1 /* irq.c: UltraSparc IRQ handling/init/registry. 2 * 3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net) 4 * Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be) 5 * Copyright (C) 1998 Jakub Jelinek (jj@ultra.linux.cz) 6 */ 7 8 #include <linux/sched.h> 9 #include <linux/linkage.h> 10 #include <linux/ptrace.h> 11 #include <linux/errno.h> 12 #include <linux/kernel_stat.h> 13 #include <linux/signal.h> 14 #include <linux/mm.h> 15 #include <linux/interrupt.h> 16 #include <linux/slab.h> 17 #include <linux/random.h> 18 #include <linux/init.h> 19 #include <linux/delay.h> 20 #include <linux/proc_fs.h> 21 #include <linux/seq_file.h> 22 #include <linux/ftrace.h> 23 #include <linux/irq.h> 24 #include <linux/kmemleak.h> 25 26 #include <asm/ptrace.h> 27 #include <asm/processor.h> 28 #include <linux/atomic.h> 29 #include <asm/irq.h> 30 #include <asm/io.h> 31 #include <asm/iommu.h> 32 #include <asm/upa.h> 33 #include <asm/oplib.h> 34 #include <asm/prom.h> 35 #include <asm/timer.h> 36 #include <asm/smp.h> 37 #include <asm/starfire.h> 38 #include <asm/uaccess.h> 39 #include <asm/cache.h> 40 #include <asm/cpudata.h> 41 #include <asm/auxio.h> 42 #include <asm/head.h> 43 #include <asm/hypervisor.h> 44 #include <asm/cacheflush.h> 45 46 #include "entry.h" 47 #include "cpumap.h" 48 #include "kstack.h" 49 50 #define NUM_IVECS (IMAP_INR + 1) 51 52 struct ino_bucket *ivector_table; 53 unsigned long ivector_table_pa; 54 55 /* On several sun4u processors, it is illegal to mix bypass and 56 * non-bypass accesses. Therefore we access all INO buckets 57 * using bypass accesses only. 58 */ 59 static unsigned long bucket_get_chain_pa(unsigned long bucket_pa) 60 { 61 unsigned long ret; 62 63 __asm__ __volatile__("ldxa [%1] %2, %0" 64 : "=&r" (ret) 65 : "r" (bucket_pa + 66 offsetof(struct ino_bucket, 67 __irq_chain_pa)), 68 "i" (ASI_PHYS_USE_EC)); 69 70 return ret; 71 } 72 73 static void bucket_clear_chain_pa(unsigned long bucket_pa) 74 { 75 __asm__ __volatile__("stxa %%g0, [%0] %1" 76 : /* no outputs */ 77 : "r" (bucket_pa + 78 offsetof(struct ino_bucket, 79 __irq_chain_pa)), 80 "i" (ASI_PHYS_USE_EC)); 81 } 82 83 static unsigned int bucket_get_irq(unsigned long bucket_pa) 84 { 85 unsigned int ret; 86 87 __asm__ __volatile__("lduwa [%1] %2, %0" 88 : "=&r" (ret) 89 : "r" (bucket_pa + 90 offsetof(struct ino_bucket, 91 __irq)), 92 "i" (ASI_PHYS_USE_EC)); 93 94 return ret; 95 } 96 97 static void bucket_set_irq(unsigned long bucket_pa, unsigned int irq) 98 { 99 __asm__ __volatile__("stwa %0, [%1] %2" 100 : /* no outputs */ 101 : "r" (irq), 102 "r" (bucket_pa + 103 offsetof(struct ino_bucket, 104 __irq)), 105 "i" (ASI_PHYS_USE_EC)); 106 } 107 108 #define irq_work_pa(__cpu) &(trap_block[(__cpu)].irq_worklist_pa) 109 110 static struct { 111 unsigned int dev_handle; 112 unsigned int dev_ino; 113 unsigned int in_use; 114 } irq_table[NR_IRQS]; 115 static DEFINE_SPINLOCK(irq_alloc_lock); 116 117 unsigned char irq_alloc(unsigned int dev_handle, unsigned int dev_ino) 118 { 119 unsigned long flags; 120 unsigned char ent; 121 122 BUILD_BUG_ON(NR_IRQS >= 256); 123 124 spin_lock_irqsave(&irq_alloc_lock, flags); 125 126 for (ent = 1; ent < NR_IRQS; ent++) { 127 if (!irq_table[ent].in_use) 128 break; 129 } 130 if (ent >= NR_IRQS) { 131 printk(KERN_ERR "IRQ: Out of virtual IRQs.