1 /* irq.c: UltraSparc IRQ handling/init/registry. 2 * 3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net) 4 * Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be) 5 * Copyright (C) 1998 Jakub Jelinek (jj@ultra.linux.cz) 6 */ 7 8 #include <linux/module.h> 9 #include <linux/sched.h> 10 #include <linux/linkage.h> 11 #include <linux/ptrace.h> 12 #include <linux/errno.h> 13 #include <linux/kernel_stat.h> 14 #include <linux/signal.h> 15 #include <linux/mm.h> 16 #include <linux/interrupt.h> 17 #include <linux/slab.h> 18 #include <linux/random.h> 19 #include <linux/init.h> 20 #include <linux/delay.h> 21 #include <linux/proc_fs.h> 22 #include <linux/seq_file.h> 23 #include <linux/irq.h> 24 25 #include <asm/ptrace.h> 26 #include <asm/processor.h> 27 #include <asm/atomic.h> 28 #include <asm/system.h> 29 #include <asm/irq.h> 30 #include <asm/io.h> 31 #include <asm/iommu.h> 32 #include <asm/upa.h> 33 #include <asm/oplib.h> 34 #include <asm/prom.h> 35 #include <asm/timer.h> 36 #include <asm/smp.h> 37 #include <asm/starfire.h> 38 #include <asm/uaccess.h> 39 #include <asm/cache.h> 40 #include <asm/cpudata.h> 41 #include <asm/auxio.h> 42 #include <asm/head.h> 43 #include <asm/hypervisor.h> 44 #include <asm/cacheflush.h> 45 46 #include "entry.h" 47 #include "cpumap.h" 48 49 #define NUM_IVECS (IMAP_INR + 1) 50 51 struct ino_bucket *ivector_table; 52 unsigned long ivector_table_pa; 53 54 /* On several sun4u processors, it is illegal to mix bypass and 55 * non-bypass accesses. Therefore we access all INO buckets 56 * using bypass accesses only. 57 */ 58 static unsigned long bucket_get_chain_pa(unsigned long bucket_pa) 59 { 60 unsigned long ret; 61 62 __asm__ __volatile__("ldxa [%1] %2, %0" 63 : "=&r" (ret) 64 : "r" (bucket_pa + 65 offsetof(struct ino_bucket, 66 __irq_chain_pa)), 67 "i" (ASI_PHYS_USE_EC)); 68 69 return ret; 70 } 71 72 static void bucket_clear_chain_pa(unsigned long bucket_pa) 73 { 74 __asm__ __volatile__("stxa %%g0, [%0] %1" 75 : /* no outputs */ 76 : "r" (bucket_pa + 77 offsetof(struct ino_bucket, 78 __irq_chain_pa)), 79 "i" (ASI_PHYS_USE_EC)); 80 } 81 82 static unsigned int bucket_get_virt_irq(unsigned long bucket_pa) 83 { 84 unsigned int ret; 85 86 __asm__ __volatile__("lduwa [%1] %2, %0" 87 : "=&r" (ret) 88 : "r" (bucket_pa + 89 offsetof(struct ino_bucket, 90 __virt_irq)), 91 "i" (ASI_PHYS_USE_EC)); 92 93 return ret; 94 } 95 96 static void bucket_set_virt_irq(unsigned long bucket_pa, 97 unsigned int virt_irq) 98 { 99 __asm__ __volatile__("stwa %0, [%1] %2" 100 : /* no outputs */ 101 : "r" (virt_irq), 102 "r" (bucket_pa + 103 offsetof(struct ino_bucket, 104 __virt_irq)), 105 "i" (ASI_PHYS_USE_EC)); 106 } 107 108 #define irq_work_pa(__cpu) &(trap_block[(__cpu)].irq_worklist_pa) 109 110 static struct { 111 unsigned int dev_handle; 112 unsigned int dev_ino; 113 unsigned int in_use; 114 } virt_irq_table[NR_IRQS]; 115 static DEFINE_SPINLOCK(virt_irq_alloc_lock); 116 117 unsigned char virt_irq_alloc(unsigned int dev_handle, 118 unsigned int dev_ino) 119 { 120 unsigned long flags; 121 unsigned char ent; 122 123 BUILD_BUG_ON(NR_IRQS >= 256); 124 125 spin_lock_irqsave(&virt_irq_alloc_lock, flags); 126 127 for (ent = 1; ent < NR_IRQS; ent++) { 128 if (!virt_irq_table[ent].in_use) 129 break; 130 } 131 if (ent >= NR_IRQS) { 132 printk(KERN_ERR "IRQ: Out of virtual IRQs.