xref: /openbmc/linux/arch/sparc/kernel/irq_64.c (revision b6dcefde)
1 /* irq.c: UltraSparc IRQ handling/init/registry.
2  *
3  * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
4  * Copyright (C) 1998  Eddie C. Dost    (ecd@skynet.be)
5  * Copyright (C) 1998  Jakub Jelinek    (jj@ultra.linux.cz)
6  */
7 
8 #include <linux/module.h>
9 #include <linux/sched.h>
10 #include <linux/linkage.h>
11 #include <linux/ptrace.h>
12 #include <linux/errno.h>
13 #include <linux/kernel_stat.h>
14 #include <linux/signal.h>
15 #include <linux/mm.h>
16 #include <linux/interrupt.h>
17 #include <linux/slab.h>
18 #include <linux/random.h>
19 #include <linux/init.h>
20 #include <linux/delay.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/irq.h>
24 
25 #include <asm/ptrace.h>
26 #include <asm/processor.h>
27 #include <asm/atomic.h>
28 #include <asm/system.h>
29 #include <asm/irq.h>
30 #include <asm/io.h>
31 #include <asm/iommu.h>
32 #include <asm/upa.h>
33 #include <asm/oplib.h>
34 #include <asm/prom.h>
35 #include <asm/timer.h>
36 #include <asm/smp.h>
37 #include <asm/starfire.h>
38 #include <asm/uaccess.h>
39 #include <asm/cache.h>
40 #include <asm/cpudata.h>
41 #include <asm/auxio.h>
42 #include <asm/head.h>
43 #include <asm/hypervisor.h>
44 #include <asm/cacheflush.h>
45 
46 #include "entry.h"
47 #include "cpumap.h"
48 
49 #define NUM_IVECS	(IMAP_INR + 1)
50 
51 struct ino_bucket *ivector_table;
52 unsigned long ivector_table_pa;
53 
54 /* On several sun4u processors, it is illegal to mix bypass and
55  * non-bypass accesses.  Therefore we access all INO buckets
56  * using bypass accesses only.
57  */
58 static unsigned long bucket_get_chain_pa(unsigned long bucket_pa)
59 {
60 	unsigned long ret;
61 
62 	__asm__ __volatile__("ldxa	[%1] %2, %0"
63 			     : "=&r" (ret)
64 			     : "r" (bucket_pa +
65 				    offsetof(struct ino_bucket,
66 					     __irq_chain_pa)),
67 			       "i" (ASI_PHYS_USE_EC));
68 
69 	return ret;
70 }
71 
72 static void bucket_clear_chain_pa(unsigned long bucket_pa)
73 {
74 	__asm__ __volatile__("stxa	%%g0, [%0] %1"
75 			     : /* no outputs */
76 			     : "r" (bucket_pa +
77 				    offsetof(struct ino_bucket,
78 					     __irq_chain_pa)),
79 			       "i" (ASI_PHYS_USE_EC));
80 }
81 
82 static unsigned int bucket_get_virt_irq(unsigned long bucket_pa)
83 {
84 	unsigned int ret;
85 
86 	__asm__ __volatile__("lduwa	[%1] %2, %0"
87 			     : "=&r" (ret)
88 			     : "r" (bucket_pa +
89 				    offsetof(struct ino_bucket,
90 					     __virt_irq)),
91 			       "i" (ASI_PHYS_USE_EC));
92 
93 	return ret;
94 }
95 
96 static void bucket_set_virt_irq(unsigned long bucket_pa,
97 				unsigned int virt_irq)
98 {
99 	__asm__ __volatile__("stwa	%0, [%1] %2"
100 			     : /* no outputs */
101 			     : "r" (virt_irq),
102 			       "r" (bucket_pa +
103 				    offsetof(struct ino_bucket,
104 					     __virt_irq)),
105 			       "i" (ASI_PHYS_USE_EC));
106 }
107 
108 #define irq_work_pa(__cpu)	&(trap_block[(__cpu)].irq_worklist_pa)
109 
110 static struct {
111 	unsigned int dev_handle;
112 	unsigned int dev_ino;
113 	unsigned int in_use;
114 } virt_irq_table[NR_IRQS];
115 static DEFINE_SPINLOCK(virt_irq_alloc_lock);
116 
117 unsigned char virt_irq_alloc(unsigned int dev_handle,
118 			     unsigned int dev_ino)
119 {
120 	unsigned long flags;
121 	unsigned char ent;
122 
123 	BUILD_BUG_ON(NR_IRQS >= 256);
124 
125 	spin_lock_irqsave(&virt_irq_alloc_lock, flags);
126 
127 	for (ent = 1; ent < NR_IRQS; ent++) {
128 		if (!virt_irq_table[ent].in_use)
129 			break;
130 	}
131 	if (ent >= NR_IRQS) {
132 		printk(KERN_ERR "IRQ: Out of virtual IRQs.\n");
133 		ent = 0;
134 	} else {
135 		virt_irq_table[ent].dev_handle = dev_handle;
136 		virt_irq_table[ent].dev_ino = dev_ino;
137 		virt_irq_table[ent].in_use = 1;
138 	}
139 
140 	spin_unlock_irqrestore(&virt_irq_alloc_lock, flags);
141 
142 	return ent;
143 }
144 
