1 /* irq.c: UltraSparc IRQ handling/init/registry. 2 * 3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net) 4 * Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be) 5 * Copyright (C) 1998 Jakub Jelinek (jj@ultra.linux.cz) 6 */ 7 8 #include <linux/sched.h> 9 #include <linux/linkage.h> 10 #include <linux/ptrace.h> 11 #include <linux/errno.h> 12 #include <linux/kernel_stat.h> 13 #include <linux/signal.h> 14 #include <linux/mm.h> 15 #include <linux/interrupt.h> 16 #include <linux/slab.h> 17 #include <linux/random.h> 18 #include <linux/init.h> 19 #include <linux/delay.h> 20 #include <linux/proc_fs.h> 21 #include <linux/seq_file.h> 22 #include <linux/ftrace.h> 23 #include <linux/irq.h> 24 #include <linux/kmemleak.h> 25 26 #include <asm/ptrace.h> 27 #include <asm/processor.h> 28 #include <linux/atomic.h> 29 #include <asm/irq.h> 30 #include <asm/io.h> 31 #include <asm/iommu.h> 32 #include <asm/upa.h> 33 #include <asm/oplib.h> 34 #include <asm/prom.h> 35 #include <asm/timer.h> 36 #include <asm/smp.h> 37 #include <asm/starfire.h> 38 #include <asm/uaccess.h> 39 #include <asm/cache.h> 40 #include <asm/cpudata.h> 41 #include <asm/auxio.h> 42 #include <asm/head.h> 43 #include <asm/hypervisor.h> 44 #include <asm/cacheflush.h> 45 46 #include "entry.h" 47 #include "cpumap.h" 48 #include "kstack.h" 49 50 struct ino_bucket *ivector_table; 51 unsigned long ivector_table_pa; 52 53 /* On several sun4u processors, it is illegal to mix bypass and 54 * non-bypass accesses. Therefore we access all INO buckets 55 * using bypass accesses only. 56 */ 57 static unsigned long bucket_get_chain_pa(unsigned long bucket_pa) 58 { 59 unsigned long ret; 60 61 __asm__ __volatile__("ldxa [%1] %2, %0" 62 : "=&r" (ret) 63 : "r" (bucket_pa + 64 offsetof(struct ino_bucket, 65 __irq_chain_pa)), 66 "i" (ASI_PHYS_USE_EC)); 67 68 return ret; 69 } 70 71 static void bucket_clear_chain_pa(unsigned long bucket_pa) 72 { 73 __asm__ __volatile__("stxa %%g0, [%0] %1" 74 : /* no outputs */ 75 : "r" (bucket_pa + 76 offsetof(struct ino_bucket, 77 __irq_chain_pa)), 78 "i" (ASI_PHYS_USE_EC)); 79 } 80 81 static unsigned int bucket_get_irq(unsigned long bucket_pa) 82 { 83 unsigned int ret; 84 85 __asm__ __volatile__("lduwa [%1] %2, %0" 86 : "=&r" (ret) 87 : "r" (bucket_pa + 88 offsetof(struct ino_bucket, 89 __irq)), 90 "i" (ASI_PHYS_USE_EC)); 91 92 return ret; 93 } 94 95 static void bucket_set_irq(unsigned long bucket_pa, unsigned int irq) 96 { 97 __asm__ __volatile__("stwa %0, [%1] %2" 98 : /* no outputs */ 99 : "r" (irq), 100 "r" (bucket_pa + 101 offsetof(struct ino_bucket, 102 __irq)), 103 "i" (ASI_PHYS_USE_EC)); 104 } 105 106 #define irq_work_pa(__cpu) &(trap_block[(__cpu)].irq_worklist_pa) 107 108 static unsigned long hvirq_major __initdata; 109 static int __init early_hvirq_major(char *p) 110 { 111 int rc = kstrtoul(p, 10, &hvirq_major); 112 113 return rc; 114 } 115 early_param("hvirq", early_hvirq_major); 116 117 static int hv_irq_version; 118 119 /* Major version 2.0 of HV_GRP_INTR added support for the VIRQ cookie 120 * based interfaces, but: 121 * 122 * 1) Several OSs, Solaris and Linux included, use them even when only 123 * negotiating version 1.0 (or failing to negotiate at all). So the 124 * hypervisor has a workaround that provides the VIRQ interfaces even 125 * when only verion 1.0 of the API is in use. 126 * 127 * 2) Second, and more importantly, with major version 2.0 these VIRQ 128 * interfaces only were actually hooked up for LDC interrupts, even 129 * though the Hypervisor specification clearly stated: 130 * 131 * The new interrupt API functions will be available to a guest 132 * when it negotiates version 2.0 in the interrupt API group 0x2. When 133 * a guest negotiates version 2.0, all interrupt sources will only 134 * support using the cookie interface, and any attempt to use the 135 * version 1.0 interrupt APIs numbered 0xa0 to 0xa6 will result in the 136 * ENOTSUPPORTED error being returned. 