1 /* irq.c: UltraSparc IRQ handling/init/registry. 2 * 3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net) 4 * Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be) 5 * Copyright (C) 1998 Jakub Jelinek (jj@ultra.linux.cz) 6 */ 7 8 #include <linux/module.h> 9 #include <linux/sched.h> 10 #include <linux/linkage.h> 11 #include <linux/ptrace.h> 12 #include <linux/errno.h> 13 #include <linux/kernel_stat.h> 14 #include <linux/signal.h> 15 #include <linux/mm.h> 16 #include <linux/interrupt.h> 17 #include <linux/slab.h> 18 #include <linux/random.h> 19 #include <linux/init.h> 20 #include <linux/delay.h> 21 #include <linux/proc_fs.h> 22 #include <linux/seq_file.h> 23 #include <linux/irq.h> 24 25 #include <asm/ptrace.h> 26 #include <asm/processor.h> 27 #include <asm/atomic.h> 28 #include <asm/system.h> 29 #include <asm/irq.h> 30 #include <asm/io.h> 31 #include <asm/iommu.h> 32 #include <asm/upa.h> 33 #include <asm/oplib.h> 34 #include <asm/prom.h> 35 #include <asm/timer.h> 36 #include <asm/smp.h> 37 #include <asm/starfire.h> 38 #include <asm/uaccess.h> 39 #include <asm/cache.h> 40 #include <asm/cpudata.h> 41 #include <asm/auxio.h> 42 #include <asm/head.h> 43 #include <asm/hypervisor.h> 44 #include <asm/cacheflush.h> 45 46 #include "entry.h" 47 #include "cpumap.h" 48 49 #define NUM_IVECS (IMAP_INR + 1) 50 51 struct ino_bucket *ivector_table; 52 unsigned long ivector_table_pa; 53 54 /* On several sun4u processors, it is illegal to mix bypass and 55 * non-bypass accesses. Therefore we access all INO buckets 56 * using bypass accesses only. 57 */ 58 static unsigned long bucket_get_chain_pa(unsigned long bucket_pa) 59 { 60 unsigned long ret; 61 62 __asm__ __volatile__("ldxa [%1] %2, %0" 63 : "=&r" (ret) 64 : "r" (bucket_pa + 65 offsetof(struct ino_bucket, 66 __irq_chain_pa)), 67 "i" (ASI_PHYS_USE_EC)); 68 69 return ret; 70 } 71 72 static void bucket_clear_chain_pa(unsigned long bucket_pa) 73 { 74 __asm__ __volatile__("stxa %%g0, [%0] %1" 75 : /* no outputs */ 76 : "r" (bucket_pa + 77 offsetof(struct ino_bucket, 78 __irq_chain_pa)), 79 "i" (ASI_PHYS_USE_EC)); 80 } 81 82 static unsigned int bucket_get_virt_irq(unsigned long bucket_pa) 83 { 84 unsigned int ret; 85 86 __asm__ __volatile__("lduwa [%1] %2, %0" 87 : "=&r" (ret) 88 : "r" (bucket_pa + 89 offsetof(struct ino_bucket, 90 __virt_irq)), 91 "i" (ASI_PHYS_USE_EC)); 92 93 return ret; 94 } 95 96 static void bucket_set_virt_irq(unsigned long bucket_pa, 97 unsigned int virt_irq) 98 { 99 __asm__ __volatile__("stwa %0, [%1] %2" 100 : /* no outputs */ 101 : "r" (virt_irq), 102 "r" (bucket_pa + 103 offsetof(struct ino_bucket, 104 __virt_irq)), 105 "i" (ASI_PHYS_USE_EC)); 106 } 107 108 #define irq_work_pa(__cpu) &(trap_block[(__cpu)].irq_worklist_pa) 109 110 static struct { 111 unsigned int dev_handle; 112 unsigned int dev_ino; 113 unsigned int in_use; 114 } virt_irq_table[NR_IRQS]; 115 static DEFINE_SPINLOCK(virt_irq_alloc_lock); 116 117 unsigned char virt_irq_alloc(unsigned int dev_handle, 118 unsigned int dev_ino) 119 { 120 unsigned long flags; 121 unsigned char ent; 122 123 BUILD_BUG_ON(NR_IRQS >= 256); 124 125 spin_lock_irqsave(&virt_irq_alloc_lock, flags); 126 127 for (ent = 1; ent < NR_IRQS; ent++) { 128 if (!virt_irq_table[ent].in_use) 129 break; 130 } 131 if (ent >= NR_IRQS) { 132 printk(KERN_ERR "IRQ: Out of virtual IRQs.