\n"); 132 ent = 0; 133 } else { 134 irq_table[ent].dev_handle = dev_handle; 135 irq_table[ent].dev_ino = dev_ino; 136 irq_table[ent].in_use = 1; 137 } 138 139 spin_unlock_irqrestore(&irq_alloc_lock, flags); 140 141 return ent; 142 } 143 144 #ifdef CONFIG_PCI_MSI 145 void irq_free(unsigned int irq) 146 { 147 unsigned long flags; 148 149 if (irq >= NR_IRQS) 150 return; 151 152 spin_lock_irqsave(&irq_alloc_lock, flags); 153 154 irq_table[irq].in_use = 0; 155 156 spin_unlock_irqrestore(&irq_alloc_lock, flags); 157 } 158 #endif 159 160 /* 161 * /proc/interrupts printing: 162 */ 163 int arch_show_interrupts(struct seq_file *p, int prec) 164 { 165 int j; 166 167 seq_printf(p, "NMI: "); 168 for_each_online_cpu(j) 169 seq_printf(p, "%10u ", cpu_data(j).__nmi_count); 170 seq_printf(p, " Non-maskable interrupts\n"); 171 return 0; 172 } 173 174 static unsigned int sun4u_compute_tid(unsigned long imap, unsigned long cpuid) 175 { 176 unsigned int tid; 177 178 if (this_is_starfire) { 179 tid = starfire_translate(imap, cpuid); 180 tid <<= IMAP_TID_SHIFT; 181 tid &= IMAP_TID_UPA; 182 } else { 183 if (tlb_type == cheetah || tlb_type == cheetah_plus) { 184 unsigned long ver; 185 186 __asm__ ("rdpr %%ver, %0" : "=r" (ver)); 187 if ((ver >> 32UL) == __JALAPENO_ID || 188 (ver >> 32UL) == __SERRANO_ID) { 189 tid = cpuid << IMAP_TID_SHIFT; 190 tid &= IMAP_TID_JBUS; 191 } else { 192 unsigned int a = cpuid & 0x1f; 193 unsigned int n = (cpuid >> 5) & 0x1f; 194 195 tid = ((a << IMAP_AID_SHIFT) | 196 (n << IMAP_NID_SHIFT)); 197 tid &= (IMAP_AID_SAFARI | 198 IMAP_NID_SAFARI); 199 } 200 } else { 201 tid = cpuid << IMAP_TID_SHIFT; 202 tid &= IMAP_TID_UPA; 203 } 204 } 205 206 return tid; 207 } 208 209 struct irq_handler_data { 210 unsigned long iclr; 211 unsigned long imap; 212 213 void (*pre_handler)(unsigned int, void *, void *); 214 void *arg1; 215 void *arg2; 216 }; 217 218 #ifdef CONFIG_SMP 219 static int irq_choose_cpu(unsigned int irq, const struct cpumask *affinity) 220 { 221 cpumask_t mask; 222 int cpuid; 223 224 cpumask_copy(&mask, affinity); 225 if (cpumask_equal(&mask, cpu_online_mask)) { 226 cpuid = map_to_cpu(irq); 227 } else { 228 cpumask_t tmp; 229 230 cpumask_and(&tmp, cpu_online_mask, &mask); 231 cpuid = cpumask_empty(&tmp) ? map_to_cpu(irq) : cpumask_first(&tmp); 232 } 233 234 return cpuid; 235 } 236 #else 237 #define irq_choose_cpu(irq, affinity) \ 238 real_hard_smp_processor_id() 239 #endif 240 241 static void sun4u_irq_enable(struct irq_data *data) 242 { 243 struct irq_handler_data *handler_data = data->handler_data; 244 245 if (likely(handler_data)) { 246 unsigned long cpuid, imap, val; 247 unsigned int tid; 248 249 cpuid = irq_choose_cpu(data->irq, data->affinity); 250 imap = handler_data->imap; 251 252 tid = sun4u_compute_tid(imap, cpuid); 253 254 val = upa_readq(imap); 255 val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS | 256 IMAP_AID_SAFARI | IMAP_NID_SAFARI); 257 val |= tid | IMAP_VALID; 258 upa_writeq(val, imap); 259 upa_writeq(ICLR_IDLE, handler_data->iclr); 260 } 261 } 262 263 static int sun4u_set_affinity(struct irq_data *data, 264 const struct cpumask *mask, bool force) 265 { 266 struct irq_handler_data *handler_data = data->handler_data; 267 268 if (likely(handler_data)) { 269 unsigned long cpuid, imap, val; 270 unsigned int tid; 271 272 cpuid = irq_choose_cpu(data->irq, mask); 273 imap = handler_data->imap; 274 275 