137 * 138 * with an emphasis on "all interrupt sources". 139 * 140 * To correct this, major version 3.0 was created which does actually 141 * support VIRQs for all interrupt sources (not just LDC devices). So 142 * if we want to move completely over the cookie based VIRQs we must 143 * negotiate major version 3.0 or later of HV_GRP_INTR. 144 */ 145 static bool sun4v_cookie_only_virqs(void) 146 { 147 if (hv_irq_version >= 3) 148 return true; 149 return false; 150 } 151 152 static void __init irq_init_hv(void) 153 { 154 unsigned long hv_error, major, minor = 0; 155 156 if (tlb_type != hypervisor) 157 return; 158 159 if (hvirq_major) 160 major = hvirq_major; 161 else 162 major = 3; 163 164 hv_error = sun4v_hvapi_register(HV_GRP_INTR, major, &minor); 165 if (!hv_error) 166 hv_irq_version = major; 167 else 168 hv_irq_version = 1; 169 170 pr_info("SUN4V: Using IRQ API major %d, cookie only virqs %s\n", 171 hv_irq_version, 172 sun4v_cookie_only_virqs() ? "enabled" : "disabled"); 173 } 174 175 /* This function is for the timer interrupt.*/ 176 int __init arch_probe_nr_irqs(void) 177 { 178 return 1; 179 } 180 181 #define DEFAULT_NUM_IVECS (0xfffU) 182 static unsigned int nr_ivec = DEFAULT_NUM_IVECS; 183 #define NUM_IVECS (nr_ivec) 184 185 static unsigned int __init size_nr_ivec(void) 186 { 187 if (tlb_type == hypervisor) { 188 switch (sun4v_chip_type) { 189 /* Athena's devhandle|devino is large.*/ 190 case SUN4V_CHIP_SPARC64X: 191 nr_ivec = 0xffff; 192 break; 193 } 194 } 195 return nr_ivec; 196 } 197 198 struct irq_handler_data { 199 union { 200 struct { 201 unsigned int dev_handle; 202 unsigned int dev_ino; 203 }; 204 unsigned long sysino; 205 }; 206 struct ino_bucket bucket; 207 unsigned long iclr; 208 unsigned long imap; 209 }; 210 211 static inline unsigned int irq_data_to_handle(struct irq_data *data) 212 { 213 struct irq_handler_data *ihd = data->handler_data; 214 215 return ihd->dev_handle; 216 } 217 218 static inline unsigned int irq_data_to_ino(struct irq_data *data) 219 { 220 struct irq_handler_data *ihd = data->handler_data; 221 222 return ihd->dev_ino; 223 } 224 225 static inline unsigned long irq_data_to_sysino(struct irq_data *data) 226 { 227 struct irq_handler_data *ihd = data->handler_data; 228 229 return ihd->sysino; 230 } 231 232 void irq_free(unsigned int irq) 233 { 234 void *data = irq_get_handler_data(irq); 235 236 kfree(data); 237 irq_set_handler_data(irq, NULL); 238 irq_free_descs(irq, 1); 239 } 240 241 unsigned int irq_alloc(unsigned int dev_handle, unsigned int dev_ino) 242 { 243 int irq; 244 245 irq = __irq_alloc_descs(-1, 1, 1, numa_node_id(), NULL); 246 if (irq <= 0) 247 goto out; 248 249 return irq; 250 out: 251 return 0; 252 } 253 254 static unsigned int cookie_exists(u32 devhandle, unsigned int devino) 255 { 256 unsigned long hv_err, cookie; 257 struct ino_bucket *bucket; 258 unsigned int irq = 0U; 259 260 hv_err = sun4v_vintr_get_cookie(devhandle, devino, &cookie); 261 if (hv_err) { 262 pr_err("HV get cookie failed hv_err = %ld\n", hv_err); 263 goto out; 264 } 265 266 if (cookie & ((1UL << 63UL))) { 267 cookie = ~cookie; 268 bucket = (struct ino_bucket *) __va(cookie); 269 irq = bucket->__irq; 270 } 271 out: 272 return irq; 273 } 274 275 static unsigned int sysino_exists(u32 devhandle, unsigned int devino) 276 { 277 unsigned long sysino = sun4v_devino_to_sysino(devhandle, devino); 278 struct ino_bucket *bucket; 279 unsigned int irq; 280 281 bucket = &ivector_table[sysino]; 282 irq = bucket_get_irq(__pa(bucket)); 283 284 return irq; 285 } 286 287 void ack_bad_irq(unsigned int irq) 288 { 289 pr_crit("BAD IRQ ack %d\n", irq); 290 } 291 292 void irq_install_pre_handler(int irq, 293 void (*func)(unsigned int, void *, void *), 294 void *arg1, void *arg2) 295 { 296 pr_warn("IRQ pre handler NOT supported.