\n"); 133 ent = 0; 134 } else { 135 virt_irq_table[ent].dev_handle = dev_handle; 136 virt_irq_table[ent].dev_ino = dev_ino; 137 virt_irq_table[ent].in_use = 1; 138 } 139 140 spin_unlock_irqrestore(&virt_irq_alloc_lock, flags); 141 142 return ent; 143 } 144 145 #ifdef CONFIG_PCI_MSI 146 void virt_irq_free(unsigned int virt_irq) 147 { 148 unsigned long flags; 149 150 if (virt_irq >= NR_IRQS) 151 return; 152 153 spin_lock_irqsave(&virt_irq_alloc_lock, flags); 154 155 virt_irq_table[virt_irq].in_use = 0; 156 157 spin_unlock_irqrestore(&virt_irq_alloc_lock, flags); 158 } 159 #endif 160 161 /* 162 * /proc/interrupts printing: 163 */ 164 165 int show_interrupts(struct seq_file *p, void *v) 166 { 167 int i = *(loff_t *) v, j; 168 struct irqaction * action; 169 unsigned long flags; 170 171 if (i == 0) { 172 seq_printf(p, " "); 173 for_each_online_cpu(j) 174 seq_printf(p, "CPU%d ",j); 175 seq_putc(p, '\n'); 176 } 177 178 if (i < NR_IRQS) { 179 raw_spin_lock_irqsave(&irq_desc[i].lock, flags); 180 action = irq_desc[i].action; 181 if (!action) 182 goto skip; 183 seq_printf(p, "%3d: ",i); 184 #ifndef CONFIG_SMP 185 seq_printf(p, "%10u ", kstat_irqs(i)); 186 #else 187 for_each_online_cpu(j) 188 seq_printf(p, "%10u ", kstat_irqs_cpu(i, j)); 189 #endif 190 seq_printf(p, " %9s", irq_desc[i].chip->name); 191 seq_printf(p, " %s", action->name); 192 193 for (action=action->next; action; action = action->next) 194 seq_printf(p, ", %s", action->name); 195 196 seq_putc(p, '\n'); 197 skip: 198 raw_spin_unlock_irqrestore(&irq_desc[i].lock, flags); 199 } else if (i == NR_IRQS) { 200 seq_printf(p, "NMI: "); 201 for_each_online_cpu(j) 202 seq_printf(p, "%10u ", cpu_data(j).__nmi_count); 203 seq_printf(p, " Non-maskable interrupts\n"); 204 } 205 return 0; 206 } 207 208 static unsigned int sun4u_compute_tid(unsigned long imap, unsigned long cpuid) 209 { 210 unsigned int tid; 211 212 if (this_is_starfire) { 213 tid = starfire_translate(imap, cpuid); 214 tid <<= IMAP_TID_SHIFT; 215 tid &= IMAP_TID_UPA; 216 } else { 217 if (tlb_type == cheetah || tlb_type == cheetah_plus) { 218 unsigned long ver; 219 220 __asm__ ("rdpr %%ver, %0" : "=r" (ver)); 221 if ((ver >> 32UL) == __JALAPENO_ID || 222 (ver >> 32UL) == __SERRANO_ID) { 223 tid = cpuid << IMAP_TID_SHIFT; 224 tid &= IMAP_TID_JBUS; 225 } else { 226 unsigned int a = cpuid & 0x1f; 227 unsigned int n = (cpuid >> 5) & 0x1f; 228 229 tid = ((a << IMAP_AID_SHIFT) | 230 (n << IMAP_NID_SHIFT)); 231 tid &= (IMAP_AID_SAFARI | 232 IMAP_NID_SAFARI); 233 } 234 } else { 235 tid = cpuid << IMAP_TID_SHIFT; 236 tid &= IMAP_TID_UPA; 237 } 238 } 239 240 return tid; 241 } 242 243 struct irq_handler_data { 244 unsigned long iclr; 245 unsigned long imap; 246 247 void (*pre_handler)(unsigned int, void *, void *); 248 void *arg1; 249 void *arg2; 250 }; 251 252 #ifdef CONFIG_SMP 253 static int irq_choose_cpu(unsigned int virt_irq, const struct cpumask *affinity) 254 { 255 cpumask_t mask; 256 int cpuid; 257 258 cpumask_copy(&mask, affinity); 259 if (cpus_equal(mask, cpu_online_map)) { 260 cpuid = map_to_cpu(virt_irq); 261 } else { 262 cpumask_t tmp; 263 264 cpus_and(tmp, cpu_online_map, mask); 265 cpuid = cpus_empty(tmp) ? map_to_cpu(virt_irq) : first_cpu(tmp); 266 } 267 268 return cpuid; 269 } 270 #else 271 #define irq_choose_cpu(virt_irq, affinity) \ 272 real_hard_smp_processor_id() 273 #endif 274 275 static void sun4u_irq_enable(unsigned int virt_irq) 276 { 277 struct irq_handler_data *data = get_irq_chip_data(virt_irq); 278 279 if (likely(data)) { 280 unsigned long cpuid, imap, val; 281 unsigned int tid; 282 283 cpuid = irq_choose_cpu(virt_irq, 284 irq_desc[virt_irq].affinity); 285 imap = data->imap; 286 287 tid = sun4u_compute_tid(imap, cpuid); 288 289 val = upa_readq(imap); 290 val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS | 291 IMAP_AID_SAFARI | IMAP_NID_SAFARI); 292 val |= tid | IMAP_VALID; 293 upa_writeq(val, imap); 294 upa_writeq(ICLR_IDLE, data->iclr); 295 } 296 } 297 298 static int sun4u_set_affinity(unsigned int virt_irq, 299 const struct cpumask *mask) 300 { 301 struct irq_handler_data *data = get_irq_chip_data(virt_irq); 302 303 if (likely(data)) { 304 unsigned long cpuid, imap, val; 305 unsigned int tid; 306 307 cpuid = irq_choose_cpu(virt_irq, mask); 308 imap = data->imap; 309 310 tid = sun4u_compute_tid(imap, cpuid); 311 312 val = upa_readq(imap); 313 val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS | 314 IMAP_AID_SAFARI | IMAP_NID_SAFARI); 315 val |= tid | IMAP_VALID; 316 upa_writeq(val, imap); 317 upa_writeq(ICLR_IDLE, data->iclr); 318 } 319 320 return 0; 321 } 322 323 /* Don't do anything. The desc->status check for IRQ_DISABLED in 324 * handler_irq() will skip the handler call and that will leave the 325 * interrupt in the sent state. The next ->enable() call will hit the 326 * ICLR register to reset the state machine. 327 * 328 * This scheme is necessary, instead of clearing the Valid bit in the 329 * IMAP register, to handle the case of IMAP registers being shared by 330 * multiple INOs (and thus ICLR registers). Since we use a different 331 * virtual IRQ for each shared IMAP instance, the generic code thinks 332 * there is only one user so it prematurely calls ->disable() on 333 * free_irq(). 334 * 335 * We have to provide an explicit ->disable() method instead of using 336 * NULL to get the default. The reason is that if the generic code 337 * sees that, it also hooks up a default ->shutdown method which 338 * invokes ->mask() which we do not want. See irq_chip_set_defaults(). 339 */ 340 static void sun4u_irq_disable(unsigned int virt_irq) 341 { 342 } 343 344 static void sun4u_irq_eoi(unsigned int virt_irq) 345 { 346 struct irq_handler_data *data = get_irq_chip_data(virt_irq); 347 struct irq_desc *desc = irq_desc + virt_irq; 348 349 if (unlikely(desc->status & (IRQ_DISABLED|IRQ_INPROGRESS))) 350 return; 351 352 if (likely(data)) 353 upa_writeq(ICLR_IDLE, data->iclr); 354 } 355 356 static void sun4v_irq_enable(unsigned int virt_irq) 357 { 358 unsigned int ino = virt_irq_table[virt_irq].dev_ino; 359 unsigned long cpuid = irq_choose_cpu(virt_irq, 360 irq_desc[virt_irq].affinity); 361 int err; 362 363 err = sun4v_intr_settarget(ino, cpuid); 364 if (err != HV_EOK) 365 printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): " 366 "err(%d)\n", ino, cpuid, err); 367 err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE); 368 if (err != HV_EOK) 369 printk(KERN_ERR "sun4v_intr_setstate(%x): " 370 "err(%d)\n", ino, err); 371 err = sun4v_intr_setenabled(ino, HV_INTR_ENABLED); 372 if (err != HV_EOK) 373 printk(KERN_ERR "sun4v_intr_setenabled(%x): err(%d)\n", 374 ino, err); 375 } 376 377 static int sun4v_set_affinity(unsigned int virt_irq, 378 const struct cpumask *mask) 379 { 380 unsigned int ino = virt_irq_table[virt_irq].dev_ino; 381 unsigned long cpuid = irq_choose_cpu(virt_irq, mask); 382 int err; 383 384 err = sun4v_intr_settarget(ino, cpuid); 385 if (err != HV_EOK) 386 printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): " 387 "err(%d)\n", ino, cpuid, err); 388 389 return 0; 390 } 391 392 static void sun4v_irq_disable(unsigned int virt_irq) 393 { 394 unsigned int ino = virt_irq_table[virt_irq].dev_ino; 395 int err; 396 397 err = sun4v_intr_setenabled(ino, HV_INTR_DISABLED); 398 if (err != HV_EOK) 399 printk(KERN_ERR "sun4v_intr_setenabled(%x): " 400 "err(%d)\n", ino, err); 401 } 402 403 static void sun4v_irq_eoi(unsigned int