145 #ifdef CONFIG_PCI_MSI
146 void virt_irq_free(unsigned int virt_irq)
147 {
148 	unsigned long flags;
149 
150 	if (virt_irq >= NR_IRQS)
151 		return;
152 
153 	spin_lock_irqsave(&virt_irq_alloc_lock, flags);
154 
155 	virt_irq_table[virt_irq].in_use = 0;
156 
157 	spin_unlock_irqrestore(&virt_irq_alloc_lock, flags);
158 }
159 #endif
160 
161 /*
162  * /proc/interrupts printing:
163  */
164 
165 int show_interrupts(struct seq_file *p, void *v)
166 {
167 	int i = *(loff_t *) v, j;
168 	struct irqaction * action;
169 	unsigned long flags;
170 
171 	if (i == 0) {
172 		seq_printf(p, "           ");
173 		for_each_online_cpu(j)
174 			seq_printf(p, "CPU%d       ",j);
175 		seq_putc(p, '\n');
176 	}
177 
178 	if (i < NR_IRQS) {
179 		raw_spin_lock_irqsave(&irq_desc[i].lock, flags);
180 		action = irq_desc[i].action;
181 		if (!action)
182 			goto skip;
183 		seq_printf(p, "%3d: ",i);
184 #ifndef CONFIG_SMP
185 		seq_printf(p, "%10u ", kstat_irqs(i));
186 #else
187 		for_each_online_cpu(j)
188 			seq_printf(p, "%10u ", kstat_irqs_cpu(i, j));
189 #endif
190 		seq_printf(p, " %9s", irq_desc[i].chip->name);
191 		seq_printf(p, "  %s", action->name);
192 
193 		for (action=action->next; action; action = action->next)
194 			seq_printf(p, ", %s", action->name);
195 
196 		seq_putc(p, '\n');
197 skip:
198 		raw_spin_unlock_irqrestore(&irq_desc[i].lock, flags);
199 	} else if (i == NR_IRQS) {
200 		seq_printf(p, "NMI: ");
201 		for_each_online_cpu(j)
202 			seq_printf(p, "%10u ", cpu_data(j).__nmi_count);
203 		seq_printf(p, "     Non-maskable interrupts\n");
204 	}
205 	return 0;
206 }
207 
208 static unsigned int sun4u_compute_tid(unsigned long imap, unsigned long cpuid)
209 {
210 	unsigned int tid;
211 
212 	if (this_is_starfire) {
213 		tid = starfire_translate(imap, cpuid);
214 		tid <<= IMAP_TID_SHIFT;
215 		tid &= IMAP_TID_UPA;
216 	} else {
217 		if (tlb_type == cheetah || tlb_type == cheetah_plus) {
218 			unsigned long ver;
219 
220 			__asm__ ("rdpr %%ver, %0" : "=r" (ver));
221 			if ((ver >> 32UL) == __JALAPENO_ID ||
222 			    (ver >> 32UL) == __SERRANO_ID) {
223 				tid = cpuid << IMAP_TID_SHIFT;
224 				tid &= IMAP_TID_JBUS;
225 			} else {
226 				unsigned int a = cpuid & 0x1f;
227 				unsigned int n = (cpuid >> 5) & 0x1f;
228 
229 				tid = ((a << IMAP_AID_SHIFT) |
230 				       (n << IMAP_NID_SHIFT));
231 				tid &= (IMAP_AID_SAFARI |
232 					IMAP_NID_SAFARI);
233 			}
234 		} else {
235 			tid = cpuid << IMAP_TID_SHIFT;
236 			tid &= IMAP_TID_UPA;
237 		}
238 	}
239 
240 	return tid;
241 }
242 
243 struct irq_handler_data {
244 	unsigned long	iclr;
245 	unsigned long	imap;
246 
247 	void		(*pre_handler)(unsigned int, void *, void *);
248 	void		*arg1;
249 	void		*arg2;
250 };
251 
252 #ifdef CONFIG_SMP
253 static int irq_choose_cpu(unsigned int virt_irq, const struct cpumask *affinity)
254 {
255 	cpumask_t mask;
256 	int cpuid;
257 
258 	cpumask_copy(&mask, affinity);
259 	if (cpus_equal(mask, cpu_online_map)) {
260 		cpuid = map_to_cpu(virt_irq);
261 	} else {
262 		cpumask_t tmp;
263 
264 		cpus_and(tmp, cpu_online_map, mask);
265 		cpuid = cpus_empty(tmp) ? map_to_cpu(virt_irq) : first_cpu(tmp);
266 	}
267 
268 	return cpuid;
269 }
270 #else
271 #define irq_choose_cpu(virt_irq, affinity)	\
272 	real_hard_smp_processor_id()
273 #endif
274 
275 static void sun4u_irq_enable(unsigned int virt_irq)
276 {
277 	struct irq_handler_data *data = get_irq_chip_data(virt_irq);
278 
279 	if (likely(data)) {
280 		unsigned long cpuid, imap, val;
281 		unsigned int tid;
282 
283 		cpuid = irq_choose_cpu(virt_irq,
284 				       irq_desc[virt_irq].affinity);
285 		imap = data->imap;
286 
287 		tid = sun4u_compute_tid(imap, cpuid);
288 
289 		val = upa_readq(imap);
290 		val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
291 			 IMAP_AID_SAFARI | IMAP_NID_SAFARI);
292 		val |= tid | IMAP_VALID;
293 		upa_writeq(val, imap);