\n"); 297 } 298 299 /* 300 * /proc/interrupts printing: 301 */ 302 int arch_show_interrupts(struct seq_file *p, int prec) 303 { 304 int j; 305 306 seq_printf(p, "NMI: "); 307 for_each_online_cpu(j) 308 seq_printf(p, "%10u ", cpu_data(j).__nmi_count); 309 seq_printf(p, " Non-maskable interrupts\n"); 310 return 0; 311 } 312 313 static unsigned int sun4u_compute_tid(unsigned long imap, unsigned long cpuid) 314 { 315 unsigned int tid; 316 317 if (this_is_starfire) { 318 tid = starfire_translate(imap, cpuid); 319 tid <<= IMAP_TID_SHIFT; 320 tid &= IMAP_TID_UPA; 321 } else { 322 if (tlb_type == cheetah || tlb_type == cheetah_plus) { 323 unsigned long ver; 324 325 __asm__ ("rdpr %%ver, %0" : "=r" (ver)); 326 if ((ver >> 32UL) == __JALAPENO_ID || 327 (ver >> 32UL) == __SERRANO_ID) { 328 tid = cpuid << IMAP_TID_SHIFT; 329 tid &= IMAP_TID_JBUS; 330 } else { 331 unsigned int a = cpuid & 0x1f; 332 unsigned int n = (cpuid >> 5) & 0x1f; 333 334 tid = ((a << IMAP_AID_SHIFT) | 335 (n << IMAP_NID_SHIFT)); 336 tid &= (IMAP_AID_SAFARI | 337 IMAP_NID_SAFARI); 338 } 339 } else { 340 tid = cpuid << IMAP_TID_SHIFT; 341 tid &= IMAP_TID_UPA; 342 } 343 } 344 345 return tid; 346 } 347 348 #ifdef CONFIG_SMP 349 static int irq_choose_cpu(unsigned int irq, const struct cpumask *affinity) 350 { 351 cpumask_t mask; 352 int cpuid; 353 354 cpumask_copy(&mask, affinity); 355 if (cpumask_equal(&mask, cpu_online_mask)) { 356 cpuid = map_to_cpu(irq); 357 } else { 358 cpumask_t tmp; 359 360 cpumask_and(&tmp, cpu_online_mask, &mask); 361 cpuid = cpumask_empty(&tmp) ? map_to_cpu(irq) : cpumask_first(&tmp); 362 } 363 364 return cpuid; 365 } 366 #else 367 #define irq_choose_cpu(irq, affinity) \ 368 real_hard_smp_processor_id() 369 #endif 370 371 static void sun4u_irq_enable(struct irq_data *data) 372 { 373 struct irq_handler_data *handler_data = data->handler_data; 374 375 if (likely(handler_data)) { 376 unsigned long cpuid, imap, val; 377 unsigned int tid; 378 379 cpuid = irq_choose_cpu(data->irq, data->affinity); 380 imap = handler_data->imap; 381 382 tid = sun4u_compute_tid(imap, cpuid); 383 384 val = upa_readq(imap); 385 val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS | 386 IMAP_AID_SAFARI | IMAP_NID_SAFARI); 387 val |= tid | IMAP_VALID; 388 upa_writeq(val, imap); 389 upa_writeq(ICLR_IDLE, handler_data->iclr); 390 } 391 } 392 393 static int sun4u_set_affinity(struct irq_data *data, 394 const struct cpumask *mask, bool force) 395 { 396 struct irq_handler_data *handler_data = data->handler_data; 397 398 if (likely(handler_data)) { 399 unsigned long cpuid, imap, val; 400 unsigned int tid; 401 402 cpuid = irq_choose_cpu(data->irq, mask); 403 imap = handler_data->imap; 404 405 tid = sun4u_compute_tid(imap, cpuid); 406 407 val = upa_readq(imap); 408 val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS | 409 IMAP_AID_SAFARI | IMAP_NID_SAFARI); 410 val |= tid | IMAP_VALID; 411 upa_writeq(val, imap); 412 upa_writeq(ICLR_IDLE, handler_data->iclr); 413 } 414 415 return 0; 416 } 417 418 /* Don't do anything. The desc->status check for IRQ_DISABLED in 419 * handler_irq() will skip the handler call and that will leave the 420 * interrupt in the sent state. The next ->enable() call will hit the 421 * ICLR register to reset the state machine. 422 * 423 * This scheme is necessary, instead of clearing the Valid bit in the 424 * IMAP register, to handle the case of IMAP registers being shared by 425 * multiple INOs (and thus ICLR registers). Since we use a different 426 * virtual IRQ for each shared IMAP instance, the generic code thinks 427 * there is only one user so it prematurely calls ->disable() on 428 * free_irq(). 429 * 430 * We have to provide an explicit ->disable() method instead of using 431 * NULL to get the default. The reason is that if the generic code 432 * sees that, it also hooks up a default ->shutdown method which 433 * invokes ->mask() which we do not want. See irq_chip_set_defaults(). 