virt_irq) 404 { 405 unsigned int ino = virt_irq_table[virt_irq].dev_ino; 406 struct irq_desc *desc = irq_desc + virt_irq; 407 int err; 408 409 if (unlikely(desc->status & (IRQ_DISABLED|IRQ_INPROGRESS))) 410 return; 411 412 err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE); 413 if (err != HV_EOK) 414 printk(KERN_ERR "sun4v_intr_setstate(%x): " 415 "err(%d)\n", ino, err); 416 } 417 418 static void sun4v_virq_enable(unsigned int virt_irq) 419 { 420 unsigned long cpuid, dev_handle, dev_ino; 421 int err; 422 423 cpuid = irq_choose_cpu(virt_irq, irq_desc[virt_irq].affinity); 424 425 dev_handle = virt_irq_table[virt_irq].dev_handle; 426 dev_ino = virt_irq_table[virt_irq].dev_ino; 427 428 err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid); 429 if (err != HV_EOK) 430 printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): " 431 "err(%d)\n", 432 dev_handle, dev_ino, cpuid, err); 433 err = sun4v_vintr_set_state(dev_handle, dev_ino, 434 HV_INTR_STATE_IDLE); 435 if (err != HV_EOK) 436 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx," 437 "HV_INTR_STATE_IDLE): err(%d)\n", 438 dev_handle, dev_ino, err); 439 err = sun4v_vintr_set_valid(dev_handle, dev_ino, 440 HV_INTR_ENABLED); 441 if (err != HV_EOK) 442 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx," 443 "HV_INTR_ENABLED): err(%d)\n", 444 dev_handle, dev_ino, err); 445 } 446 447 static int sun4v_virt_set_affinity(unsigned int virt_irq, 448 const struct cpumask *mask) 449 { 450 unsigned long cpuid, dev_handle, dev_ino; 451 int err; 452 453 cpuid = irq_choose_cpu(virt_irq, mask); 454 455 dev_handle = virt_irq_table[virt_irq].dev_handle; 456 dev_ino = virt_irq_table[virt_irq].dev_ino; 457 458 err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid); 459 if (err != HV_EOK) 460 printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): " 461 "err(%d)\n", 462 dev_handle, dev_ino, cpuid, err); 463 464 return 0; 465 } 466 467 static void sun4v_virq_disable(unsigned int virt_irq) 468 { 469 unsigned long dev_handle, dev_ino; 470 int err; 471 472 dev_handle = virt_irq_table[virt_irq].dev_handle; 473 dev_ino = virt_irq_table[virt_irq].dev_ino; 474 475 err = sun4v_vintr_set_valid(dev_handle, dev_ino, 476 HV_INTR_DISABLED); 477 if (err != HV_EOK) 478 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx," 479 "HV_INTR_DISABLED): err(%d)\n", 480 dev_handle, dev_ino, err); 481 } 482 483 static void sun4v_virq_eoi(unsigned int virt_irq) 484 { 485 struct irq_desc *desc = irq_desc + virt_irq; 486 unsigned long dev_handle, dev_ino; 487 int err; 488 489 if (unlikely(desc->status & (IRQ_DISABLED|IRQ_INPROGRESS))) 490 return; 491 492 dev_handle = virt_irq_table[virt_irq].dev_handle; 493 dev_ino = virt_irq_table[virt_irq].dev_ino; 494 495 err = sun4v_vintr_set_state(dev_handle, dev_ino, 496 HV_INTR_STATE_IDLE); 497 if (err != HV_EOK) 498 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx," 499 "HV_INTR_STATE_IDLE): err(%d)\n", 500 dev_handle, dev_ino, err); 501 } 502 503 static struct irq_chip sun4u_irq = { 504 .name = "sun4u", 505 .enable = sun4u_irq_enable, 506 .disable = sun4u_irq_disable, 507 .eoi = sun4u_irq_eoi, 508 .set_affinity = sun4u_set_affinity, 509 }; 510 511 static struct irq_chip sun4v_irq = { 512 .name = "sun4v", 513 .enable = sun4v_irq_enable, 514 .disable = sun4v_irq_disable, 515 .eoi = sun4v_irq_eoi, 516 .set_affinity = sun4v_set_affinity, 517 }; 518 519 static struct irq_chip sun4v_virq = { 520 .name = "vsun4v", 521 .enable = sun4v_virq_enable, 522 .disable = sun4v_virq_disable, 523 .eoi = sun4v_virq_eoi, 524 .set_affinity = sun4v_virt_set_affinity, 525 }; 526 527 static void pre_flow_handler(unsigned int virt_irq, 528 struct irq_desc *desc) 529 { 530 struct irq_handler_data *data = get_irq_chip_data(virt_irq); 531 unsigned int ino = virt_irq_table[virt_irq].dev_ino; 532 533 data->pre_handler(ino, data->arg1, data->arg2); 534 535 handle_fasteoi_irq(virt_irq, desc); 536 } 537 538 void irq_install_pre_handler(int virt_irq, 539 void (*func)(unsigned int, void *, void *), 540 void *arg1, void *arg2) 541 { 542 struct irq_handler_data *data = get_irq_chip_data(virt_irq); 543 struct irq_desc *desc = irq_desc + virt_irq; 544 545 data->pre_handler = func; 546 data->arg1 = arg1; 547 data->arg2 = arg2; 548 549 desc->handle_irq = pre_flow_handler; 550 } 551 552 unsigned int build_irq(int inofixup, unsigned long iclr, unsigned long imap) 553 { 554 struct ino_bucket *bucket; 555 struct irq_handler_data *data; 556 unsigned int virt_irq; 557 int ino; 558 559 BUG_ON(tlb_type == hypervisor); 560 561 ino = (upa_readq(imap) & (IMAP_IGN | IMAP_INO)) + inofixup; 562 bucket = &ivector_table[ino]; 563 virt_irq = bucket_get_virt_irq(__pa(bucket)); 564 if (!virt_irq) { 565 virt_irq = virt_irq_alloc(0, ino); 566 bucket_set_virt_irq(__pa(bucket), virt_irq); 567 set_irq_chip_and_handler_name(virt_irq, 568 &sun4u_irq, 569 handle_fasteoi_irq, 570 "IVEC"); 571 } 572 573 data = get_irq_chip_data(virt_irq); 574 if (unlikely(data)) 575 goto out; 576 577 data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC); 578 if (unlikely(!data)) { 579 prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n"); 580 prom_halt(); 581 } 582 set_irq_chip_data(virt_irq, data); 583 584 data->imap = imap; 585 data->iclr = iclr; 586 587 out: 588 return virt_irq; 589 } 590 591 static unsigned int sun4v_build_common(unsigned long sysino, 592 struct irq_chip *chip) 593 { 594 struct ino_bucket *bucket; 595 struct irq_handler_data *data; 596 unsigned int virt_irq; 597 598 BUG_ON(tlb_type != hypervisor); 599 600 bucket = &ivector_table[sysino]; 601 virt_irq = bucket_get_virt_irq(__pa(bucket)); 602 if (!virt_irq) { 603 virt_irq = virt_irq_alloc(0, sysino); 604 bucket_set_virt_irq(__pa(bucket), virt_irq); 605 set_irq_chip_and_handler_name(virt_irq, chip, 606 handle_fasteoi_irq, 607 "IVEC"); 608 } 609 610 data = get_irq_chip_data(virt_irq); 611 if (unlikely(data)) 612 goto out; 613 614 data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC); 615 if (unlikely(!data)) { 616 prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n"); 617 prom_halt(); 618 } 619 set_irq_chip_data(virt_irq, data); 620 621 /* Catch accidental accesses to these things. IMAP/ICLR handling 622 * is done by hypervisor calls on sun4v platforms, not by direct 623 * register accesses. 624 */ 625 data->imap = ~0UL; 626 data->iclr = ~0UL; 627 628 out: 629 return virt_irq; 630 } 631 632 unsigned int sun4v_build_irq(u32 devhandle, unsigned int devino) 633 { 634 unsigned long sysino = sun4v_devino_to_sysino(devhandle, devino); 635 636 return sun4v_build_common(sysino, &sun4v_irq); 637 } 638 639 unsigned int sun4v_build_virq(u32 devhandle, unsigned int devino) 640 { 641 struct irq_handler_data *data; 642 unsigned long hv_err, cookie; 643 struct ino_bucket *bucket; 644 struct irq_desc *desc; 645 unsigned int virt_irq; 646 647 bucket = kzalloc(sizeof(struct ino_bucket), GFP_ATOMIC); 648 if (unlikely(!bucket)) 649 return 0; 650 __flush_dcache_range((unsigned long) bucket, 651 ((unsigned long) bucket + 652 sizeof(struct ino_bucket))); 653 654 virt_irq = virt_irq_alloc(devhandle, devino); 655 bucket_set_virt_irq(__pa(bucket), virt_irq); 656 657 set_irq_chip_and_handler_name(virt_irq, &sun4v_virq, 658 handle_fasteoi_irq, 659 "IVEC"); 660 661 data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC); 662 if (unlikely(!data)) 663 return 0; 664 665 /* In order to make the LDC channel startup sequence easier, 666 * especially wrt. locking, we do not let request_irq() enable 667 * the interrupt. 