\n"); 133 ent = 0; 134 } else { 135 virt_irq_table[ent].dev_handle = dev_handle; 136 virt_irq_table[ent].dev_ino = dev_ino; 137 virt_irq_table[ent].in_use = 1; 138 } 139 140 spin_unlock_irqrestore(&virt_irq_alloc_lock, flags); 141 142 return ent; 143 } 144 145 #ifdef CONFIG_PCI_MSI 146 void virt_irq_free(unsigned int virt_irq) 147 { 148 unsigned long flags; 149 150 if (virt_irq >= NR_IRQS) 151 return; 152 153 spin_lock_irqsave(&virt_irq_alloc_lock, flags); 154 155 virt_irq_table[virt_irq].in_use = 0; 156 157 spin_unlock_irqrestore(&virt_irq_alloc_lock, flags); 158 } 159 #endif 160 161 /* 162 * /proc/interrupts printing: 163 */ 164 165 int show_interrupts(struct seq_file *p, void *v) 166 { 167 int i = *(loff_t *) v, j; 168 struct irqaction * action; 169 unsigned long flags; 170 171 if (i == 0) { 172 seq_printf(p, " "); 173 for_each_online_cpu(j) 174 seq_printf(p, "CPU%d ",j); 175 seq_putc(p, '\n'); 176 } 177 178 if (i < NR_IRQS) { 179 raw_spin_lock_irqsave(&irq_desc[i].lock, flags); 180 action = irq_desc[i].action; 181 if (!action) 182 goto skip; 183 seq_printf(p, "%3d: ",i); 184 #ifndef CONFIG_SMP 185 seq_printf(p, "%10u ", kstat_irqs(i)); 186 #else 187 for_each_online_cpu(j) 188 seq_printf(p, "%10u ", kstat_irqs_cpu(i, j)); 189 #endif 190 seq_printf(p, " %9s", irq_desc[i].chip->name); 191 seq_printf(p, " %s", action->name); 192 193 for (action=action->next; action; action = action->next) 194 seq_printf(p, ", %s", action->name); 195 196 seq_putc(p, '\n'); 197 skip: 198 raw_spin_unlock_irqrestore(&irq_desc[i].lock, flags); 199 } else if (i == NR_IRQS) { 200 seq_printf(p, "NMI: "); 201 for_each_online_cpu(j) 202 seq_printf(p, "%10u ", cpu_data(j).__nmi_count); 203 seq_printf(p, " Non-maskable interrupts\n"); 204 } 205 return 0; 206 } 207 208 static unsigned int sun4u_compute_tid(unsigned long imap, unsigned long cpuid) 209 { 210 unsigned int tid; 211 212 if (this_is_starfire) { 213 tid = starfire_translate(imap, cpuid); 214 tid <<= IMAP_TID_SHIFT; 215 tid &= IMAP_TID_UPA; 216 } else { 217 if (tlb_type == cheetah || tlb_type == cheetah_plus) { 218 unsigned long ver; 219 220 __asm__ ("rdpr %%ver, %0" : "=r" (ver)); 221 if ((ver >> 32UL) == __JALAPENO_ID || 222 (ver >> 32UL) == __SERRANO_ID) { 223 tid = cpuid << IMAP_TID_SHIFT; 224 tid &= IMAP_TID_JBUS; 225 } else { 226 unsigned int a = cpuid & 0x1f; 227 unsigned int n = (cpuid >> 5) & 0x1f; 228 229 tid = ((a << IMAP_AID_SHIFT) | 230 (n << IMAP_NID_SHIFT)); 231 tid &= (IMAP_AID_SAFARI | 232 IMAP_NID_SAFARI); 233 } 234 } else { 235 tid = cpuid << IMAP_TID_SHIFT; 236 tid &= IMAP_TID_UPA; 237 } 238 } 239 240 return tid; 241 } 242 243 struct irq_handler_data { 244 unsigned long iclr; 245 unsigned long imap; 246 247 void (*pre_handler)(unsigned int, void *, void *); 248 void *arg1; 249 void *arg2; 250 }; 251 252 #ifdef CONFIG_SMP 253 static int irq_choose_cpu(unsigned int virt_irq) 254 { 255 cpumask_t mask; 256 int cpuid; 257 258 cpumask_copy(&mask, irq_desc[virt_irq].affinity); 259 if (cpus_equal(mask, cpu_online_map)) { 260 cpuid = map_to_cpu(virt_irq); 261 } else { 262 cpumask_t tmp; 263 264 cpus_and(tmp, cpu_online_map, mask); 265 cpuid = cpus_empty(tmp) ? map_to_cpu(virt_irq) : first_cpu(tmp); 266 } 267 268 return cpuid; 