tid = sun4u_compute_tid(imap, cpuid); 276 277 val = upa_readq(imap); 278 val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS | 279 IMAP_AID_SAFARI | IMAP_NID_SAFARI); 280 val |= tid | IMAP_VALID; 281 upa_writeq(val, imap); 282 upa_writeq(ICLR_IDLE, handler_data->iclr); 283 } 284 285 return 0; 286 } 287 288 /* Don't do anything. The desc->status check for IRQ_DISABLED in 289 * handler_irq() will skip the handler call and that will leave the 290 * interrupt in the sent state. The next ->enable() call will hit the 291 * ICLR register to reset the state machine. 292 * 293 * This scheme is necessary, instead of clearing the Valid bit in the 294 * IMAP register, to handle the case of IMAP registers being shared by 295 * multiple INOs (and thus ICLR registers). Since we use a different 296 * virtual IRQ for each shared IMAP instance, the generic code thinks 297 * there is only one user so it prematurely calls ->disable() on 298 * free_irq(). 299 * 300 * We have to provide an explicit ->disable() method instead of using 301 * NULL to get the default. The reason is that if the generic code 302 * sees that, it also hooks up a default ->shutdown method which 303 * invokes ->mask() which we do not want. See irq_chip_set_defaults(). 304 */ 305 static void sun4u_irq_disable(struct irq_data *data) 306 { 307 } 308 309 static void sun4u_irq_eoi(struct irq_data *data) 310 { 311 struct irq_handler_data *handler_data = data->handler_data; 312 313 if (likely(handler_data)) 314 upa_writeq(ICLR_IDLE, handler_data->iclr); 315 } 316 317 static void sun4v_irq_enable(struct irq_data *data) 318 { 319 unsigned int ino = irq_table[data->irq].dev_ino; 320 unsigned long cpuid = irq_choose_cpu(data->irq, data->affinity); 321 int err; 322 323 err = sun4v_intr_settarget(ino, cpuid); 324 if (err != HV_EOK) 325 printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): " 326 "err(%d)\n", ino, cpuid, err); 327 err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE); 328 if (err != HV_EOK) 329 printk(KERN_ERR "sun4v_intr_setstate(%x): " 330 "err(%d)\n", ino, err); 331 err = sun4v_intr_setenabled(ino, HV_INTR_ENABLED); 332 if (err != HV_EOK) 333 printk(KERN_ERR "sun4v_intr_setenabled(%x): err(%d)\n", 334 ino, err); 335 } 336 337 static int sun4v_set_affinity(struct irq_data *data, 338 const struct cpumask *mask, bool force) 339 { 340 unsigned int ino = irq_table[data->irq].dev_ino; 341 unsigned long cpuid = irq_choose_cpu(data->irq, mask); 342 int err; 343 344 err = sun4v_intr_settarget(ino, cpuid); 345 if (err != HV_EOK) 346 printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): " 347 "err(%d)\n", ino, cpuid, err); 348 349 return 0; 350 } 351 352 static void sun4v_irq_disable(struct irq_data *data) 353 { 354 unsigned int ino = irq_table[data->irq].dev_ino; 355 int err; 356 357 err = sun4v_intr_setenabled(ino, HV_INTR_DISABLED); 358 if (err != HV_EOK) 359 printk(KERN_ERR "sun4v_intr_setenabled(%x): " 360 "err(%d)\n", ino, err); 361 } 362 363 static void sun4v_irq_eoi(struct irq_data *data) 364 { 365 unsigned int ino = irq_table[data->irq].dev_ino; 366 int err; 367 368 err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE); 369 if (err != HV_EOK) 370 printk(KERN_ERR "sun4v_intr_setstate(%x): " 371 "err(%d)\n", ino, err); 372 } 373 374 static void sun4v_virq_enable(struct irq_data *data) 375 { 376 