668 */ 669 desc = irq_desc + virt_irq; 670 desc->status |= IRQ_NOAUTOEN; 671 672 set_irq_chip_data(virt_irq, data); 673 674 /* Catch accidental accesses to these things. IMAP/ICLR handling 675 * is done by hypervisor calls on sun4v platforms, not by direct 676 * register accesses. 677 */ 678 data->imap = ~0UL; 679 data->iclr = ~0UL; 680 681 cookie = ~__pa(bucket); 682 hv_err = sun4v_vintr_set_cookie(devhandle, devino, cookie); 683 if (hv_err) { 684 prom_printf("IRQ: Fatal, cannot set cookie for [%x:%x] " 685 "err=%lu\n", devhandle, devino, hv_err); 686 prom_halt(); 687 } 688 689 return virt_irq; 690 } 691 692 void ack_bad_irq(unsigned int virt_irq) 693 { 694 unsigned int ino = virt_irq_table[virt_irq].dev_ino; 695 696 if (!ino) 697 ino = 0xdeadbeef; 698 699 printk(KERN_CRIT "Unexpected IRQ from ino[%x] virt_irq[%u]\n", 700 ino, virt_irq); 701 } 702 703 void *hardirq_stack[NR_CPUS]; 704 void *softirq_stack[NR_CPUS]; 705 706 static __attribute__((always_inline)) void *set_hardirq_stack(void) 707 { 708 void *orig_sp, *sp = hardirq_stack[smp_processor_id()]; 709 710 __asm__ __volatile__("mov %%sp, %0" : "=r" (orig_sp)); 711 if (orig_sp < sp || 712 orig_sp > (sp + THREAD_SIZE)) { 713 sp += THREAD_SIZE - 192 - STACK_BIAS; 714 __asm__ __volatile__("mov %0, %%sp" : : "r" (sp)); 715 } 716 717 return orig_sp; 718 } 719 static __attribute__((always_inline)) void restore_hardirq_stack(void *orig_sp) 720 { 721 __asm__ __volatile__("mov %0, %%sp" : : "r" (orig_sp)); 722 } 723 724 void handler_irq(int irq, struct pt_regs *regs) 725 { 726 unsigned long pstate, bucket_pa; 727 struct pt_regs *old_regs; 728 void *orig_sp; 729 730 clear_softint(1 << irq); 731 732 old_regs = set_irq_regs(regs); 733 irq_enter(); 734 735 /* Grab an atomic snapshot of the pending IVECs. */ 736 __asm__ __volatile__("rdpr %%pstate, %0\n\t" 737 "wrpr %0, %3, %%pstate\n\t" 738 "ldx [%2], %1\n\t" 739 "stx %%g0, [%2]\n\t" 740 "wrpr %0, 0x0, %%pstate\n\t" 741 : "=&r" (pstate), "=&r" (bucket_pa) 742 : "r" (irq_work_pa(smp_processor_id())), 743 "i" (PSTATE_IE) 744 : "memory"); 745 746 orig_sp = set_hardirq_stack(); 747 748 while (bucket_pa) { 749 struct irq_desc *desc; 750 unsigned long next_pa; 751 unsigned int virt_irq; 752 753 next_pa = bucket_get_chain_pa(bucket_pa); 754 virt_irq = bucket_get_virt_irq(bucket_pa); 755 bucket_clear_chain_pa(bucket_pa); 756 757 desc = irq_desc + virt_irq; 758 759 if (!(desc->status & IRQ_DISABLED)) 760 desc->handle_irq(virt_irq, desc); 761 762 bucket_pa = next_pa; 763 } 764 765 restore_hardirq_stack(orig_sp); 766 767 irq_exit(); 768 set_irq_regs(old_regs); 769 } 770 771 void do_softirq(void) 772 { 773 unsigned long flags; 774 775 if (in_interrupt()) 776 return; 777 778 local_irq_save(flags); 779 780 if (local_softirq_pending()) { 781 void *orig_sp, *sp = softirq_stack[smp_processor_id()]; 782 783 sp += THREAD_SIZE - 192 - STACK_BIAS; 784 785 __asm__ __volatile__("mov %%sp, %0\n\t" 786 "mov %1, %%sp" 787 : "=&r" (orig_sp) 788 : "r" (sp)); 789 __do_softirq(); 790 __asm__ __volatile__("mov %0, %%sp" 791 : : "r" (orig_sp)); 792 } 793 794 local_irq_restore(flags); 795 } 796 797 #ifdef CONFIG_HOTPLUG_CPU 798 void fixup_irqs(void) 799 { 800 unsigned int irq; 801 802 for (irq = 0; irq < NR_IRQS; irq++) { 803 unsigned long flags; 804 805 raw_spin_lock_irqsave(&irq_desc[irq].lock, flags); 806 if (irq_desc[irq].action && 807 !