294 		upa_writeq(ICLR_IDLE, data->iclr);
295 	}
296 }
297 
298 static int sun4u_set_affinity(unsigned int virt_irq,
299 			       const struct cpumask *mask)
300 {
301 	struct irq_handler_data *data = get_irq_chip_data(virt_irq);
302 
303 	if (likely(data)) {
304 		unsigned long cpuid, imap, val;
305 		unsigned int tid;
306 
307 		cpuid = irq_choose_cpu(virt_irq, mask);
308 		imap = data->imap;
309 
310 		tid = sun4u_compute_tid(imap, cpuid);
311 
312 		val = upa_readq(imap);
313 		val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
314 			 IMAP_AID_SAFARI | IMAP_NID_SAFARI);
315 		val |= tid | IMAP_VALID;
316 		upa_writeq(val, imap);
317 		upa_writeq(ICLR_IDLE, data->iclr);
318 	}
319 
320 	return 0;
321 }
322 
323 /* Don't do anything.  The desc->status check for IRQ_DISABLED in
324  * handler_irq() will skip the handler call and that will leave the
325  * interrupt in the sent state.  The next ->enable() call will hit the
326  * ICLR register to reset the state machine.
327  *
328  * This scheme is necessary, instead of clearing the Valid bit in the
329  * IMAP register, to handle the case of IMAP registers being shared by
330  * multiple INOs (and thus ICLR registers).  Since we use a different
331  * virtual IRQ for each shared IMAP instance, the generic code thinks
332  * there is only one user so it prematurely calls ->disable() on
333  * free_irq().
334  *
335  * We have to provide an explicit ->disable() method instead of using
336  * NULL to get the default.  The reason is that if the generic code
337  * sees that, it also hooks up a default ->shutdown method which
338  * invokes ->mask() which we do not want.  See irq_chip_set_defaults().
339  */
340 static void sun4u_irq_disable(unsigned int virt_irq)
341 {
342 }
343 
344 static void sun4u_irq_eoi(unsigned int virt_irq)
345 {
346 	struct irq_handler_data *data = get_irq_chip_data(virt_irq);
347 	struct irq_desc *desc = irq_desc + virt_irq;
348 
349 	if (unlikely(desc->status & (IRQ_DISABLED|IRQ_INPROGRESS)))
350 		return;
351 
352 	if (likely(data))
353 		upa_writeq(ICLR_IDLE, data->iclr);
354 }
355 
356 static void sun4v_irq_enable(unsigned int virt_irq)
357 {
358 	unsigned int ino = virt_irq_table[virt_irq].dev_ino;
359 	unsigned long cpuid = irq_choose_cpu(virt_irq,
360 					     irq_desc[virt_irq].affinity);
361 	int err;
362 
363 	err = sun4v_intr_settarget(ino, cpuid);
364 	if (err != HV_EOK)
365 		printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
366 		       "err(%d)\n", ino, cpuid, err);
367 	err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
368 	if (err != HV_EOK)
369 		printk(KERN_ERR "sun4v_intr_setstate(%x): "
370 		       "err(%d)\n", ino, err);
371 	err = sun4v_intr_setenabled(ino, HV_INTR_ENABLED);
372 	if (err != HV_EOK)
373 		printk(KERN_ERR "sun4v_intr_setenabled(%x): err(%d)\n",
374 		       ino, err);
375 }
376 
377 static int sun4v_set_affinity(unsigned int virt_irq,
378 			       const struct cpumask *mask)
379 {
380 	unsigned int ino = virt_irq_table[virt_irq].dev_ino;
381 	unsigned long cpuid = irq_choose_cpu(virt_irq, mask);
382 	int err;
383 
384 	err = sun4v_intr_settarget(ino, cpuid);
385 	if (err != HV_EOK)
386 		printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
387 		       "err(%d)\n", ino, cpuid, err);
388 
389 	return 0;
390 }
391 
392 static void sun4v_irq_disable(unsigned int virt_irq)
393 {
394 	unsigned int ino = virt_irq_table[virt_irq].dev_ino;
395 	int err;
396 
397 	err = sun4v_intr_setenabled(ino, HV_INTR_DISABLED);
398 	if (err != HV_EOK)
399 		printk(KERN_ERR "sun4v_intr_setenabled(%x): "
400 		       "err(%d)\n", ino, err);
401 }
402 
403 static void sun4v_irq_eoi(unsigned int virt_irq)
404 {
405 	unsigned int ino = virt_irq_table[virt_irq].dev_ino;
406 	struct irq_desc *desc = irq_desc + virt_irq;
407 	int err;
408 
409 	if (unlikely(desc->status & (IRQ_DISABLED|IRQ_INPROGRESS)))
410 		return;
