long paddr, unsigned long type, unsigned long qmask)
839 {
840 	unsigned long num_entries = (qmask + 1) / 64;
841 	unsigned long status;
842 
843 	status = sun4v_cpu_qconf(type, paddr, num_entries);
844 	if (status != HV_EOK) {
845 		prom_printf("SUN4V: sun4v_cpu_qconf(%lu:%lx:%lu) failed, "
846 			    "err %lu\n", type, paddr, num_entries, status);
847 		prom_halt();
848 	}
849 }
850 
851 void __cpuinit notrace sun4v_register_mondo_queues(int this_cpu)
852 {
853 	struct trap_per_cpu *tb = &trap_block[this_cpu];
854 
855 	register_one_mondo(tb->cpu_mondo_pa, HV_CPU_QUEUE_CPU_MONDO,
856 			   tb->cpu_mondo_qmask);
857 	register_one_mondo(tb->dev_mondo_pa, HV_CPU_QUEUE_DEVICE_MONDO,
858 			   tb->dev_mondo_qmask);
859 	register_one_mondo(tb->resum_mondo_pa, HV_CPU_QUEUE_RES_ERROR,
860 			   tb->resum_qmask);
861 	register_one_mondo(tb->nonresum_mondo_pa, HV_CPU_QUEUE_NONRES_ERROR,
862 			   tb->nonresum_qmask);
863 }
864 
865 /* Each queue region must be a power of 2 multiple of 64 bytes in
866  * size.  The base real address must be aligned to the size of the
867  * region.  Thus, an 8KB queue must be 8KB aligned, for example.
868  */
869 static void __init alloc_one_queue(unsigned long *pa_ptr, unsigned long qmask)
870 {
871 	unsigned long size = PAGE_ALIGN(qmask + 1);
872 	unsigned long order = get_order(size);
873 	unsigned long p;
874 
875 	p = __get_free_pages(GFP_KERNEL, order);
876 	if (!p) {
877 		prom_printf("SUN4V: Error, cannot allocate queue.\n");
878 		prom_halt();
879 	}
880 
881 	*pa_ptr = __pa(p);
882 }
883 
884 static void __init init_cpu_send_mondo_info(struct trap_per_cpu *tb)
885 {
886 #ifdef CONFIG_SMP
887 	unsigned long page;
888 
889 	BUILD_BUG_ON((NR_CPUS * sizeof(u16)) > (PAGE_SIZE - 64));
890 
891 	page = get_zeroed_page(GFP_KERNEL);
892 	if (!page) {
893 		prom_printf("SUN4V: Error, cannot allocate cpu mondo page.\n");
894 		prom_halt();
895 	}
896 
897 	tb->cpu_mondo_block_pa = __pa(page);
898 	tb->cpu_list_pa = __pa(page + 64);
899 #endif
900 }
901 
902 /* Allocate mondo and error queues for all possible cpus.  */
903 static void __init sun4v_init_mondo_queues(void)
904 {
905 	int cpu;
906 
907 	for_each_possible_cpu(cpu) {
908 		struct trap_per_cpu *tb = &trap_block[cpu];
909 
910 		alloc_one_queue(&tb->cpu_mondo_pa, tb->cpu_mondo_qmask);
911 		alloc_one_queue(&tb->dev_mondo_pa, tb->dev_mondo_qmask);
912 		alloc_one_queue(&tb->resum_mondo_pa, tb->resum_qmask);
913 		alloc_one_queue(&tb->resum_kernel_buf_pa, tb->resum_qmask);
914 		alloc_one_queue(&tb->nonresum_mondo_pa, tb->nonresum_qmask);
915 		alloc_one_queue(&tb->nonresum_kernel_buf_pa,
916 				tb->nonresum_qmask);
917 	}
918 }
919 
920 static void __init init_send_mondo_info(void)
921 {
922 	int cpu;
923 
924 	for_each_possible_cpu(cpu) {
925 		struct trap_per_cpu *tb = &trap_block[cpu];
926 
927 		init_cpu_send_mondo_info(tb);
928 	}
929 }
930 
931 static struct irqaction timer_irq_action = {
932 	.name = "timer",
933 };
934 
935 /* Only invoked on boot processor. */
936 void __init init_IRQ(void)
937 {
938 	unsigned long size;
939 
940 	map_prom_timers();
941 	kill_prom_timer();
942 
943 	size = sizeof(struct ino_bucket) * NUM_IVECS;
944 	ivector_table = kzalloc(size, GFP_KERNEL);
945 	if (!ivector_table) {
946 		prom_printf("Fatal error, cannot allocate ivector_table\n");
947 		prom_halt();
948 	}
949 	__flush_dcache_range((unsigned long) ivector_table,
950 			     ((unsigned long) ivector_table) + size);
951 
952 	ivector_table_pa = __pa(ivector_table);
953 
954 	if (tlb_type == hypervisor)
955 		sun4v_init_mondo_queues();
956 
957 	init_send_mondo_info();
958 
959 	if (tlb_type == hypervisor) {
960 		/* Load up the boot cpu's entries.  */
961 		sun4v_register_mondo_queues(hard_smp_processor_id());
962 	}
963 
964 	/* We need to clear any IRQ's pending in the soft interrupt
965 	 * registers, a spurious one could be left around from the
966 	 * PROM timer which we just disabled.
967 	 */
968 	clear_softint(get_softint());
969 
970 	/* Now that ivector table is initialized, it is safe
971 	 * to receive IRQ vector traps.  We will normally take
972 	 * one or two right now, in case some device PROM used
973 	 * to boot us wants to speak to us.  We just ignore them.
974 	 */
975 	__asm__ __volatile__("rdpr	%%pstate, %%g1\n\t"
976 			     "or	%%g1, %0, %%g1\n\t"
977 			     "wrpr	%%g1, 0x0, %%pstate"
978 			     : /* No outputs */
979 			     : "i" (PSTATE_IE)
980 			     : "g1");
981 
982 	irq_to_desc(0)->action = &timer_irq_action;
983 }
984