unsigned long cpuid, dev_handle, dev_ino; 377 int err; 378 379 cpuid = irq_choose_cpu(data->irq, data->affinity); 380 381 dev_handle = irq_table[data->irq].dev_handle; 382 dev_ino = irq_table[data->irq].dev_ino; 383 384 err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid); 385 if (err != HV_EOK) 386 printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): " 387 "err(%d)\n", 388 dev_handle, dev_ino, cpuid, err); 389 err = sun4v_vintr_set_state(dev_handle, dev_ino, 390 HV_INTR_STATE_IDLE); 391 if (err != HV_EOK) 392 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx," 393 "HV_INTR_STATE_IDLE): err(%d)\n", 394 dev_handle, dev_ino, err); 395 err = sun4v_vintr_set_valid(dev_handle, dev_ino, 396 HV_INTR_ENABLED); 397 if (err != HV_EOK) 398 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx," 399 "HV_INTR_ENABLED): err(%d)\n", 400 dev_handle, dev_ino, err); 401 } 402 403 static int sun4v_virt_set_affinity(struct irq_data *data, 404 const struct cpumask *mask, bool force) 405 { 406 unsigned long cpuid, dev_handle, dev_ino; 407 int err; 408 409 cpuid = irq_choose_cpu(data->irq, mask); 410 411 dev_handle = irq_table[data->irq].dev_handle; 412 dev_ino = irq_table[data->irq].dev_ino; 413 414 err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid); 415 if (err != HV_EOK) 416 printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): " 417 "err(%d)\n", 418 dev_handle, dev_ino, cpuid, err); 419 420 return 0; 421 } 422 423 static void sun4v_virq_disable(struct irq_data *data) 424 { 425 unsigned long dev_handle, dev_ino; 426 int err; 427 428 dev_handle = irq_table[data->irq].dev_handle; 429 dev_ino = irq_table[data->irq].dev_ino; 430 431 err = sun4v_vintr_set_valid(dev_handle, dev_ino, 432 HV_INTR_DISABLED); 433 if (err != HV_EOK) 434 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx," 435 "HV_INTR_DISABLED): err(%d)\n", 436 dev_handle, dev_ino, err); 437 } 438 439 static void sun4v_virq_eoi(struct irq_data *data) 440 { 441 unsigned long dev_handle, dev_ino; 442 int err; 443 444 dev_handle = irq_table[data->irq].dev_handle; 445 dev_ino = irq_table[data->irq].dev_ino; 446 447 err = sun4v_vintr_set_state(dev_handle, dev_ino, 448 HV_INTR_STATE_IDLE); 449 if (err != HV_EOK) 450 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx," 451 "HV_INTR_STATE_IDLE): err(%d)\n", 452 dev_handle, dev_ino, err); 453 } 454 455 static struct irq_chip sun4u_irq = { 456 .name = "sun4u", 457 .irq_enable = sun4u_irq_enable, 458 .irq_disable = sun4u_irq_disable, 459 .irq_eoi = sun4u_irq_eoi, 460 .irq_set_affinity = sun4u_set_affinity, 461 .flags = IRQCHIP_EOI_IF_HANDLED, 462 }; 463 464 static struct irq_chip sun4v_irq = { 465 .name = "sun4v", 466 .irq_enable = sun4v_irq_enable, 467 .irq_disable = sun4v_irq_disable, 468 .irq_eoi = sun4v_irq_eoi, 469 .irq_set_affinity = sun4v_set_affinity, 470 .flags = IRQCHIP_EOI_IF_HANDLED, 471 }; 472 473 static struct irq_chip sun4v_virq = { 474 .name = "vsun4v", 475 .irq_enable = sun4v_virq_enable, 476 .irq_disable = sun4v_virq_disable, 477 .irq_eoi = sun4v_virq_eoi, 478 .irq_set_affinity = sun4v_virt_set_affinity, 479 .flags = IRQCHIP_EOI_IF_HANDLED, 480 }; 481 482 static void pre_flow_handler(struct irq_data *d) 483 { 484 struct irq_handler_data *handler_data = irq_data_get_irq_handler_data(d); 485 unsigned int ino = irq_table[d->irq].dev_ino; 486 487 