411 
412 	err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
413 	if (err != HV_EOK)
414 		printk(KERN_ERR "sun4v_intr_setstate(%x): "
415 		       "err(%d)\n", ino, err);
416 }
417 
418 static void sun4v_virq_enable(unsigned int virt_irq)
419 {
420 	unsigned long cpuid, dev_handle, dev_ino;
421 	int err;
422 
423 	cpuid = irq_choose_cpu(virt_irq, irq_desc[virt_irq].affinity);
424 
425 	dev_handle = virt_irq_table[virt_irq].dev_handle;
426 	dev_ino = virt_irq_table[virt_irq].dev_ino;
427 
428 	err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
429 	if (err != HV_EOK)
430 		printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
431 		       "err(%d)\n",
432 		       dev_handle, dev_ino, cpuid, err);
433 	err = sun4v_vintr_set_state(dev_handle, dev_ino,
434 				    HV_INTR_STATE_IDLE);
435 	if (err != HV_EOK)
436 		printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
437 		       "HV_INTR_STATE_IDLE): err(%d)\n",
438 		       dev_handle, dev_ino, err);
439 	err = sun4v_vintr_set_valid(dev_handle, dev_ino,
440 				    HV_INTR_ENABLED);
441 	if (err != HV_EOK)
442 		printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
443 		       "HV_INTR_ENABLED): err(%d)\n",
444 		       dev_handle, dev_ino, err);
445 }
446 
447 static int sun4v_virt_set_affinity(unsigned int virt_irq,
448 				    const struct cpumask *mask)
449 {
450 	unsigned long cpuid, dev_handle, dev_ino;
451 	int err;
452 
453 	cpuid = irq_choose_cpu(virt_irq, mask);
454 
455 	dev_handle = virt_irq_table[virt_irq].dev_handle;
456 	dev_ino = virt_irq_table[virt_irq].dev_ino;
457 
458 	err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
459 	if (err != HV_EOK)
460 		printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
461 		       "err(%d)\n",
462 		       dev_handle, dev_ino, cpuid, err);
463 
464 	return 0;
465 }
466 
467 static void sun4v_virq_disable(unsigned int virt_irq)
468 {
469 	unsigned long dev_handle, dev_ino;
470 	int err;
471 
472 	dev_handle = virt_irq_table[virt_irq].dev_handle;
473 	dev_ino = virt_irq_table[virt_irq].dev_ino;
474 
475 	err = sun4v_vintr_set_valid(dev_handle, dev_ino,
476 				    HV_INTR_DISABLED);
477 	if (err != HV_EOK)
478 		printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
479 		       "HV_INTR_DISABLED): err(%d)\n",
480 		       dev_handle, dev_ino, err);
481 }
482 
483 static void sun4v_virq_eoi(unsigned int virt_irq)
484 {
485 	struct irq_desc *desc = irq_desc + virt_irq;
486 	unsigned long dev_handle, dev_ino;
487 	int err;
488 
489 	if (unlikely(desc->status & (IRQ_DISABLED|IRQ_INPROGRESS)))
490 		return;
491 
492 	dev_handle = virt_irq_table[virt_irq].dev_handle;
493 	dev_ino = virt_irq_table[virt_irq].dev_ino;
494 
495 	err = sun4v_vintr_set_state(dev_handle, dev_ino,
496 				    HV_INTR_STATE_IDLE);
497 	if (err != HV_EOK)
498 		printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
499 		       "HV_INTR_STATE_IDLE): err(%d)\n",
500 		       dev_handle, dev_ino, err);
501 }
502 
503 static struct irq_chip sun4u_irq = {
504 	.name		= "sun4u",
505 	.enable		= sun4u_irq_enable,
506 	.disable	= sun4u_irq_disable,
507 	.eoi		= sun4u_irq_eoi,
508 	.set_affinity	= sun4u_set_affinity,
509 };
510 
511 static struct irq_chip sun4v_irq = {
512 	.name		= "sun4v",
513 	.enable		= sun4v_irq_enable,
514 	.disable	= sun4v_irq_disable,
515 	.eoi		= sun4v_irq_eoi,
516 	.set_affinity	= sun4v_set_affinity,
517 };
518 
519 static struct irq_chip sun4v_virq = {
520 	.name		= "vsun4v",
521 	.enable		= sun4v_virq_enable,
522 	.disable	= sun4v_virq_disable,
523 	.eoi		= sun4v_virq_eoi,
524 	.set_affinity	= sun4v_virt_set_affinity,
525 };
526 
527 static void pre_flow_handler(unsigned int virt_irq,
528 				      struct irq_desc *desc)
529 {
530 	struct irq_handler_data *data = get_irq_chip_data(virt_irq);
531 	unsigned int ino = virt_irq_table[virt_irq].dev_ino;
532 
533 	data->pre_handler(ino, data->arg1, data->arg2);