434 */ 435 static void sun4u_irq_disable(struct irq_data *data) 436 { 437 } 438 439 static void sun4u_irq_eoi(struct irq_data *data) 440 { 441 struct irq_handler_data *handler_data = data->handler_data; 442 443 if (likely(handler_data)) 444 upa_writeq(ICLR_IDLE, handler_data->iclr); 445 } 446 447 static void sun4v_irq_enable(struct irq_data *data) 448 { 449 unsigned long cpuid = irq_choose_cpu(data->irq, data->affinity); 450 unsigned int ino = irq_data_to_sysino(data); 451 int err; 452 453 err = sun4v_intr_settarget(ino, cpuid); 454 if (err != HV_EOK) 455 printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): " 456 "err(%d)\n", ino, cpuid, err); 457 err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE); 458 if (err != HV_EOK) 459 printk(KERN_ERR "sun4v_intr_setstate(%x): " 460 "err(%d)\n", ino, err); 461 err = sun4v_intr_setenabled(ino, HV_INTR_ENABLED); 462 if (err != HV_EOK) 463 printk(KERN_ERR "sun4v_intr_setenabled(%x): err(%d)\n", 464 ino, err); 465 } 466 467 static int sun4v_set_affinity(struct irq_data *data, 468 const struct cpumask *mask, bool force) 469 { 470 unsigned long cpuid = irq_choose_cpu(data->irq, mask); 471 unsigned int ino = irq_data_to_sysino(data); 472 int err; 473 474 err = sun4v_intr_settarget(ino, cpuid); 475 if (err != HV_EOK) 476 printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): " 477 "err(%d)\n", ino, cpuid, err); 478 479 return 0; 480 } 481 482 static void sun4v_irq_disable(struct irq_data *data) 483 { 484 unsigned int ino = irq_data_to_sysino(data); 485 int err; 486 487 err = sun4v_intr_setenabled(ino, HV_INTR_DISABLED); 488 if (err != HV_EOK) 489 printk(KERN_ERR "sun4v_intr_setenabled(%x): " 490 "err(%d)\n", ino, err); 491 } 492 493 static void sun4v_irq_eoi(struct irq_data *data) 494 { 495 unsigned int ino = irq_data_to_sysino(data); 496 int err; 497 498 err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE); 499 if (err != HV_EOK) 500 printk(KERN_ERR "sun4v_intr_setstate(%x): " 501 "err(%d)\n", ino, err); 502 } 503 504 static void sun4v_virq_enable(struct irq_data *data) 505 { 506 unsigned long dev_handle = irq_data_to_handle(data); 507 unsigned long dev_ino = irq_data_to_ino(data); 508 unsigned long cpuid; 509 int err; 510 511 cpuid = irq_choose_cpu(data->irq, data->affinity); 512 513 err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid); 514 if (err != HV_EOK) 515 printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): " 516 "err(%d)\n", 517 dev_handle, dev_ino, cpuid, err); 518 err = sun4v_vintr_set_state(dev_handle, dev_ino, 519 HV_INTR_STATE_IDLE); 520 if (err != HV_EOK) 521 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx," 522 "HV_INTR_STATE_IDLE): err(%d)\n", 523 dev_handle, dev_ino, err); 524 err = sun4v_vintr_set_valid(dev_handle, dev_ino, 525 HV_INTR_ENABLED); 526 if (err != HV_EOK) 527 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx," 528 "HV_INTR_ENABLED): err(%d)\n", 529 dev_handle, dev_ino, err); 530 } 531 532 static int sun4v_virt_set_affinity(struct irq_data *data, 533 const struct cpumask *mask, bool force) 534 { 535 unsigned long dev_handle = irq_data_to_handle(data); 536 unsigned long dev_ino = irq_data_to_ino(data); 537 unsigned long cpuid; 538 int err; 539 540 cpuid = irq_choose_cpu(data->irq, mask); 541 542 err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid); 543 if (err != HV_EOK) 544 printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): " 545 "err(%d)\n", 546 dev_handle, dev_ino, cpuid, err); 547 548 return 0; 549 } 550 551 static void sun4v_virq_disable(struct irq_data *data) 552 { 553 unsigned long dev_handle = irq_data_to_handle(data); 554 unsigned long dev_ino = irq_data_to_ino(data); 555 int err; 556 557 558 err = sun4v_vintr_set_valid(dev_handle, dev_ino, 559 HV_INTR_DISABLED); 560 if (err != HV_EOK) 561 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx," 562 "HV_INTR_DISABLED): err(%d)\n", 563 dev_handle, dev_ino, err); 564 } 565 566 static void sun4v_virq_eoi(struct irq_data *data) 567 { 568 unsigned long dev_handle = irq_data_to_handle(data); 569 unsigned long dev_ino = irq_data_to_ino(data); 570 int err; 571 572 err = sun4v_vintr_set_state(dev_handle, dev_ino, 573 HV_INTR_STATE_IDLE); 574 if (err != HV_EOK) 575 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx," 576 "HV_INTR_STATE_IDLE): err(%d)\n", 577 dev_handle, dev_ino, err); 578 } 579 580 static struct irq_chip sun4u_irq = { 581 .name = "sun4u", 582 .irq_enable = sun4u_irq_enable, 583 .irq_disable = sun4u_irq_disable, 584 .irq_eoi = sun4u_irq_eoi, 585 .irq_set_affinity = sun4u_set_affinity, 586 .flags = IRQCHIP_EOI_IF_HANDLED, 587 }; 588 589 static struct irq_chip sun4v_irq = { 590 .name = "sun4v", 591 .irq_enable = sun4v_irq_enable, 592 .irq_disable = sun4v_irq_disable, 593 .irq_eoi = sun4v_irq_eoi, 594 .irq_set_affinity = sun4v_set_affinity, 595 .flags = IRQCHIP_EOI_IF_HANDLED, 596 }; 597 598 static struct irq_chip sun4v_virq = { 599 .name = "vsun4v", 600 .irq_enable = sun4v_virq_enable, 601 .irq_disable = sun4v_virq_disable, 602 .irq_eoi = sun4v_virq_eoi, 603 .irq_set_affinity = sun4v_virt_set_affinity, 604 .flags = IRQCHIP_EOI_IF_HANDLED, 605 }; 606 607 unsigned int build_irq(int inofixup, unsigned long iclr, unsigned long imap) 608 { 609 struct irq_handler_data *handler_data; 610 struct ino_bucket *bucket; 611 unsigned int irq; 612 int ino; 613 614 BUG_ON(tlb_type == hypervisor); 615 616 ino = (upa_readq(imap) & (IMAP_IGN | IMAP_INO)) + inofixup; 617 bucket = &ivector_table[ino]; 618 irq = bucket_get_irq(__pa(bucket)); 619 if (!irq) { 620 irq = irq_alloc(0, ino); 621 bucket_set_irq(__pa(bucket), irq); 622 irq_set_chip_and_handler_name(irq, &sun4u_irq, 623 handle_fasteoi_irq, "IVEC"); 624 } 625 626 handler_data = irq_get_handler_data(irq); 627 if (unlikely(handler_data)) 628 goto out; 629 630 handler_data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC); 631 if (unlikely(!handler_data)) { 632 prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n"); 633 prom_halt(); 634 } 635 irq_set_handler_data(irq, handler_data); 636 637 handler_data->imap = imap; 638 handler_data->iclr = iclr; 639 640 out: 641 return irq; 642 } 643 644 static unsigned int sun4v_build_common(u32 devhandle, unsigned int devino, 645 void (*handler_data_init)(struct irq_handler_data *data, 646 u32 devhandle, unsigned int devino), 647 struct irq_chip *chip) 648 { 649 struct irq_handler_data *data; 650 unsigned int irq; 651 652 irq = irq_alloc(devhandle, devino); 653 if (!irq) 654 goto out; 655 656 data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC); 657 if (unlikely(!data)) { 658 pr_err("IRQ handler data allocation failed.\n"); 659 irq_free(irq); 660 irq = 0; 661 goto out; 662 } 663 664 irq_set_handler_data(irq, data); 665 handler_data_init(data, devhandle, devino); 666 irq_set_chip_and_handler_name(irq, chip, handle_fasteoi_irq, "IVEC"); 667 data->imap = ~0UL; 668 data->iclr = ~0UL; 669 out: 670 return irq; 671 } 672 673 static unsigned long cookie_assign(unsigned int irq, u32 devhandle, 674 unsigned int devino) 675 { 676 struct irq_handler_data *ihd = irq_get_handler_data(irq); 677 unsigned long hv_error, cookie; 678 679 /* handler_irq needs to find the irq. cookie is seen signed in 680 * sun4v_dev_mondo and treated as a non ivector_table delivery. 681 */ 682 ihd->bucket.