1 /* irq.c: UltraSparc IRQ handling/init/registry. 2 * 3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net) 4 * Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be) 5 * Copyright (C) 1998 Jakub Jelinek (jj@ultra.linux.cz) 6 */ 7 8 #include <linux/module.h> 9 #include <linux/sched.h> 10 #include <linux/linkage.h> 11 #include <linux/ptrace.h> 12 #include <linux/errno.h> 13 #include <linux/kernel_stat.h> 14 #include <linux/signal.h> 15 #include <linux/mm.h> 16 #include <linux/interrupt.h> 17 #include <linux/slab.h> 18 #include <linux/random.h> 19 #include <linux/init.h> 20 #include <linux/delay.h> 21 #include <linux/proc_fs.h> 22 #include <linux/seq_file.h> 23 #include <linux/ftrace.h> 24 #include <linux/irq.h> 25 #include <linux/kmemleak.h> 26 27 #include <asm/ptrace.h> 28 #include <asm/processor.h> 29 #include <asm/atomic.h> 30 #include <asm/system.h> 31 #include <asm/irq.h> 32 #include <asm/io.h> 33 #include <asm/iommu.h> 34 #include <asm/upa.h> 35 #include <asm/oplib.h> 36 #include <asm/prom.h> 37 #include <asm/timer.h> 38 #include <asm/smp.h> 39 #include <asm/starfire.h> 40 #include <asm/uaccess.h> 41 #include <asm/cache.h> 42 #include <asm/cpudata.h> 43 #include <asm/auxio.h> 44 #include <asm/head.h> 45 #include <asm/hypervisor.h> 46 #include <asm/cacheflush.h> 47 48 #include "entry.h" 49 #include "cpumap.h" 50 #include "kstack.h" 51 52 #define NUM_IVECS (IMAP_INR + 1) 53 54 struct ino_bucket *ivector_table; 55 unsigned long ivector_table_pa; 56 57 /* On several sun4u processors, it is illegal to mix bypass and 58 * non-bypass accesses. Therefore we access all INO buckets 59 * using bypass accesses only. 60 */ 61 static unsigned long bucket_get_chain_pa(unsigned long bucket_pa) 62 { 63 unsigned long ret; 64 65 __asm__ __volatile__("ldxa [%1] %2, %0" 66 : "=&r" (ret) 67 : "r" (bucket_pa + 68 offsetof(struct ino_bucket, 69 __irq_chain_pa)), 70 "i" (ASI_PHYS_USE_EC)); 71 72 return ret; 73 } 74 75 static void bucket_clear_chain_pa(unsigned long bucket_pa) 76 { 77 __asm__ __volatile__("stxa %%g0, [%0] %1" 78 : /* no outputs */ 79 : "r" (bucket_pa + 80 offsetof(struct ino_bucket, 81 __irq_chain_pa)), 82 "i" (ASI_PHYS_USE_EC)); 83 } 84 85 static unsigned int bucket_get_irq(unsigned long bucket_pa) 86 { 87 unsigned int ret; 88 89 __asm__ __volatile__("lduwa [%1] %2, %0" 90 : "=&r" (ret) 91 : "r" (bucket_pa + 92 offsetof(struct ino_bucket, 93 __irq)), 94 "i" (ASI_PHYS_USE_EC)); 95 96 return ret; 97 } 98 99 static void bucket_set_irq(unsigned long bucket_pa, unsigned int irq) 100 { 101 __asm__ __volatile__("stwa %0, [%1] %2" 102 : /* no outputs */ 103 : "r" (irq), 104 "r" (bucket_pa + 105 offsetof(struct ino_bucket, 106 __irq)), 107 "i" (ASI_PHYS_USE_EC)); 108 } 109 110 #define irq_work_pa(__cpu) &(trap_block[(__cpu)].irq_worklist_pa) 111 112 static struct { 113 unsigned int dev_handle; 114 unsigned int dev_ino; 115 unsigned int in_use; 116 } irq_table[NR_IRQS]; 117 static DEFINE_SPINLOCK(irq_alloc_lock); 118 119 unsigned char irq_alloc(unsigned int dev_handle, unsigned int dev_ino) 120 { 121 unsigned long flags; 122 unsigned char ent; 123 124 BUILD_BUG_ON(NR_IRQS >= 256); 125 126 spin_lock_irqsave(&irq_alloc_lock, flags); 127 128 for (ent = 1; ent < NR_IRQS; ent++) { 129 if (!irq_table[ent].in_use) 130 break; 131 } 132 if (ent >= NR_IRQS) { 133 printk(KERN_ERR "IRQ: Out of virtual IRQs.