534 
535 	handle_fasteoi_irq(virt_irq, desc);
536 }
537 
538 void irq_install_pre_handler(int virt_irq,
539 			     void (*func)(unsigned int, void *, void *),
540 			     void *arg1, void *arg2)
541 {
542 	struct irq_handler_data *data = get_irq_chip_data(virt_irq);
543 	struct irq_desc *desc = irq_desc + virt_irq;
544 
545 	data->pre_handler = func;
546 	data->arg1 = arg1;
547 	data->arg2 = arg2;
548 
549 	desc->handle_irq = pre_flow_handler;
550 }
551 
552 unsigned int build_irq(int inofixup, unsigned long iclr, unsigned long imap)
553 {
554 	struct ino_bucket *bucket;
555 	struct irq_handler_data *data;
556 	unsigned int virt_irq;
557 	int ino;
558 
559 	BUG_ON(tlb_type == hypervisor);
560 
561 	ino = (upa_readq(imap) & (IMAP_IGN | IMAP_INO)) + inofixup;
562 	bucket = &ivector_table[ino];
563 	virt_irq = bucket_get_virt_irq(__pa(bucket));
564 	if (!virt_irq) {
565 		virt_irq = virt_irq_alloc(0, ino);
566 		bucket_set_virt_irq(__pa(bucket), virt_irq);
567 		set_irq_chip_and_handler_name(virt_irq,
568 					      &sun4u_irq,
569 					      handle_fasteoi_irq,
570 					      "IVEC");
571 	}
572 
573 	data = get_irq_chip_data(virt_irq);
574 	if (unlikely(data))
575 		goto out;
576 
577 	data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
578 	if (unlikely(!data)) {
579 		prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
580 		prom_halt();
581 	}
582 	set_irq_chip_data(virt_irq, data);
583 
584 	data->imap  = imap;
585 	data->iclr  = iclr;
586 
587 out:
588 	return virt_irq;
589 }
590 
591 static unsigned int sun4v_build_common(unsigned long sysino,
592 				       struct irq_chip *chip)
593 {
594 	struct ino_bucket *bucket;
595 	struct irq_handler_data *data;
596 	unsigned int virt_irq;
597 
598 	BUG_ON(tlb_type != hypervisor);
599 
600 	bucket = &ivector_table[sysino];
601 	virt_irq = bucket_get_virt_irq(__pa(bucket));
602 	if (!virt_irq) {
603 		virt_irq = virt_irq_alloc(0, sysino);
604 		bucket_set_virt_irq(__pa(bucket), virt_irq);
605 		set_irq_chip_and_handler_name(virt_irq, chip,
606 					      handle_fasteoi_irq,
607 					      "IVEC");
608 	}
609 
610 	data = get_irq_chip_data(virt_irq);
611 	if (unlikely(data))
612 		goto out;
613 
614 	data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
615 	if (unlikely(!data)) {
616 		prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
617 		prom_halt();
618 	}
619 	set_irq_chip_data(virt_irq, data);
620 
621 	/* Catch accidental accesses to these things.  IMAP/ICLR handling
622 	 * is done by hypervisor calls on sun4v platforms, not by direct
623 	 * register accesses.
624 	 */
625 	data->imap = ~0UL;
626 	data->iclr = ~0UL;
627 
628 out:
629 	return virt_irq;
630 }
631 
632 unsigned int sun4v_build_irq(u32 devhandle, unsigned int devino)
633 {
634 	unsigned long sysino = sun4v_devino_to_sysino(devhandle, devino);
635 
636 	return sun4v_build_common(sysino, &sun4v_irq);
637 }
638 
639 unsigned int sun4v_build_virq(u32 devhandle, unsigned int devino)
640 {
641 	struct irq_handler_data *data;
642 	unsigned long hv_err, cookie;
643 	struct ino_bucket *bucket;
644 	struct irq_desc *desc;
645 	unsigned int virt_irq;
646 
647 	bucket = kzalloc(sizeof(struct ino_bucket), GFP_ATOMIC);
648 	if (unlikely(!bucket))
649 		return 0;
650 	__flush_dcache_range((unsigned long) bucket,
651 			     ((unsigned long) bucket +
652 			      sizeof(struct ino_bucket)));
653 
654 	virt_irq = virt_irq_alloc(devhandle, devino);
655 	bucket_set_virt_irq(__pa(bucket), virt_irq);
656 
657 	set_irq_chip_and_handler_name(virt_irq, &sun4v_virq,
658 				      handle_fasteoi_irq,
659 				      "IVEC");
660 
661 	data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
662 	if (unlikely(!data))
663 		return 0;
664 
665 	/* In order to make the LDC channel startup sequence easier,
666 	 * especially wrt. locking, we do not let request_irq() enable
667 	 * the interrupt.