__irq = irq; 683 cookie = ~__pa(&ihd->bucket); 684 685 hv_error = sun4v_vintr_set_cookie(devhandle, devino, cookie); 686 if (hv_error) 687 pr_err("HV vintr set cookie failed = %ld\n", hv_error); 688 689 return hv_error; 690 } 691 692 static void cookie_handler_data(struct irq_handler_data *data, 693 u32 devhandle, unsigned int devino) 694 { 695 data->dev_handle = devhandle; 696 data->dev_ino = devino; 697 } 698 699 static unsigned int cookie_build_irq(u32 devhandle, unsigned int devino, 700 struct irq_chip *chip) 701 { 702 unsigned long hv_error; 703 unsigned int irq; 704 705 irq = sun4v_build_common(devhandle, devino, cookie_handler_data, chip); 706 707 hv_error = cookie_assign(irq, devhandle, devino); 708 if (hv_error) { 709 irq_free(irq); 710 irq = 0; 711 } 712 713 return irq; 714 } 715 716 static unsigned int sun4v_build_cookie(u32 devhandle, unsigned int devino) 717 { 718 unsigned int irq; 719 720 irq = cookie_exists(devhandle, devino); 721 if (irq) 722 goto out; 723 724 irq = cookie_build_irq(devhandle, devino, &sun4v_virq); 725 726 out: 727 return irq; 728 } 729 730 static void sysino_set_bucket(unsigned int irq) 731 { 732 struct irq_handler_data *ihd = irq_get_handler_data(irq); 733 struct ino_bucket *bucket; 734 unsigned long sysino; 735 736 sysino = sun4v_devino_to_sysino(ihd->dev_handle, ihd->dev_ino); 737 BUG_ON(sysino >= nr_ivec); 738 bucket = &ivector_table[sysino]; 739 bucket_set_irq(__pa(bucket), irq); 740 } 741 742 static void sysino_handler_data(struct irq_handler_data *data, 743 u32 devhandle, unsigned int devino) 744 { 745 unsigned long sysino; 746 747 sysino = sun4v_devino_to_sysino(devhandle, devino); 748 data->sysino = sysino; 749 } 750 751 static unsigned int sysino_build_irq(u32 devhandle, unsigned int devino, 752 struct irq_chip *chip) 753 { 754 unsigned int irq; 755 756 irq = sun4v_build_common(devhandle, devino, sysino_handler_data, chip); 757 if (!irq) 758 goto out; 759 760 sysino_set_bucket(irq); 761 out: 762 return irq; 763 } 764 765 static int sun4v_build_sysino(u32 devhandle, unsigned int devino) 766 { 767 int irq; 768 769 irq = sysino_exists(devhandle, devino); 770 if (irq) 771 goto out; 772 773 irq = sysino_build_irq(devhandle, devino, &sun4v_irq); 774 out: 775 return irq; 776 } 777 778 unsigned int sun4v_build_irq(u32 devhandle, unsigned int devino) 779 { 780 unsigned int irq; 781 782 if (sun4v_cookie_only_virqs()) 783 irq = sun4v_build_cookie(devhandle, devino); 784 else 785 irq = sun4v_build_sysino(devhandle, devino); 786 787 return irq; 788 } 789 790 unsigned int sun4v_build_virq(u32 devhandle, unsigned int devino) 791 { 792 int irq; 793 794 irq = cookie_build_irq(devhandle, devino, &sun4v_virq); 795 if (!irq) 796 goto out; 797 798 /* This is borrowed from the original function. 799 */ 800 irq_set_status_flags(irq, IRQ_NOAUTOEN); 801 802 out: 803 return irq; 804 } 805 806 void *hardirq_stack[NR_CPUS]; 807 void *softirq_stack[NR_CPUS]; 808 809 void __irq_entry handler_irq(int pil, struct pt_regs *regs) 810 { 811 unsigned long pstate, bucket_pa; 812 struct pt_regs *old_regs; 813 void *orig_sp; 814 815 clear_softint(1 << pil); 816 817 old_regs = set_irq_regs(regs); 818 irq_enter(); 819 820 /* Grab an atomic snapshot of the pending IVECs. */ 821 __asm__ __volatile__("rdpr %%pstate, %0\n\t" 822 "wrpr %0, %3, %%pstate\n\t" 823 "ldx [%2], %1\n\t" 824 "stx %%g0, [%2]\n\t" 825 "wrpr %0, 0x0, %%pstate\n\t" 826 : "=&r" (pstate), "=&r" (bucket_pa) 827 : "r" (irq_work_pa(smp_processor_id())), 828 "i" (PSTATE_IE) 829 : "memory"); 830 831 orig_sp = set_hardirq_stack(); 832 833 while (bucket_pa) { 834 unsigned long next_pa; 835 unsigned int irq; 836 837 next_pa = bucket_get_chain_pa(bucket_pa); 838 irq = bucket_get_irq(bucket_pa); 839 bucket_clear_chain_pa(bucket_pa); 840 841 generic_handle_irq(irq); 842 843 bucket_pa = next_pa; 844 } 845 846 restore_hardirq_stack(orig_sp); 847 848 irq_exit(); 849 set_irq_regs(old_regs); 850 } 851 852 void do_softirq_own_stack(void) 853 { 854 void *orig_sp, *sp = softirq_stack[smp_processor_id()]; 855 856 sp += THREAD_SIZE - 192 - STACK_BIAS; 857 858 __asm__ __volatile__("mov %%sp, %0\n\t" 859 "mov %1, %%sp" 860 : "=&r" (orig_sp) 861 : "r" (sp)); 862 __do_softirq(); 863 __asm__ __volatile__("mov %0, %%sp" 864 : : "r" (orig_sp)); 865 } 866 867 #ifdef CONFIG_HOTPLUG_CPU 868 void fixup_irqs(void) 869 { 870 