\n"); 134 ent = 0; 135 } else { 136 irq_table[ent].dev_handle = dev_handle; 137 irq_table[ent].dev_ino = dev_ino; 138 irq_table[ent].in_use = 1; 139 } 140 141 spin_unlock_irqrestore(&irq_alloc_lock, flags); 142 143 return ent; 144 } 145 146 #ifdef CONFIG_PCI_MSI 147 void irq_free(unsigned int irq) 148 { 149 unsigned long flags; 150 151 if (irq >= NR_IRQS) 152 return; 153 154 spin_lock_irqsave(&irq_alloc_lock, flags); 155 156 irq_table[irq].in_use = 0; 157 158 spin_unlock_irqrestore(&irq_alloc_lock, flags); 159 } 160 #endif 161 162 /* 163 * /proc/interrupts printing: 164 */ 165 int arch_show_interrupts(struct seq_file *p, int prec) 166 { 167 int j; 168 169 seq_printf(p, "NMI: "); 170 for_each_online_cpu(j) 171 seq_printf(p, "%10u ", cpu_data(j).__nmi_count); 172 seq_printf(p, " Non-maskable interrupts\n"); 173 return 0; 174 } 175 176 static unsigned int sun4u_compute_tid(unsigned long imap, unsigned long cpuid) 177 { 178 unsigned int tid; 179 180 if (this_is_starfire) { 181 tid = starfire_translate(imap, cpuid); 182 tid <<= IMAP_TID_SHIFT; 183 tid &= IMAP_TID_UPA; 184 } else { 185 if (tlb_type == cheetah || tlb_type == cheetah_plus) { 186 unsigned long ver; 187 188 __asm__ ("rdpr %%ver, %0" : "=r" (ver)); 189 if ((ver >> 32UL) == __JALAPENO_ID || 190 (ver >> 32UL) == __SERRANO_ID) { 191 tid = cpuid << IMAP_TID_SHIFT; 192 tid &= IMAP_TID_JBUS; 193 } else { 194 unsigned int a = cpuid & 0x1f; 195 unsigned int n = (cpuid >> 5) & 0x1f; 196 197 tid = ((a << IMAP_AID_SHIFT) | 198 (n << IMAP_NID_SHIFT)); 199 tid &= (IMAP_AID_SAFARI | 200 IMAP_NID_SAFARI); 201 } 202 } else { 203 tid = cpuid << IMAP_TID_SHIFT; 204 tid &= IMAP_TID_UPA; 205 } 206 } 207 208 return tid; 209 } 210 211 struct irq_handler_data { 212 unsigned long iclr; 213 unsigned long imap; 214 215 void (*pre_handler)(unsigned int, void *, void *); 216 void *arg1; 217 void *arg2; 218 }; 219 220 #ifdef CONFIG_SMP 221 static int irq_choose_cpu(unsigned int irq, const struct cpumask *affinity) 222 { 223 cpumask_t mask; 224 int cpuid; 225 226 cpumask_copy(&mask, affinity); 227 if (cpumask_equal(&mask, cpu_online_mask)) { 228 cpuid = map_to_cpu(irq); 229 } else { 230 cpumask_t tmp; 231 232 cpumask_and(&tmp, cpu_online_mask, &mask); 233 cpuid = cpumask_empty(&tmp) ? map_to_cpu(irq) : cpumask_first(&tmp); 234 } 235 236 return cpuid; 237 } 238 #else 239 #define irq_choose_cpu(irq, affinity) \ 240 real_hard_smp_processor_id() 241 #endif 242 243 static void sun4u_irq_enable(struct irq_data *data) 244 { 245 struct irq_handler_data *handler_data = data->handler_data; 246 247 if (likely(handler_data)) { 248 unsigned long cpuid, imap, val; 249 unsigned int tid; 250 251 cpuid = irq_choose_cpu(data->irq, data->affinity); 252 imap = handler_data->imap; 253 254 tid = sun4u_compute_tid(imap, cpuid); 255 256 val = upa_readq(imap); 257 val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS | 258 IMAP_AID_SAFARI | IMAP_NID_SAFARI); 259 val |= tid | IMAP_VALID; 260 upa_writeq(val, imap); 261 upa_writeq(ICLR_IDLE, handler_data->iclr); 262 } 263 } 264 265 static int sun4u_set_affinity(struct irq_data *data, 266 const struct cpumask *mask, bool force) 267 { 268 struct irq_handler_data *handler_data = data->handler_data; 269 270 if (likely(handler_data)) { 271 unsigned long cpuid, imap, val; 272 unsigned int tid; 273 274 cpuid = irq_choose_cpu(data->irq, mask); 275 imap = handler_data->imap; 276 277 tid = sun4u_compute_tid(imap, cpuid); 278 279 val = upa_readq(imap); 280 val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS | 281 IMAP_AID_SAFARI | IMAP_NID_SAFARI); 282 val |= tid | IMAP_VALID; 283 upa_writeq(val, imap); 284 upa_writeq(ICLR_IDLE, handler_data->iclr); 285 } 286 287 return 0; 288 } 289 290 /* Don't do anything. The desc->status check for IRQ_DISABLED in 291 * handler_irq() will skip the handler call and that will leave the 292 * interrupt in the sent state. The next ->enable() call will hit the 293 * ICLR register to reset the state machine. 294 * 295 * This scheme is necessary, instead of clearing the Valid bit in the 296 * IMAP register, to handle the case of IMAP registers being shared by 297 * multiple INOs (and thus ICLR registers). Since we use a different 298 * virtual IRQ for each shared IMAP instance, the generic code thinks 299 * there is only one user so it prematurely calls ->disable() on 300 * free_irq(). 301 * 302 * We have to provide an explicit ->disable() method instead of using 303 * NULL to get the default. The reason is that if the generic code 304 * sees that, it also hooks up a default ->shutdown method which 305 * invokes ->mask() which we do not want. See irq_chip_set_defaults(). 306 */ 307 static void sun4u_irq_disable(struct irq_data *data) 308 { 309 } 310 311 static void sun4u_irq_eoi(struct irq_data *data) 312 { 313 struct irq_handler_data *handler_data = data->handler_data; 314 315 if (likely(handler_data)) 316 upa_writeq(ICLR_IDLE, handler_data->iclr); 317 } 318 319 static void sun4v_irq_enable(struct irq_data *data) 320 { 321 unsigned int ino = irq_table[data->irq].dev_ino; 322 unsigned long cpuid = irq_choose_cpu(data->irq, data->affinity); 323 int err; 324 325 err = sun4v_intr_settarget(ino, cpuid); 326 if (err != HV_EOK) 327 printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): " 328 "err(%d)\n", ino, cpuid, err); 329 err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE); 330 if (err != HV_EOK) 331 printk(KERN_ERR "sun4v_intr_setstate(%x): " 332 "err(%d)\n", ino, err); 333 err = sun4v_intr_setenabled(ino, HV_INTR_ENABLED); 334 if (err != HV_EOK) 335 printk(KERN_ERR "sun4v_intr_setenabled(%x): err(%d)\n", 336 ino, err); 337 } 338 339 static int sun4v_set_affinity(struct irq_data *data, 340 const struct cpumask *mask, bool force) 341 { 342 unsigned int ino = irq_table[data->irq].dev_ino; 343 unsigned long cpuid = irq_choose_cpu(data->irq, mask); 344 int err; 345 346 err = sun4v_intr_settarget(ino, cpuid); 347 if (err != HV_EOK) 348 printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): " 349 "err(%d)\n", ino, cpuid, err); 350 351 return 0; 352 } 353 354 static void sun4v_irq_disable(struct irq_data *data) 355 { 356 unsigned int ino = irq_table[data->irq].dev_ino; 357 int err; 358 359 err = sun4v_intr_setenabled(ino, HV_INTR_DISABLED); 360 if (err != HV_EOK) 361 printk(KERN_ERR "sun4v_intr_setenabled(%x): " 362 "err(%d)\n", ino, err); 363 } 364 365 static void sun4v_irq_eoi(struct irq_data *data) 366 { 367 unsigned int ino = irq_table[data->irq].dev_ino; 368 int err; 369 370 err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE); 371 if (err != HV_EOK) 372 printk(KERN_ERR "sun4v_intr_setstate(%x): " 373 "err(%d)\n", ino, err); 374 } 375 376 static void sun4v_virq_enable(struct irq_data *data) 377 { 378 unsigned long cpuid, dev_handle, dev_ino; 