668 	 */
669 	desc = irq_desc + virt_irq;
670 	desc->status |= IRQ_NOAUTOEN;
671 
672 	set_irq_chip_data(virt_irq, data);
673 
674 	/* Catch accidental accesses to these things.  IMAP/ICLR handling
675 	 * is done by hypervisor calls on sun4v platforms, not by direct
676 	 * register accesses.
677 	 */
678 	data->imap = ~0UL;
679 	data->iclr = ~0UL;
680 
681 	cookie = ~__pa(bucket);
682 	hv_err = sun4v_vintr_set_cookie(devhandle, devino, cookie);
683 	if (hv_err) {
684 		prom_printf("IRQ: Fatal, cannot set cookie for [%x:%x] "
685 			    "err=%lu\n", devhandle, devino, hv_err);
686 		prom_halt();
687 	}
688 
689 	return virt_irq;
690 }
691 
692 void ack_bad_irq(unsigned int virt_irq)
693 {
694 	unsigned int ino = virt_irq_table[virt_irq].dev_ino;
695 
696 	if (!ino)
697 		ino = 0xdeadbeef;
698 
699 	printk(KERN_CRIT "Unexpected IRQ from ino[%x] virt_irq[%u]\n",
700 	       ino, virt_irq);
701 }
702 
703 void *hardirq_stack[NR_CPUS];
704 void *softirq_stack[NR_CPUS];
705 
706 static __attribute__((always_inline)) void *set_hardirq_stack(void)
707 {
708 	void *orig_sp, *sp = hardirq_stack[smp_processor_id()];
709 
710 	__asm__ __volatile__("mov %%sp, %0" : "=r" (orig_sp));
711 	if (orig_sp < sp ||
712 	    orig_sp > (sp + THREAD_SIZE)) {
713 		sp += THREAD_SIZE - 192 - STACK_BIAS;
714 		__asm__ __volatile__("mov %0, %%sp" : : "r" (sp));
715 	}
716 
717 	return orig_sp;
718 }
719 static __attribute__((always_inline)) void restore_hardirq_stack(void *orig_sp)
720 {
721 	__asm__ __volatile__("mov %0, %%sp" : : "r" (orig_sp));
722 }
723 
724 void handler_irq(int irq, struct pt_regs *regs)
725 {
726 	unsigned long pstate, bucket_pa;
727 	struct pt_regs *old_regs;
728 	void *orig_sp;
729 
730 	clear_softint(1 << irq);
731 
732 	old_regs = set_irq_regs(regs);
733 	irq_enter();
734 
735 	/* Grab an atomic snapshot of the pending IVECs.  */
736 	__asm__ __volatile__("rdpr	%%pstate, %0\n\t"
737 			     "wrpr	%0, %3, %%pstate\n\t"
738 			     "ldx	[%2], %1\n\t"
739 			     "stx	%%g0, [%2]\n\t"
740 			     "wrpr	%0, 0x0, %%pstate\n\t"
741 			     : "=&r" (pstate), "=&r" (bucket_pa)
742 			     : "r" (irq_work_pa(smp_processor_id())),
743 			       "i" (PSTATE_IE)
744 			     : "memory");
745 
746 	orig_sp = set_hardirq_stack();
747 
748 	while (bucket_pa) {
749 		struct irq_desc *desc;
750 		unsigned long next_pa;
751 		unsigned int virt_irq;
752 
753 		next_pa = bucket_get_chain_pa(bucket_pa);
754 		virt_irq = bucket_get_virt_irq(bucket_pa);
755 		bucket_clear_chain_pa(bucket_pa);
756 
757 		desc = irq_desc + virt_irq;
758 
759 		if (!(desc->status & IRQ_DISABLED))
760 			desc->handle_irq(virt_irq, desc);
761 
762 		bucket_pa = next_pa;
763 	}
764 
765 	restore_hardirq_stack(orig_sp);
766 
767 	irq_exit();
768 	set_irq_regs(old_regs);
769 }
770 
771 void do_softirq(void)
772 {
773 	unsigned long flags;
774 
775 	if (in_interrupt())
776 		return;
777 
778 	local_irq_save(flags);
779 
780 	if (local_softirq_pending()) {
781 		void *orig_sp, *sp = softirq_stack[smp_processor_id()];
782 
783 		sp += THREAD_SIZE - 192 - STACK_BIAS;
784 
785 		__asm__ __volatile__("mov %%sp, %0\n\t"
786 				     "mov %1, %%sp"
787 				     : "=&r" (orig_sp)
788 				     : "r" (sp));
789 		__do_softirq();
790 		__asm__ __volatile__("mov %0, %%sp"
791 				     : : "r" (orig_sp));
792 	}
793 
794 	local_irq_restore(flags);
795 }
796 
797 #ifdef CONFIG_HOTPLUG_CPU
798 void fixup_irqs(void)
799 {
800 	unsigned int irq;
801 
802 	for (irq = 0; irq < NR_IRQS; irq++) {
803 		unsigned long flags;
804 
805 		raw_spin_lock_irqsave(&irq_desc[irq].lock, flags);
806 		if (irq_desc[irq].action &&
807 		    !(irq_desc[irq].status & IRQ_PER_CPU)) {
808 			if (irq_desc[irq].chip->set_affinity)
809 				irq_desc[irq].chip->set_affinity(irq,
810 					irq_desc[irq].affinity);
811 		}
812 		raw_spin_unlock_irqrestore(&irq_desc[irq].lock, flags);
813 	}
814 
815 	tick_ops->disable_irq();
816 }
817 #endif
818 
819 struct sun5_timer {
820 	u64	count0;
821 	u64	limit0;
822 	u64	count1;
823 	u64	limit1;
824 };
825 
826 static struct sun5_timer *prom_timers;
827 static u64 prom_limit0, prom_limit1;
828 
829 static void map_prom_timers(void)
830 {
831 	struct device_node *dp;
832 	const unsigned int *addr;
833 
834 	/* PROM timer node hangs out in the top level of device siblings... */
835 	dp = of_find_node_by_path("/");
836 	dp = dp->child;
837 	while (dp) {
838 		if (!strcmp(dp->name, "counter-timer"))
839 			break;
840 		dp = dp->sibling;
841 	}
842 
843 	/* Assume if node is not present, PROM uses different tick mechanism
844 	 * which we should not care about.