unsigned int irq; 871 872 for (irq = 0; irq < NR_IRQS; irq++) { 873 struct irq_desc *desc = irq_to_desc(irq); 874 struct irq_data *data; 875 unsigned long flags; 876 877 if (!desc) 878 continue; 879 data = irq_desc_get_irq_data(desc); 880 raw_spin_lock_irqsave(&desc->lock, flags); 881 if (desc->action && !irqd_is_per_cpu(data)) { 882 if (data->chip->irq_set_affinity) 883 data->chip->irq_set_affinity(data, 884 data->affinity, 885 false); 886 } 887 raw_spin_unlock_irqrestore(&desc->lock, flags); 888 } 889 890 tick_ops->disable_irq(); 891 } 892 #endif 893 894 struct sun5_timer { 895 u64 count0; 896 u64 limit0; 897 u64 count1; 898 u64 limit1; 899 }; 900 901 static struct sun5_timer *prom_timers; 902 static u64 prom_limit0, prom_limit1; 903 904 static void map_prom_timers(void) 905 { 906 struct device_node *dp; 907 const unsigned int *addr; 908 909 /* PROM timer node hangs out in the top level of device siblings... */ 910 dp = of_find_node_by_path("/"); 911 dp = dp->child; 912 while (dp) { 913 if (!strcmp(dp->name, "counter-timer")) 914 break; 915 dp = dp->sibling; 916 } 917 918 /* Assume if node is not present, PROM uses different tick mechanism 919 * which we should not care about. 920 */ 921 if (!dp) { 922 prom_timers = (struct sun5_timer *) 0; 923 return; 924 } 925 926 /* If PROM is really using this, it must be mapped by him. */ 927 addr = of_get_property(dp, "address", NULL); 928 if (!addr) { 929 prom_printf("PROM does not have timer mapped, trying to continue.\n"); 930 prom_timers = (struct sun5_timer *) 0; 931 return; 932 } 933 prom_timers = (struct sun5_timer *) ((unsigned long)addr[0]); 934 } 935 936 static void kill_prom_timer(void) 937 { 938 if (!prom_timers) 939 return; 940 941 /* Save them away for later. */ 942 prom_limit0 = prom_timers->limit0; 943 prom_limit1 = prom_timers->limit1; 944 945 /* Just as in sun4c PROM uses timer which ticks at IRQ 14. 946 * We turn both off here just to be paranoid. 947 */ 948 prom_timers->limit0 = 0; 949 prom_timers->limit1 = 0; 950 951 /* Wheee, eat the interrupt packet too... */ 952 __asm__ __volatile__( 953 " mov 0x40, %%g2\n" 954 " ldxa [%%g0] %0, %%g1\n" 955 " ldxa [%%g2] %1, %%g1\n" 956 " stxa %%g0, [%%g0] %0\n" 957 " membar #Sync\n" 958 : /* no outputs */ 959 : "i" (ASI_INTR_RECEIVE), "i" (ASI_INTR_R) 960 : "g1", "g2"); 961 } 962 963 void notrace init_irqwork_curcpu(void) 964 { 965 int cpu = hard_smp_processor_id(); 966 967 trap_block[cpu].irq_worklist_pa = 0UL; 968 } 969 970 /* Please be very careful with register_one_mondo() and 971 * sun4v_register_mondo_queues(). 972 * 973 * On SMP this gets invoked from the CPU trampoline before 974 * the cpu has fully taken over the trap table from OBP, 975 * and it's kernel stack + %g6 thread register state is 976 * not fully cooked yet. 977 * 978 * Therefore you cannot make any OBP calls, not even prom_printf, 979 * from these two routines. 980 */ 981 static void notrace register_one_mondo(unsigned long paddr, unsigned long type, 982 unsigned long qmask) 983 { 984 unsigned long num_entries = (qmask + 1) / 64; 985 unsigned long status; 986 987 status = sun4v_cpu_qconf(type, paddr, num_entries); 988 if (status != HV_EOK) { 989 prom_printf("SUN4V: sun4v_cpu_qconf(%lu:%lx:%lu) failed, " 990 "err %lu\n", type, paddr, num_entries, status); 991 prom_halt(); 992 } 993 } 994 995 void notrace sun4v_register_mondo_queues(int this_cpu) 996 { 997 struct trap_per_cpu *tb = &trap_block[this_cpu]; 998 999 register_one_mondo(tb->cpu_mondo_pa, HV_CPU_QUEUE_CPU_MONDO, 1000 tb->cpu_mondo_qmask); 1001 register_one_mondo(tb->dev_mondo_pa, HV_CPU_QUEUE_DEVICE_MONDO, 1002 tb->dev_mondo_qmask); 1003 register_one_mondo(tb->resum_mondo_pa, HV_CPU_QUEUE_RES_ERROR, 1004 tb->resum_qmask); 1005 register_one_mondo(tb->nonresum_mondo_pa, HV_CPU_QUEUE_NONRES_ERROR, 1006 tb->nonresum_qmask); 1007 } 1008 1009 /* Each queue region must be a power of 2 multiple of 64 bytes in 1010 * size. The base real address must be aligned to the size of the 1011 * region. Thus, an 8KB queue must be 8KB aligned, for example. 