379 int err; 380 381 cpuid = irq_choose_cpu(data->irq, data->affinity); 382 383 dev_handle = irq_table[data->irq].dev_handle; 384 dev_ino = irq_table[data->irq].dev_ino; 385 386 err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid); 387 if (err != HV_EOK) 388 printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): " 389 "err(%d)\n", 390 dev_handle, dev_ino, cpuid, err); 391 err = sun4v_vintr_set_state(dev_handle, dev_ino, 392 HV_INTR_STATE_IDLE); 393 if (err != HV_EOK) 394 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx," 395 "HV_INTR_STATE_IDLE): err(%d)\n", 396 dev_handle, dev_ino, err); 397 err = sun4v_vintr_set_valid(dev_handle, dev_ino, 398 HV_INTR_ENABLED); 399 if (err != HV_EOK) 400 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx," 401 "HV_INTR_ENABLED): err(%d)\n", 402 dev_handle, dev_ino, err); 403 } 404 405 static int sun4v_virt_set_affinity(struct irq_data *data, 406 const struct cpumask *mask, bool force) 407 { 408 unsigned long cpuid, dev_handle, dev_ino; 409 int err; 410 411 cpuid = irq_choose_cpu(data->irq, mask); 412 413 dev_handle = irq_table[data->irq].dev_handle; 414 dev_ino = irq_table[data->irq].dev_ino; 415 416 err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid); 417 if (err != HV_EOK) 418 printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): " 419 "err(%d)\n", 420 dev_handle, dev_ino, cpuid, err); 421 422 return 0; 423 } 424 425 static void sun4v_virq_disable(struct irq_data *data) 426 { 427 unsigned long dev_handle, dev_ino; 428 int err; 429 430 dev_handle = irq_table[data->irq].dev_handle; 431 dev_ino = irq_table[data->irq].dev_ino; 432 433 err = sun4v_vintr_set_valid(dev_handle, dev_ino, 434 HV_INTR_DISABLED); 435 if (err != HV_EOK) 436 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx," 437 "HV_INTR_DISABLED): err(%d)\n", 438 dev_handle, dev_ino, err); 439 } 440 441 static void sun4v_virq_eoi(struct irq_data *data) 442 { 443 unsigned long dev_handle, dev_ino; 444 int err; 445 446 dev_handle = irq_table[data->irq].dev_handle; 447 dev_ino = irq_table[data->irq].dev_ino; 448 449 err = sun4v_vintr_set_state(dev_handle, dev_ino, 450 HV_INTR_STATE_IDLE); 451 if (err != HV_EOK) 452 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx," 453 "HV_INTR_STATE_IDLE): err(%d)\n", 454 dev_handle, dev_ino, err); 455 } 456 457 static struct irq_chip sun4u_irq = { 458 .name = "sun4u", 459 .irq_enable = sun4u_irq_enable, 460 .irq_disable = sun4u_irq_disable, 461 .irq_eoi = sun4u_irq_eoi, 462 .irq_set_affinity = sun4u_set_affinity, 463 .flags = IRQCHIP_EOI_IF_HANDLED, 464 }; 465 466 static struct irq_chip sun4v_irq = { 467 .name = "sun4v", 468 .irq_enable = sun4v_irq_enable, 469 .irq_disable = sun4v_irq_disable, 470 .irq_eoi = sun4v_irq_eoi, 471 .irq_set_affinity = sun4v_set_affinity, 472 .flags = IRQCHIP_EOI_IF_HANDLED, 473 }; 474 475 static struct irq_chip sun4v_virq = { 476 .name = "vsun4v", 477 .irq_enable = sun4v_virq_enable, 478 .irq_disable = sun4v_virq_disable, 479 .irq_eoi = sun4v_virq_eoi, 480 .irq_set_affinity = sun4v_virt_set_affinity, 481 .flags = IRQCHIP_EOI_IF_HANDLED, 482 }; 483 484 static void pre_flow_handler(struct irq_data *d) 485 { 486 struct irq_handler_data *handler_data = irq_data_get_irq_handler_data(d); 487 unsigned int ino = irq_table[d->irq].dev_ino; 488 489 handler_data->pre_handler(ino, handler_data->arg1, handler_data->arg2); 