845 	 */
846 	if (!dp) {
847 		prom_timers = (struct sun5_timer *) 0;
848 		return;
849 	}
850 
851 	/* If PROM is really using this, it must be mapped by him. */
852 	addr = of_get_property(dp, "address", NULL);
853 	if (!addr) {
854 		prom_printf("PROM does not have timer mapped, trying to continue.\n");
855 		prom_timers = (struct sun5_timer *) 0;
856 		return;
857 	}
858 	prom_timers = (struct sun5_timer *) ((unsigned long)addr[0]);
859 }
860 
861 static void kill_prom_timer(void)
862 {
863 	if (!prom_timers)
864 		return;
865 
866 	/* Save them away for later. */
867 	prom_limit0 = prom_timers->limit0;
868 	prom_limit1 = prom_timers->limit1;
869 
870 	/* Just as in sun4c/sun4m PROM uses timer which ticks at IRQ 14.
871 	 * We turn both off here just to be paranoid.
872 	 */
873 	prom_timers->limit0 = 0;
874 	prom_timers->limit1 = 0;
875 
876 	/* Wheee, eat the interrupt packet too... */
877 	__asm__ __volatile__(
878 "	mov	0x40, %%g2\n"
879 "	ldxa	[%%g0] %0, %%g1\n"
880 "	ldxa	[%%g2] %1, %%g1\n"
881 "	stxa	%%g0, [%%g0] %0\n"
882 "	membar	#Sync\n"
883 	: /* no outputs */
884 	: "i" (ASI_INTR_RECEIVE), "i" (ASI_INTR_R)
885 	: "g1", "g2");
886 }
887 
888 void notrace init_irqwork_curcpu(void)
889 {
890 	int cpu = hard_smp_processor_id();
891 
892 	trap_block[cpu].irq_worklist_pa = 0UL;
893 }
894 
895 /* Please be very careful with register_one_mondo() and
896  * sun4v_register_mondo_queues().
897  *
898  * On SMP this gets invoked from the CPU trampoline before
899  * the cpu has fully taken over the trap table from OBP,
900  * and it's kernel stack + %g6 thread register state is
901  * not fully cooked yet.
902  *
903  * Therefore you cannot make any OBP calls, not even prom_printf,
904  * from these two routines.
905  */
906 static void __cpuinit notrace register_one_mondo(unsigned long paddr, unsigned long type, unsigned long qmask)
907 {
908 	unsigned long num_entries = (qmask + 1) / 64;
909 	unsigned long status;
910 
911 	status = sun4v_cpu_qconf(type, paddr, num_entries);
912 	if (status != HV_EOK) {
913 		prom_printf("SUN4V: sun4v_cpu_qconf(%lu:%lx:%lu) failed, "
914 			    "err %lu\n", type, paddr, num_entries, status);
915 		prom_halt();
916 	}
917 }
918 
919 void __cpuinit notrace sun4v_register_mondo_queues(int this_cpu)
920 {
921 	struct trap_per_cpu *tb = &trap_block[this_cpu];
922 
923 	register_one_mondo(tb->cpu_mondo_pa, HV_CPU_QUEUE_CPU_MONDO,
924 			   tb->cpu_mondo_qmask);
925 	register_one_mondo(tb->dev_mondo_pa, HV_CPU_QUEUE_DEVICE_MONDO,
926 			   tb->dev_mondo_qmask);
927 	register_one_mondo(tb->resum_mondo_pa, HV_CPU_QUEUE_RES_ERROR,
928 			   tb->resum_qmask);
929 	register_one_mondo(tb->nonresum_mondo_pa, HV_CPU_QUEUE_NONRES_ERROR,
930 			   tb->nonresum_qmask);
931 }
932 
933 /* Each queue region must be a power of 2 multiple of 64 bytes in
934  * size.  The base real address must be aligned to the size of the
935  * region.  Thus, an 8KB queue must be 8KB aligned, for example.