(irq_desc[irq].status & IRQ_PER_CPU)) { 808 if (irq_desc[irq].chip->set_affinity) 809 irq_desc[irq].chip->set_affinity(irq, 810 irq_desc[irq].affinity); 811 } 812 raw_spin_unlock_irqrestore(&irq_desc[irq].lock, flags); 813 } 814 815 tick_ops->disable_irq(); 816 } 817 #endif 818 819 struct sun5_timer { 820 u64 count0; 821 u64 limit0; 822 u64 count1; 823 u64 limit1; 824 }; 825 826 static struct sun5_timer *prom_timers; 827 static u64 prom_limit0, prom_limit1; 828 829 static void map_prom_timers(void) 830 { 831 struct device_node *dp; 832 const unsigned int *addr; 833 834 /* PROM timer node hangs out in the top level of device siblings... */ 835 dp = of_find_node_by_path("/"); 836 dp = dp->child; 837 while (dp) { 838 if (!strcmp(dp->name, "counter-timer")) 839 break; 840 dp = dp->sibling; 841 } 842 843 /* Assume if node is not present, PROM uses different tick mechanism 844 * which we should not care about. 845 */ 846 if (!dp) { 847 prom_timers = (struct sun5_timer *) 0; 848 return; 849 } 850 851 /* If PROM is really using this, it must be mapped by him. */ 852 addr = of_get_property(dp, "address", NULL); 853 if (!addr) { 854 prom_printf("PROM does not have timer mapped, trying to continue.\n"); 855 prom_timers = (struct sun5_timer *) 0; 856 return; 857 } 858 prom_timers = (struct sun5_timer *) ((unsigned long)addr[0]); 859 } 860 861 static void kill_prom_timer(void) 862 { 863 if (!prom_timers) 864 return; 865 866 /* Save them away for later. */ 867 prom_limit0 = prom_timers->limit0; 868 prom_limit1 = prom_timers->limit1; 869 870 /* Just as in sun4c/sun4m PROM uses timer which ticks at IRQ 14. 871 * We turn both off here just to be paranoid. 872 */ 873 prom_timers->limit0 = 0; 874 prom_timers->limit1 = 0; 875 876 /* Wheee, eat the interrupt packet too... */ 877 __asm__ __volatile__( 878 " mov 0x40, %%g2\n" 879 " ldxa [%%g0] %0, %%g1\n" 880 " ldxa [%%g2] %1, %%g1\n" 881 " stxa %%g0, [%%g0] %0\n" 882 " membar #Sync\n" 883 : /* no outputs */ 884 : "i" (ASI_INTR_RECEIVE), "i" (ASI_INTR_R) 885 : "g1", "g2"); 886 } 887 888 void notrace init_irqwork_curcpu(void) 889 { 890 int cpu = hard_smp_processor_id(); 891 892 trap_block[cpu].irq_worklist_pa = 0UL; 893 } 894 895 /* Please be very careful with register_one_mondo() and 896 * sun4v_register_mondo_queues(). 897 * 898 * On SMP this gets invoked from the CPU trampoline before 899 * the cpu has fully taken over the trap table from OBP, 900 * and it's kernel stack + %g6 thread register state is 901 * not fully cooked yet. 902 * 903 * Therefore you cannot make any OBP calls, not even prom_printf, 904 * from these two routines. 905 */ 906 static void __cpuinit notrace register_one_mondo(unsigned long paddr, unsigned long type, unsigned long qmask) 907 { 908 unsigned long num_entries = (qmask + 1) / 64; 909 unsigned long status; 910 911 status = sun4v_cpu_qconf(type, paddr, num_entries); 912 if (status != HV_EOK) { 913 prom_printf("SUN4V: sun4v_cpu_qconf(%lu:%lx:%lu) failed, " 914 "err %lu\n", type, paddr, num_entries, status); 915 prom_halt(); 916 } 917 } 918 919 void __cpuinit notrace sun4v_register_mondo_queues(int this_cpu) 920 { 921 struct trap_per_cpu *tb = &trap_block[this_cpu]; 922 923 register_one_mondo(tb->cpu_mondo_pa, HV_CPU_QUEUE_CPU_MONDO, 924 tb->cpu_mondo_qmask); 925 register_one_mondo(tb->dev_mondo_pa, HV_CPU_QUEUE_DEVICE_MONDO, 926 tb->dev_mondo_qmask); 927 register_one_mondo(tb->resum_mondo_pa, HV_CPU_QUEUE_RES_ERROR, 928 tb->resum_qmask); 929 register_one_mondo(tb->nonresum_mondo_pa, HV_CPU_QUEUE_NONRES_ERROR, 930 tb->nonresum_qmask); 931 } 932 933 /* Each queue region must be a power of 2 multiple of 64 bytes in 934 * size. The base real address must be aligned to the size of the 935 * region. Thus, an 8KB queue must be 8KB aligned, for example. 