490 } 491 492 void irq_install_pre_handler(int irq, 493 void (*func)(unsigned int, void *, void *), 494 void *arg1, void *arg2) 495 { 496 struct irq_handler_data *handler_data = irq_get_handler_data(irq); 497 498 handler_data->pre_handler = func; 499 handler_data->arg1 = arg1; 500 handler_data->arg2 = arg2; 501 502 __irq_set_preflow_handler(irq, pre_flow_handler); 503 } 504 505 unsigned int build_irq(int inofixup, unsigned long iclr, unsigned long imap) 506 { 507 struct ino_bucket *bucket; 508 struct irq_handler_data *handler_data; 509 unsigned int irq; 510 int ino; 511 512 BUG_ON(tlb_type == hypervisor); 513 514 ino = (upa_readq(imap) & (IMAP_IGN | IMAP_INO)) + inofixup; 515 bucket = &ivector_table[ino]; 516 irq = bucket_get_irq(__pa(bucket)); 517 if (!irq) { 518 irq = irq_alloc(0, ino); 519 bucket_set_irq(__pa(bucket), irq); 520 irq_set_chip_and_handler_name(irq, &sun4u_irq, 521 handle_fasteoi_irq, "IVEC"); 522 } 523 524 handler_data = irq_get_handler_data(irq); 525 if (unlikely(handler_data)) 526 goto out; 527 528 handler_data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC); 529 if (unlikely(!handler_data)) { 530 prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n"); 531 prom_halt(); 532 } 533 irq_set_handler_data(irq, handler_data); 534 535 handler_data->imap = imap; 536 handler_data->iclr = iclr; 537 538 out: 539 return irq; 540 } 541 542 static unsigned int sun4v_build_common(unsigned long sysino, 543 struct irq_chip *chip) 544 { 545 struct ino_bucket *bucket; 546 struct irq_handler_data *handler_data; 547 unsigned int irq; 548 549 BUG_ON(tlb_type != hypervisor); 550 551 bucket = &ivector_table[sysino]; 552 irq = bucket_get_irq(__pa(bucket)); 553 if (!irq) { 554 irq = irq_alloc(0, sysino); 555 bucket_set_irq(__pa(bucket), irq); 556 irq_set_chip_and_handler_name(irq, chip, handle_fasteoi_irq, 557 "IVEC"); 558 } 559 560 handler_data = irq_get_handler_data(irq); 561 if (unlikely(handler_data)) 562 goto out; 563 564 handler_data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC); 565 if (unlikely(!handler_data)) { 566 prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n"); 567 prom_halt(); 568 } 569 irq_set_handler_data(irq, handler_data); 570 571 /* Catch accidental accesses to these things. IMAP/ICLR handling 572 * is done by hypervisor calls on sun4v platforms, not by direct 573 * register accesses. 574 */ 575 handler_data->imap = ~0UL; 576 handler_data->iclr = ~0UL; 577 578 out: 579 return irq; 580 } 581 582 unsigned int sun4v_build_irq(u32 devhandle, unsigned int devino) 583 { 584 unsigned long sysino = sun4v_devino_to_sysino(devhandle, devino); 585 586 return sun4v_build_common(sysino, &sun4v_irq); 587 } 588 589 unsigned int sun4v_build_virq(u32 devhandle, unsigned int devino) 590 { 591 struct irq_handler_data *handler_data; 592 unsigned long hv_err, cookie; 593 struct ino_bucket *bucket; 594 unsigned int irq; 595 596 bucket = kzalloc(sizeof(struct ino_bucket), GFP_ATOMIC); 597 if (unlikely(!bucket)) 598 return 0; 599 600 /* The only reference we store to the IRQ bucket is 601 * by physical address which kmemleak can't see, tell 602 * it that this object explicitly is not a leak and 603 * should be scanned. 