936  */
937 static void __init alloc_one_queue(unsigned long *pa_ptr, unsigned long qmask)
938 {
939 	unsigned long size = PAGE_ALIGN(qmask + 1);
940 	unsigned long order = get_order(size);
941 	unsigned long p;
942 
943 	p = __get_free_pages(GFP_KERNEL, order);
944 	if (!p) {
945 		prom_printf("SUN4V: Error, cannot allocate queue.\n");
946 		prom_halt();
947 	}
948 
949 	*pa_ptr = __pa(p);
950 }
951 
952 static void __init init_cpu_send_mondo_info(struct trap_per_cpu *tb)
953 {
954 #ifdef CONFIG_SMP
955 	unsigned long page;
956 
957 	BUILD_BUG_ON((NR_CPUS * sizeof(u16)) > (PAGE_SIZE - 64));
958 
959 	page = get_zeroed_page(GFP_KERNEL);
960 	if (!page) {
961 		prom_printf("SUN4V: Error, cannot allocate cpu mondo page.\n");
962 		prom_halt();
963 	}
964 
965 	tb->cpu_mondo_block_pa = __pa(page);
966 	tb->cpu_list_pa = __pa(page + 64);
967 #endif
968 }
969 
970 /* Allocate mondo and error queues for all possible cpus.  */
971 static void __init sun4v_init_mondo_queues(void)
972 {
973 	int cpu;
974 
975 	for_each_possible_cpu(cpu) {
976 		struct trap_per_cpu *tb = &trap_block[cpu];
977 
978 		alloc_one_queue(&tb->cpu_mondo_pa, tb->cpu_mondo_qmask);
979 		alloc_one_queue(&tb->dev_mondo_pa, tb->dev_mondo_qmask);
980 		alloc_one_queue(&tb->resum_mondo_pa, tb->resum_qmask);
981 		alloc_one_queue(&tb->resum_kernel_buf_pa, tb->resum_qmask);
982 		alloc_one_queue(&tb->nonresum_mondo_pa, tb->nonresum_qmask);
983 		alloc_one_queue(&tb->nonresum_kernel_buf_pa,
984 				tb->nonresum_qmask);
985 	}
986 }
987 
988 static void __init init_send_mondo_info(void)
989 {
990 	int cpu;
991 
992 	for_each_possible_cpu(cpu) {
993 		struct trap_per_cpu *tb = &trap_block[cpu];
994 
995 		init_cpu_send_mondo_info(tb);
996 	}
997 }
998 
999 static struct irqaction timer_irq_action = {
1000 	.name = "timer",
1001 };
1002 
1003 /* Only invoked on boot processor. */
1004 void __init init_IRQ(void)
1005 {
1006 	unsigned long size;
1007 
1008 	map_prom_timers();
1009 	kill_prom_timer();
1010 
1011 	size = sizeof(struct ino_bucket) * NUM_IVECS;
1012 	ivector_table = kzalloc(size, GFP_KERNEL);
1013 	if (!ivector_table) {
1014 		prom_printf("Fatal error, cannot allocate ivector_table\n");
1015 		prom_halt();
1016 	}
1017 	__flush_dcache_range((unsigned long) ivector_table,
1018 			     ((unsigned long) ivector_table) + size);
1019 
1020 	ivector_table_pa = __pa(ivector_table);
1021 
1022 	if (tlb_type == hypervisor)
1023 		sun4v_init_mondo_queues();
1024 
1025 	init_send_mondo_info();
1026 
1027 	if (tlb_type == hypervisor) {
1028 		/* Load up the boot cpu's entries.  */
1029 		sun4v_register_mondo_queues(hard_smp_processor_id());
1030 	}
1031 
1032 	/* We need to clear any IRQ's pending in the soft interrupt
1033 	 * registers, a spurious one could be left around from the
1034 	 * PROM timer which we just disabled.
1035 	 */
1036 	clear_softint(get_softint());
1037 
1038 	/* Now that ivector table is initialized, it is safe
1039 	 * to receive IRQ vector traps.  We will normally take
1040 	 * one or two right now, in case some device PROM used
1041 	 * to boot us wants to speak to us.  We just ignore them.
1042 	 */
1043 	__asm__ __volatile__("rdpr	%%pstate, %%g1\n\t"
1044 			     "or	%%g1, %0, %%g1\n\t"
1045 			     "wrpr	%%g1, 0x0, %%pstate"
1046 			     : /* No outputs */
1047 			     : "i" (PSTATE_IE)
1048 			     : "g1");
1049 
1050 	irq_desc[0].action = &timer_irq_action;
1051 }
1052