1012 */ 1013 static void __init alloc_one_queue(unsigned long *pa_ptr, unsigned long qmask) 1014 { 1015 unsigned long size = PAGE_ALIGN(qmask + 1); 1016 unsigned long order = get_order(size); 1017 unsigned long p; 1018 1019 p = __get_free_pages(GFP_KERNEL, order); 1020 if (!p) { 1021 prom_printf("SUN4V: Error, cannot allocate queue.\n"); 1022 prom_halt(); 1023 } 1024 1025 *pa_ptr = __pa(p); 1026 } 1027 1028 static void __init init_cpu_send_mondo_info(struct trap_per_cpu *tb) 1029 { 1030 #ifdef CONFIG_SMP 1031 unsigned long page; 1032 1033 BUILD_BUG_ON((NR_CPUS * sizeof(u16)) > (PAGE_SIZE - 64)); 1034 1035 page = get_zeroed_page(GFP_KERNEL); 1036 if (!page) { 1037 prom_printf("SUN4V: Error, cannot allocate cpu mondo page.\n"); 1038 prom_halt(); 1039 } 1040 1041 tb->cpu_mondo_block_pa = __pa(page); 1042 tb->cpu_list_pa = __pa(page + 64); 1043 #endif 1044 } 1045 1046 /* Allocate mondo and error queues for all possible cpus. */ 1047 static void __init sun4v_init_mondo_queues(void) 1048 { 1049 int cpu; 1050 1051 for_each_possible_cpu(cpu) { 1052 struct trap_per_cpu *tb = &trap_block[cpu]; 1053 1054 alloc_one_queue(&tb->cpu_mondo_pa, tb->cpu_mondo_qmask); 1055 alloc_one_queue(&tb->dev_mondo_pa, tb->dev_mondo_qmask); 1056 alloc_one_queue(&tb->resum_mondo_pa, tb->resum_qmask); 1057 alloc_one_queue(&tb->resum_kernel_buf_pa, tb->resum_qmask); 1058 alloc_one_queue(&tb->nonresum_mondo_pa, tb->nonresum_qmask); 1059 alloc_one_queue(&tb->nonresum_kernel_buf_pa, 1060 tb->nonresum_qmask); 1061 } 1062 } 1063 1064 static void __init init_send_mondo_info(void) 1065 { 1066 int cpu; 1067 1068 for_each_possible_cpu(cpu) { 1069 struct trap_per_cpu *tb = &trap_block[cpu]; 1070 1071 init_cpu_send_mondo_info(tb); 1072 } 1073 } 1074 1075 static struct irqaction timer_irq_action = { 1076 .name = "timer", 1077 }; 1078 1079 static void __init irq_ivector_init(void) 1080 { 1081 unsigned long size, order; 1082 unsigned int ivecs; 1083 1084 /* If we are doing cookie only VIRQs then we do not need the ivector 1085 * table to process interrupts. 1086 */ 1087 if (sun4v_cookie_only_virqs()) 1088 return; 1089 1090 ivecs = size_nr_ivec(); 1091 size = sizeof(struct ino_bucket) * ivecs; 1092 order = get_order(size); 1093 ivector_table = (struct ino_bucket *) 1094 __get_free_pages(GFP_KERNEL | __GFP_ZERO, order); 1095 if (!ivector_table) { 1096 prom_printf("Fatal error, cannot allocate ivector_table\n"); 1097 prom_halt(); 1098 } 1099 __flush_dcache_range((unsigned long) ivector_table, 1100 ((unsigned long) ivector_table) + size); 1101 1102 ivector_table_pa = __pa(ivector_table); 1103 } 1104 1105 /* Only invoked on boot processor.*/ 1106 void __init init_IRQ(void) 1107 { 1108 irq_init_hv(); 1109 irq_ivector_init(); 1110 map_prom_timers(); 1111 kill_prom_timer(); 1112 1113 if (tlb_type == hypervisor) 1114 sun4v_init_mondo_queues(); 1115 1116 init_send_mondo_info(); 1117 1118 if (tlb_type == hypervisor) { 1119 /* Load up the boot cpu's entries. */ 1120 sun4v_register_mondo_queues(hard_smp_processor_id()); 1121 } 1122 1123 /* We need to clear any IRQ's pending in the soft interrupt 1124 * registers, a spurious one could be left around from the 1125 * PROM timer which we just disabled. 1126 */ 1127 clear_softint(get_softint()); 1128 1129 /* Now that ivector table is initialized, it is safe 1130 * to receive IRQ vector traps. We will normally take 1131 * one or two right now, in case some device PROM used 1132 * to boot us wants to speak to us. We just ignore them. 1133 */ 1134 __asm__ __volatile__("rdpr %%pstate, %%g1\n\t" 1135 "or %%g1, %0, %%g1\n\t" 1136 "wrpr %%g1, 0x0, %%pstate" 1137 : /* No outputs */ 1138 : "i" (PSTATE_IE) 1139 : "g1"); 1140 1141 irq_to_desc(0)->action = &timer_irq_action; 1142 } 1143