604 */ 605 kmemleak_not_leak(bucket); 606 607 __flush_dcache_range((unsigned long) bucket, 608 ((unsigned long) bucket + 609 sizeof(struct ino_bucket))); 610 611 irq = irq_alloc(devhandle, devino); 612 bucket_set_irq(__pa(bucket), irq); 613 614 irq_set_chip_and_handler_name(irq, &sun4v_virq, handle_fasteoi_irq, 615 "IVEC"); 616 617 handler_data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC); 618 if (unlikely(!handler_data)) 619 return 0; 620 621 /* In order to make the LDC channel startup sequence easier, 622 * especially wrt. locking, we do not let request_irq() enable 623 * the interrupt. 624 */ 625 irq_set_status_flags(irq, IRQ_NOAUTOEN); 626 irq_set_handler_data(irq, handler_data); 627 628 /* Catch accidental accesses to these things. IMAP/ICLR handling 629 * is done by hypervisor calls on sun4v platforms, not by direct 630 * register accesses. 631 */ 632 handler_data->imap = ~0UL; 633 handler_data->iclr = ~0UL; 634 635 cookie = ~__pa(bucket); 636 hv_err = sun4v_vintr_set_cookie(devhandle, devino, cookie); 637 if (hv_err) { 638 prom_printf("IRQ: Fatal, cannot set cookie for [%x:%x] " 639 "err=%lu\n", devhandle, devino, hv_err); 640 prom_halt(); 641 } 642 643 return irq; 644 } 645 646 void ack_bad_irq(unsigned int irq) 647 { 648 unsigned int ino = irq_table[irq].dev_ino; 649 650 if (!ino) 651 ino = 0xdeadbeef; 652 653 printk(KERN_CRIT "Unexpected IRQ from ino[%x] irq[%u]\n", 654 ino, irq); 655 } 656 657 void *hardirq_stack[NR_CPUS]; 658 void *softirq_stack[NR_CPUS]; 659 660 void __irq_entry handler_irq(int pil, struct pt_regs *regs) 661 { 662 unsigned long pstate, bucket_pa; 663 struct pt_regs *old_regs; 664 void *orig_sp; 665 666 clear_softint(1 << pil); 667 668 old_regs = set_irq_regs(regs); 669 irq_enter(); 670 671 /* Grab an atomic snapshot of the pending IVECs. */ 672 __asm__ __volatile__("rdpr %%pstate, %0\n\t" 673 "wrpr %0, %3, %%pstate\n\t" 674 "ldx [%2], %1\n\t" 675 "stx %%g0, [%2]\n\t" 676 "wrpr %0, 0x0, %%pstate\n\t" 677 : "=&r" (pstate), "=&r" (bucket_pa) 678 : "r" (irq_work_pa(smp_processor_id())), 679 "i" (PSTATE_IE) 680 : "memory"); 681 682 orig_sp = set_hardirq_stack(); 683 684 while (bucket_pa) { 685 unsigned long next_pa; 686 unsigned int irq; 687 688 next_pa = bucket_get_chain_pa(bucket_pa); 689 irq = bucket_get_irq(bucket_pa); 690 bucket_clear_chain_pa(bucket_pa); 691 692 generic_handle_irq(irq); 693 694 bucket_pa = next_pa; 695 } 696 697 restore_hardirq_stack(orig_sp); 698 699 irq_exit(); 700 set_irq_regs(old_regs); 701 } 702 703 void do_softirq(void) 704 { 705 unsigned long flags; 706 707 if (in_interrupt()) 708 return; 709 710 local_irq_save(flags); 711 712 if (local_softirq_pending()) { 713 void *orig_sp, *sp = softirq_stack[smp_processor_id()]; 714 715 sp += THREAD_SIZE - 192 - STACK_BIAS; 716 717 __asm__ __volatile__("mov %%sp, %0\n\t" 718 "mov %1, %%sp" 719 : "=&r" (orig_sp) 720 : "r" (sp)); 721 __do_softirq(); 722 __asm__ __volatile__("mov %0, %%sp" 723 : : "r" (orig_sp)); 724 } 725 726 local_irq_restore(flags); 727 } 728 729 #ifdef CONFIG_HOTPLUG_CPU 730 void fixup_irqs(void) 731 { 732 unsigned int irq; 733 734 for (irq = 0; irq < NR_IRQS; irq++) { 735 struct irq_desc *desc = irq_to_desc(irq); 736 struct irq_data *data = irq_desc_get_irq_data(desc); 737 unsigned long flags; 738 739 raw_spin_lock_irqsave(&desc->lock, flags); 740 if (desc->action && !irqd_is_per_cpu(data)) { 741 if (data->chip->irq_set_affinity) 742 data->chip->irq_set_affinity(data, 743 data->affinity, 744 false); 745 } 746 raw_spin_unlock_irqrestore(&desc->lock, flags); 747 } 748 749 tick_ops->disable_irq(); 750 } 751 #endif 752 753 struct sun5_timer { 754 u64 count0; 755 u64 limit0; 756 u64 count1; 757 u64 limit1; 758 }; 759 760 static struct sun5_timer *prom_timers; 761 static u64 prom_limit0, prom_limit1; 762 763 static void map_prom_timers(void) 764 { 765 struct device_node *dp; 766 const unsigned int *addr; 767 768 /* PROM timer node hangs out in the top level of device siblings... */ 769 dp = of_find_node_by_path("/"); 770 dp = dp->child; 771 while (dp) { 772 if (!strcmp(dp->name, "counter-timer")) 773 break; 774 dp = dp->sibling; 775 } 776 777 /* Assume if node is not present, PROM uses different tick mechanism 778 * which we should not care about. 779 */ 780 if (!dp) { 781 prom_timers = (struct sun5_timer *) 0; 782 return; 783 } 784 785 /* If PROM is really using this, it must be mapped by him. */ 786 addr = of_get_property(dp, "address", NULL); 787 if (!addr) { 788 prom_printf("PROM does not have timer mapped, trying to continue.\n"); 789 prom_timers = (struct sun5_timer *) 0; 790 return; 791 } 792 prom_timers = (struct sun5_timer *) ((unsigned long)addr[0]); 793 } 794 795 static void kill_prom_timer(void) 796 { 797 if (!prom_timers) 798 return; 799 800 /* Save them away for later. */ 801 prom_limit0 = prom_timers->limit0; 802 prom_limit1 = prom_timers->limit1; 803 804 /* Just as in sun4c/sun4m PROM uses timer which ticks at IRQ 14. 805 * We turn both off here just to be paranoid. 806 */ 807 prom_timers->limit0 = 0; 808 prom_timers->limit1 = 0; 809 810 /* Wheee, eat the interrupt packet too... */ 811 __asm__ __volatile__( 812 " mov 0x40, %%g2\n" 813 " ldxa [%%g0] %0, %%g1\n" 814 " ldxa [%%g2] %1, %%g1\n" 815 " stxa %%g0, [%%g0] %0\n" 816 " membar #Sync\n" 817 : /* no outputs */ 818 : "i" (ASI_INTR_RECEIVE), "i" (ASI_INTR_R) 819 : "g1", "g2"); 820 } 821 822 void notrace init_irqwork_curcpu(void) 823 { 824 int cpu = hard_smp_processor_id(); 825 826 trap_block[cpu].irq_worklist_pa = 0UL; 827 } 828 829 /* Please be very careful with register_one_mondo() and 830 * sun4v_register_mondo_queues(). 831 * 832 * On SMP this gets invoked from the CPU trampoline before 833 * the cpu has fully taken over the trap table from OBP, 834 * and it's kernel stack + %g6 thread register state is 835 * not fully cooked yet. 836 * 837 * Therefore you cannot make any OBP calls, not even prom_printf, 838 * from these two routines. 839 */ 840 static void __cpuinit notrace register_one_mondo(unsigned long paddr, unsigned long type, unsigned long qmask) 841 { 842 unsigned long num_entries = (qmask + 1) / 64; 843 unsigned long status; 844 845 status = sun4v_cpu_qconf(type, paddr, num_entries); 846 if (status != HV_EOK) { 847 prom_printf("SUN4V: sun4v_cpu_qconf(%lu:%lx:%lu) failed, " 848 "err %lu\n", type, paddr, num_entries, status); 849 prom_halt(); 850 } 851 } 852 853 void __cpuinit notrace sun4v_register_mondo_queues(int this_cpu) 854 { 855 struct trap_per_cpu *tb = &trap_block[this_cpu]; 856 857 register_one_mondo(tb->cpu_mondo_pa, HV_CPU_QUEUE_CPU_MONDO, 858 tb->cpu_mondo_qmask); 859 register_one_mondo(tb->dev_mondo_pa, HV_CPU_QUEUE_DEVICE_MONDO, 860 tb->dev_mondo_qmask); 861 register_one_mondo(tb->resum_mondo_pa, HV_CPU_QUEUE_RES_ERROR, 862 tb->resum_qmask); 863 register_one_mondo(tb->nonresum_mondo_pa, HV_CPU_QUEUE_NONRES_ERROR, 864 tb->nonresum_qmask); 865 } 866 867 /* Each queue region must be a power of 2 multiple of 64 bytes in 868 * size. The base real address must be aligned to the size of the 869 * region. Thus, an 8KB queue must be 8KB aligned, for example. 