handler_data->pre_handler(ino, handler_data->arg1, handler_data->arg2); 488 } 489 490 void irq_install_pre_handler(int irq, 491 void (*func)(unsigned int, void *, void *), 492 void *arg1, void *arg2) 493 { 494 struct irq_handler_data *handler_data = irq_get_handler_data(irq); 495 496 handler_data->pre_handler = func; 497 handler_data->arg1 = arg1; 498 handler_data->arg2 = arg2; 499 500 __irq_set_preflow_handler(irq, pre_flow_handler); 501 } 502 503 unsigned int build_irq(int inofixup, unsigned long iclr, unsigned long imap) 504 { 505 struct ino_bucket *bucket; 506 struct irq_handler_data *handler_data; 507 unsigned int irq; 508 int ino; 509 510 BUG_ON(tlb_type == hypervisor); 511 512 ino = (upa_readq(imap) & (IMAP_IGN | IMAP_INO)) + inofixup; 513 bucket = &ivector_table[ino]; 514 irq = bucket_get_irq(__pa(bucket)); 515 if (!irq) { 516 irq = irq_alloc(0, ino); 517 bucket_set_irq(__pa(bucket), irq); 518 irq_set_chip_and_handler_name(irq, &sun4u_irq, 519 handle_fasteoi_irq, "IVEC"); 520 } 521 522 handler_data = irq_get_handler_data(irq); 523 if (unlikely(handler_data)) 524 goto out; 525 526 handler_data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC); 527 if (unlikely(!handler_data)) { 528 prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n"); 529 prom_halt(); 530 } 531 irq_set_handler_data(irq, handler_data); 532 533 handler_data->imap = imap; 534 handler_data->iclr = iclr; 535 536 out: 537 return irq; 538 } 539 540 static unsigned int sun4v_build_common(unsigned long sysino, 541 struct irq_chip *chip) 542 { 543 struct ino_bucket *bucket; 544 struct irq_handler_data *handler_data; 545 unsigned int irq; 546 547 BUG_ON(tlb_type != hypervisor); 548 549 bucket = &ivector_table[sysino]; 550 irq = bucket_get_irq(__pa(bucket)); 551 if (!irq) { 552 irq = irq_alloc(0, sysino); 553 bucket_set_irq(__pa(bucket), irq); 554 irq_set_chip_and_handler_name(irq, chip, handle_fasteoi_irq, 555 "IVEC"); 556 } 557 558 handler_data = irq_get_handler_data(irq); 559 if (unlikely(handler_data)) 560 goto out; 561 562 handler_data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC); 563 if (unlikely(!handler_data)) { 564 prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n"); 565 prom_halt(); 566 } 567 irq_set_handler_data(irq, handler_data); 568 569 /* Catch accidental accesses to these things. IMAP/ICLR handling 570 * is done by hypervisor calls on sun4v platforms, not by direct 571 * register accesses. 572 */ 573 handler_data->imap = ~0UL; 574 handler_data->iclr = ~0UL; 575 576 out: 577 return irq; 578 } 579 580 unsigned int sun4v_build_irq(u32 devhandle, unsigned int devino) 581 { 582 unsigned long sysino = sun4v_devino_to_sysino(devhandle, devino); 583 584 return sun4v_build_common(sysino, &sun4v_irq); 585 } 586 587 unsigned int sun4v_build_virq(u32 devhandle, unsigned int devino) 588 { 589 struct irq_handler_data *handler_data; 590 unsigned long hv_err, cookie; 591 struct ino_bucket *bucket; 592 unsigned int irq; 593 594 bucket = kzalloc(sizeof(struct ino_bucket), GFP_ATOMIC); 595 if (unlikely(!bucket)) 596 return 0; 597 598 /* The only reference we store to the IRQ bucket is 599 * by physical address which kmemleak can't see, tell 600 * it that this object explicitly is not a leak and 601 * should be scanned. 