936 */ 937 static void __init alloc_one_queue(unsigned long *pa_ptr, unsigned long qmask) 938 { 939 unsigned long size = PAGE_ALIGN(qmask + 1); 940 unsigned long order = get_order(size); 941 unsigned long p; 942 943 p = __get_free_pages(GFP_KERNEL, order); 944 if (!p) { 945 prom_printf("SUN4V: Error, cannot allocate queue.\n"); 946 prom_halt(); 947 } 948 949 *pa_ptr = __pa(p); 950 } 951 952 static void __init init_cpu_send_mondo_info(struct trap_per_cpu *tb) 953 { 954 #ifdef CONFIG_SMP 955 unsigned long page; 956 957 BUILD_BUG_ON((NR_CPUS * sizeof(u16)) > (PAGE_SIZE - 64)); 958 959 page = get_zeroed_page(GFP_KERNEL); 960 if (!page) { 961 prom_printf("SUN4V: Error, cannot allocate cpu mondo page.\n"); 962 prom_halt(); 963 } 964 965 tb->cpu_mondo_block_pa = __pa(page); 966 tb->cpu_list_pa = __pa(page + 64); 967 #endif 968 } 969 970 /* Allocate mondo and error queues for all possible cpus. */ 971 static void __init sun4v_init_mondo_queues(void) 972 { 973 int cpu; 974 975 for_each_possible_cpu(cpu) { 976 struct trap_per_cpu *tb = &trap_block[cpu]; 977 978 alloc_one_queue(&tb->cpu_mondo_pa, tb->cpu_mondo_qmask); 979 alloc_one_queue(&tb->dev_mondo_pa, tb->dev_mondo_qmask); 980 alloc_one_queue(&tb->resum_mondo_pa, tb->resum_qmask); 981 alloc_one_queue(&tb->resum_kernel_buf_pa, tb->resum_qmask); 982 alloc_one_queue(&tb->nonresum_mondo_pa, tb->nonresum_qmask); 983 alloc_one_queue(&tb->nonresum_kernel_buf_pa, 984 tb->nonresum_qmask); 985 } 986 } 987 988 static void __init init_send_mondo_info(void) 989 { 990 int cpu; 991 992 for_each_possible_cpu(cpu) { 993 struct trap_per_cpu *tb = &trap_block[cpu]; 994 995 init_cpu_send_mondo_info(tb); 996 } 997 } 998 999 static struct irqaction timer_irq_action = { 1000 .name = "timer", 1001 }; 1002 1003 /* Only invoked on boot processor. */ 1004 void __init init_IRQ(void) 1005 { 1006 unsigned long size; 1007 1008 map_prom_timers(); 1009 kill_prom_timer(); 1010 1011 size = sizeof(struct ino_bucket) * NUM_IVECS; 1012 ivector_table = kzalloc(size, GFP_KERNEL); 1013 if (!ivector_table) { 1014 prom_printf("Fatal error, cannot allocate ivector_table\n"); 1015 prom_halt(); 1016 } 1017 __flush_dcache_range((unsigned long) ivector_table, 1018 ((unsigned long) ivector_table) + size); 1019 1020 ivector_table_pa = __pa(ivector_table); 1021 1022 if (tlb_type == hypervisor) 1023 sun4v_init_mondo_queues(); 1024 1025 init_send_mondo_info(); 1026 1027 if (tlb_type == hypervisor) { 1028 /* Load up the boot cpu's entries. */ 1029 sun4v_register_mondo_queues(hard_smp_processor_id()); 1030 } 1031 1032 /* We need to clear any IRQ's pending in the soft interrupt 1033 * registers, a spurious one could be left around from the 1034 * PROM timer which we just disabled. 1035 */ 1036 clear_softint(get_softint()); 1037 1038 /* Now that ivector table is initialized, it is safe 1039 * to receive IRQ vector traps. We will normally take 1040 * one or two right now, in case some device PROM used 1041 * to boot us wants to speak to us. We just ignore them. 1042 */ 1043 __asm__ __volatile__("rdpr %%pstate, %%g1\n\t" 1044 "or %%g1, %0, %%g1\n\t" 1045 "wrpr %%g1, 0x0, %%pstate" 1046 : /* No outputs */ 1047 : "i" (PSTATE_IE) 1048 : "g1"); 1049 1050 irq_desc[0].action = &timer_irq_action; 1051 } 1052