870 */ 871 static void __init alloc_one_queue(unsigned long *pa_ptr, unsigned long qmask) 872 { 873 unsigned long size = PAGE_ALIGN(qmask + 1); 874 unsigned long order = get_order(size); 875 unsigned long p; 876 877 p = __get_free_pages(GFP_KERNEL, order); 878 if (!p) { 879 prom_printf("SUN4V: Error, cannot allocate queue.\n"); 880 prom_halt(); 881 } 882 883 *pa_ptr = __pa(p); 884 } 885 886 static void __init init_cpu_send_mondo_info(struct trap_per_cpu *tb) 887 { 888 #ifdef CONFIG_SMP 889 unsigned long page; 890 891 BUILD_BUG_ON((NR_CPUS * sizeof(u16)) > (PAGE_SIZE - 64)); 892 893 page = get_zeroed_page(GFP_KERNEL); 894 if (!page) { 895 prom_printf("SUN4V: Error, cannot allocate cpu mondo page.\n"); 896 prom_halt(); 897 } 898 899 tb->cpu_mondo_block_pa = __pa(page); 900 tb->cpu_list_pa = __pa(page + 64); 901 #endif 902 } 903 904 /* Allocate mondo and error queues for all possible cpus. */ 905 static void __init sun4v_init_mondo_queues(void) 906 { 907 int cpu; 908 909 for_each_possible_cpu(cpu) { 910 struct trap_per_cpu *tb = &trap_block[cpu]; 911 912 alloc_one_queue(&tb->cpu_mondo_pa, tb->cpu_mondo_qmask); 913 alloc_one_queue(&tb->dev_mondo_pa, tb->dev_mondo_qmask); 914 alloc_one_queue(&tb->resum_mondo_pa, tb->resum_qmask); 915 alloc_one_queue(&tb->resum_kernel_buf_pa, tb->resum_qmask); 916 alloc_one_queue(&tb->nonresum_mondo_pa, tb->nonresum_qmask); 917 alloc_one_queue(&tb->nonresum_kernel_buf_pa, 918 tb->nonresum_qmask); 919 } 920 } 921 922 static void __init init_send_mondo_info(void) 923 { 924 int cpu; 925 926 for_each_possible_cpu(cpu) { 927 struct trap_per_cpu *tb = &trap_block[cpu]; 928 929 init_cpu_send_mondo_info(tb); 930 } 931 } 932 933 static struct irqaction timer_irq_action = { 934 .name = "timer", 935 }; 936 937 /* Only invoked on boot processor. */ 938 void __init init_IRQ(void) 939 { 940 unsigned long size; 941 942 map_prom_timers(); 943 kill_prom_timer(); 944 945 size = sizeof(struct ino_bucket) * NUM_IVECS; 946 ivector_table = kzalloc(size, GFP_KERNEL); 947 if (!ivector_table) { 948 prom_printf("Fatal error, cannot allocate ivector_table\n"); 949 prom_halt(); 950 } 951 __flush_dcache_range((unsigned long) ivector_table, 952 ((unsigned long) ivector_table) + size); 953 954 ivector_table_pa = __pa(ivector_table); 955 956 if (tlb_type == hypervisor) 957 sun4v_init_mondo_queues(); 958 959 init_send_mondo_info(); 960 961 if (tlb_type == hypervisor) { 962 /* Load up the boot cpu's entries. */ 963 sun4v_register_mondo_queues(hard_smp_processor_id()); 964 } 965 966 /* We need to clear any IRQ's pending in the soft interrupt 967 * registers, a spurious one could be left around from the 968 * PROM timer which we just disabled. 969 */ 970 clear_softint(get_softint()); 971 972 /* Now that ivector table is initialized, it is safe 973 * to receive IRQ vector traps. We will normally take 974 * one or two right now, in case some device PROM used 975 * to boot us wants to speak to us. We just ignore them. 976 */ 977 __asm__ __volatile__("rdpr %%pstate, %%g1\n\t" 978 "or %%g1, %0, %%g1\n\t" 979 "wrpr %%g1, 0x0, %%pstate" 980 : /* No outputs */ 981 : "i" (PSTATE_IE) 982 : "g1"); 983 984 irq_to_desc(0)->action = &timer_irq_action; 985 } 986