602 */ 603 kmemleak_not_leak(bucket); 604 605 __flush_dcache_range((unsigned long) bucket, 606 ((unsigned long) bucket + 607 sizeof(struct ino_bucket))); 608 609 irq = irq_alloc(devhandle, devino); 610 bucket_set_irq(__pa(bucket), irq); 611 612 irq_set_chip_and_handler_name(irq, &sun4v_virq, handle_fasteoi_irq, 613 "IVEC"); 614 615 handler_data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC); 616 if (unlikely(!handler_data)) 617 return 0; 618 619 /* In order to make the LDC channel startup sequence easier, 620 * especially wrt. locking, we do not let request_irq() enable 621 * the interrupt. 622 */ 623 irq_set_status_flags(irq, IRQ_NOAUTOEN); 624 irq_set_handler_data(irq, handler_data); 625 626 /* Catch accidental accesses to these things. IMAP/ICLR handling 627 * is done by hypervisor calls on sun4v platforms, not by direct 628 * register accesses. 629 */ 630 handler_data->imap = ~0UL; 631 handler_data->iclr = ~0UL; 632 633 cookie = ~__pa(bucket); 634 hv_err = sun4v_vintr_set_cookie(devhandle, devino, cookie); 635 if (hv_err) { 636 prom_printf("IRQ: Fatal, cannot set cookie for [%x:%x] " 637 "err=%lu\n", devhandle, devino, hv_err); 638 prom_halt(); 639 } 640 641 return irq; 642 } 643 644 void ack_bad_irq(unsigned int irq) 645 { 646 unsigned int ino = irq_table[irq].dev_ino; 647 648 if (!ino) 649 ino = 0xdeadbeef; 650 651 printk(KERN_CRIT "Unexpected IRQ from ino[%x] irq[%u]\n", 652 ino, irq); 653 } 654 655 void *hardirq_stack[NR_CPUS]; 656 void *softirq_stack[NR_CPUS]; 657 658 void __irq_entry handler_irq(int pil, struct pt_regs *regs) 659 { 660 unsigned long pstate, bucket_pa; 661 struct pt_regs *old_regs; 662 void *orig_sp; 663 664 clear_softint(1 << pil); 665 666 old_regs = set_irq_regs(regs); 667 irq_enter(); 668 669 /* Grab an atomic snapshot of the pending IVECs. */ 670 __asm__ __volatile__("rdpr %%pstate, %0\n\t" 671 "wrpr %0, %3, %%pstate\n\t" 672 "ldx [%2], %1\n\t" 673 "stx %%g0, [%2]\n\t" 674 "wrpr %0, 0x0, %%pstate\n\t" 675 : "=&r" (pstate), "=&r" (bucket_pa) 676 : "r" (irq_work_pa(smp_processor_id())), 677 "i" (PSTATE_IE) 678 : "memory"); 679 680 orig_sp = set_hardirq_stack(); 681 682 while (bucket_pa) { 683 unsigned long next_pa; 684 unsigned int irq; 685 686 next_pa = bucket_get_chain_pa(bucket_pa); 687 irq = bucket_get_irq(bucket_pa); 688 bucket_clear_chain_pa(bucket_pa); 689 690 generic_handle_irq(irq); 691 692 bucket_pa = next_pa; 693 } 694 695 restore_hardirq_stack(orig_sp); 696 697 irq_exit(); 698 set_irq_regs(old_regs); 699 } 700 701 void do_softirq_own_stack(void) 702 { 703 void *orig_sp, *sp = softirq_stack[smp_processor_id()]; 704 705 sp += THREAD_SIZE - 192 - STACK_BIAS; 706 707 __asm__ __volatile__("mov %%sp, %0\n\t" 708 "mov %1, %%sp" 709 : "=&r" (orig_sp) 710 : "r" (sp)); 711 __do_softirq(); 712 __asm__ __volatile__("mov %0, %%sp" 713 : : "r" (orig_sp)); 714 } 715 716 #ifdef CONFIG_HOTPLUG_CPU 717 void fixup_irqs(void) 718 { 719 unsigned int irq; 720 721 for (irq = 0; irq < NR_IRQS; irq++) { 722 struct irq_desc *desc = irq_to_desc(irq); 723 struct irq_data *data = irq_desc_get_irq_data(desc); 724 unsigned long flags; 725 726 raw_spin_lock_irqsave(&desc->lock, flags); 727 if (desc->action && !irqd_is_per_cpu(data)) { 728 if (data->chip->irq_set_affinity) 729 data->chip->irq_set_affinity(data, 730 data->affinity, 731 false); 732 } 733 raw_spin_unlock_irqrestore(&desc->lock, flags); 734 } 735 736 tick_ops->disable_irq(); 737 } 738 #endif 739 740 struct sun5_timer { 741 u64 count0; 742 u64 limit0; 743 u64 count1; 744 u64 limit1; 745 }; 746 747 static struct sun5_timer *prom_timers; 748 static u64 prom_limit0, prom_limit1; 749 750 static void map_prom_timers(void) 751 { 752 struct device_node *dp; 753 const unsigned int *addr; 754 755 /* PROM timer node hangs out in the top level of device siblings... */ 756 dp = of_find_node_by_path("/"); 757 dp = dp->child; 758 while (dp) { 759 if (!strcmp(dp->name, "counter-timer")) 760 break; 761 dp = dp->sibling; 762 } 763 764 /* Assume if node is not present, PROM uses different tick mechanism 765 * which we should not care about. 766 */ 767 if (!dp) { 768 prom_timers = (struct sun5_timer *) 0; 769 return; 770 } 771 772 /* If PROM is really using this, it must be mapped by him. */ 773 addr = of_get_property(dp, "address", NULL); 774 if (!addr) { 775 prom_printf("PROM does not have timer mapped, trying to continue.\n"); 776 prom_timers = (struct sun5_timer *) 0; 777 return; 778 } 779 prom_timers = (struct sun5_timer *) ((unsigned long)addr[0]); 780 } 781 782 static void kill_prom_timer(void) 783 { 784 if (!prom_timers) 785 return; 786 787 /* Save them away for later. */ 788 prom_limit0 = prom_timers->limit0; 789 prom_limit1 = prom_timers->limit1; 790 791 /* Just as in sun4c PROM uses timer which ticks at IRQ 14. 792 * We turn both off here just to be paranoid. 793 */ 794 prom_timers->limit0 = 0; 795 prom_timers->limit1 = 0; 796 797 /* Wheee, eat the interrupt packet too... */ 798 __asm__ __volatile__( 799 " mov 0x40, %%g2\n" 800 " ldxa [%%g0] %0, %%g1\n" 801 " ldxa [%%g2] %1, %%g1\n" 802 " stxa %%g0, [%%g0] %0\n" 803 " membar #Sync\n" 804 : /* no outputs */ 805 : "i" (ASI_INTR_RECEIVE), "i" (ASI_INTR_R) 806 : "g1", "g2"); 807 } 808 809 void notrace init_irqwork_curcpu(void) 810 { 811 int cpu = hard_smp_processor_id(); 812 813 trap_block[cpu].irq_worklist_pa = 0UL; 814 } 815 816 /* Please be very careful with register_one_mondo() and 817 * sun4v_register_mondo_queues(). 818 * 819 * On SMP this gets invoked from the CPU trampoline before 820 * the cpu has fully taken over the trap table from OBP, 821 * and it's kernel stack + %g6 thread register state is 822 * not fully cooked yet. 823 * 824 * Therefore you cannot make any OBP calls, not even prom_printf, 825 * from these two routines. 826 */ 827 static void notrace register_one_mondo(unsigned long paddr, unsigned long type, 828 unsigned long qmask) 829 { 830 unsigned long num_entries = (qmask + 1) / 64; 831 unsigned long status; 832 833 status = sun4v_cpu_qconf(type, paddr, num_entries); 834 if (status != HV_EOK) { 835 prom_printf("SUN4V: sun4v_cpu_qconf(%lu:%lx:%lu) failed, " 836 "err %lu\n", type, paddr, num_entries, status); 837 prom_halt(); 838 } 839 } 840 841 void notrace sun4v_register_mondo_queues(int this_cpu) 842 { 843 struct trap_per_cpu *tb = &trap_block[this_cpu]; 844 845 register_one_mondo(tb->cpu_mondo_pa, HV_CPU_QUEUE_CPU_MONDO, 846 tb->cpu_mondo_qmask); 847 register_one_mondo(tb->dev_mondo_pa, HV_CPU_QUEUE_DEVICE_MONDO, 848 tb->dev_mondo_qmask); 849 register_one_mondo(tb->resum_mondo_pa, HV_CPU_QUEUE_RES_ERROR, 850 tb->resum_qmask); 851 register_one_mondo(tb->nonresum_mondo_pa, HV_CPU_QUEUE_NONRES_ERROR, 852 tb->nonresum_qmask); 853 } 854 855 /* Each queue region must be a power of 2 multiple of 64 bytes in 856 * size. The base real address must be aligned to the size of the 857 * region. Thus, an 8KB queue must be 8KB aligned, for example. 858 */ 859 static void __init alloc_one_queue(unsigned long *pa_ptr, unsigned long qmask) 860 { 861 unsigned long size = PAGE_ALIGN(qmask + 1); 862 unsigned long order = get_order(size); 863 unsigned long p; 864 865 p = __get_free_pages(GFP_KERNEL, order); 866 if (!p) { 867 prom_printf("SUN4V: Error, cannot allocate queue.\n"); 868 prom_halt(); 869 } 870 871 *pa_ptr = __pa(p); 872 } 873 874 static void __init init_cpu_send_mondo_info(struct trap_per_cpu *tb) 875 { 876 #ifdef CONFIG_SMP 877 unsigned long page; 878 879 BUILD_BUG_ON((NR_CPUS * sizeof(u16)) > (PAGE_SIZE - 64)); 880 881 page = get_zeroed_page(GFP_KERNEL); 882 if (!page) { 883 prom_printf("SUN4V: Error, cannot allocate cpu mondo page.\n"); 884 prom_halt(); 885 } 886 887 tb->cpu_mondo_block_pa = __pa(page); 888 tb->cpu_list_pa = __pa(page + 64); 889 #endif 890 } 891 892 /* Allocate mondo and error queues for all possible cpus. */ 893 static void __init sun4v_init_mondo_queues(void) 894 { 895 int cpu; 896 897 for_each_possible_cpu(cpu) { 898 struct trap_per_cpu *tb = &trap_block[cpu]; 899 900 alloc_one_queue(&tb->cpu_mondo_pa, tb->cpu_mondo_qmask); 901 alloc_one_queue(&tb->dev_mondo_pa, tb->dev_mondo_qmask); 902 alloc_one_queue(&tb->resum_mondo_pa, tb->resum_qmask); 903 alloc_one_queue(&tb->resum_kernel_buf_pa, tb->resum_qmask); 904 alloc_one_queue(&tb->nonresum_mondo_pa, tb->nonresum_qmask); 905 alloc_one_queue(&tb->nonresum_kernel_buf_pa, 906 tb->nonresum_qmask); 907 } 908 } 909 910 static void __init init_send_mondo_info(void) 911 { 912 int cpu; 913 914 for_each_possible_cpu(cpu) { 915 struct trap_per_cpu *tb = &trap_block[cpu]; 916 917 init_cpu_send_mondo_info(tb); 918 } 919 } 920 921 static struct irqaction timer_irq_action = { 922 .name = "timer", 923 }; 924 925 /* Only invoked on boot processor. */ 926 void __init init_IRQ(void) 927 { 928 unsigned long size; 929 930 map_prom_timers(); 931 kill_prom_timer(); 932 933 size = sizeof(struct ino_bucket) * NUM_IVECS; 934 ivector_table = kzalloc(size, GFP_KERNEL); 935 if (!ivector_table) { 936 prom_printf("Fatal error, cannot allocate ivector_table\n"); 937 prom_halt(); 938 } 939 __flush_dcache_range((unsigned long) ivector_table, 940 ((unsigned long) ivector_table) + size); 941 942 ivector_table_pa = __pa(ivector_table); 943 944 if (tlb_type == hypervisor) 945 sun4v_init_mondo_queues(); 946 947 init_send_mondo_info(); 948 949 if (tlb_type == hypervisor) { 950 /* Load up the boot cpu's entries. */ 951 sun4v_register_mondo_queues(hard_smp_processor_id()); 952 } 953 954 /* We need to clear any IRQ's pending in the soft interrupt 955 * registers, a spurious one could be left around from the 956 * PROM timer which we just disabled. 957 */ 958 clear_softint(get_softint()); 959 960 /* Now that ivector table is initialized, it is safe 961 * to receive IRQ vector traps. We will normally take 962 * one or two right now, in case some device PROM used 963 * to boot us wants to speak to us. We just ignore them. 964 */ 965 __asm__ __volatile__("rdpr %%pstate, %%g1\n\t" 966 "or %%g1, %0, %%g1\n\t" 967 "wrpr %%g1, 0x0, %%pstate" 968 : /* No outputs */ 969 : "i" (PSTATE_IE) 970 : "g1"); 971 972 irq_to_desc(0)->action = &timer_irq_action; 973 } 974