269 } 270 #else 271 static int irq_choose_cpu(unsigned int virt_irq) 272 { 273 return real_hard_smp_processor_id(); 274 } 275 #endif 276 277 static void sun4u_irq_enable(unsigned int virt_irq) 278 { 279 struct irq_handler_data *data = get_irq_chip_data(virt_irq); 280 281 if (likely(data)) { 282 unsigned long cpuid, imap, val; 283 unsigned int tid; 284 285 cpuid = irq_choose_cpu(virt_irq); 286 imap = data->imap; 287 288 tid = sun4u_compute_tid(imap, cpuid); 289 290 val = upa_readq(imap); 291 val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS | 292 IMAP_AID_SAFARI | IMAP_NID_SAFARI); 293 val |= tid | IMAP_VALID; 294 upa_writeq(val, imap); 295 upa_writeq(ICLR_IDLE, data->iclr); 296 } 297 } 298 299 static int sun4u_set_affinity(unsigned int virt_irq, 300 const struct cpumask *mask) 301 { 302 sun4u_irq_enable(virt_irq); 303 304 return 0; 305 } 306 307 /* Don't do anything. The desc->status check for IRQ_DISABLED in 308 * handler_irq() will skip the handler call and that will leave the 309 * interrupt in the sent state. The next ->enable() call will hit the 310 * ICLR register to reset the state machine. 311 * 312 * This scheme is necessary, instead of clearing the Valid bit in the 313 * IMAP register, to handle the case of IMAP registers being shared by 314 * multiple INOs (and thus ICLR registers). Since we use a different 315 * virtual IRQ for each shared IMAP instance, the generic code thinks 316 * there is only one user so it prematurely calls ->disable() on 317 * free_irq(). 318 * 319 * We have to provide an explicit ->disable() method instead of using 320 * NULL to get the default. The reason is that if the generic code 321 * sees that, it also hooks up a default ->shutdown method which 322 * invokes ->mask() which we do not want. See irq_chip_set_defaults(). 323 */ 324 static void sun4u_irq_disable(unsigned int virt_irq) 325 { 326 } 327 328 static void sun4u_irq_eoi(unsigned int virt_irq) 329 { 330 struct irq_handler_data *data = get_irq_chip_data(virt_irq); 331 struct irq_desc *desc = irq_desc + virt_irq; 332 333 if (unlikely(desc->status & (IRQ_DISABLED|IRQ_INPROGRESS))) 334 return; 335 336 if (likely(data)) 337 upa_writeq(ICLR_IDLE, data->iclr); 338 } 339 340 static void sun4v_irq_enable(unsigned int virt_irq) 341 { 342 unsigned int ino = virt_irq_table[virt_irq].dev_ino; 343 unsigned long cpuid = irq_choose_cpu(virt_irq); 344 int err; 345 346 err = sun4v_intr_settarget(ino, cpuid); 347 if (err != HV_EOK) 348 printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): " 349 "err(%d)\n", ino, cpuid, err); 350 err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE); 351 if (err != HV_EOK) 352 printk(KERN_ERR "sun4v_intr_setstate(%x): " 353 "err(%d)\n", ino, err); 354 err = sun4v_intr_setenabled(ino, HV_INTR_ENABLED); 355 if (err != HV_EOK) 356 printk(KERN_ERR "sun4v_intr_setenabled(%x): err(%d)\n", 357 ino, err); 358 } 359 360 static int sun4v_set_affinity(unsigned int virt_irq, 361 const struct cpumask *mask) 362 { 363 unsigned int ino = virt_irq_table[virt_irq].dev_ino; 364 unsigned long cpuid = irq_choose_cpu(virt_irq); 365 int err; 366 367 err = sun4v_intr_settarget(ino, cpuid); 368 if (err != HV_EOK) 369 printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): " 370 "err(%d)\n", ino, cpuid, err); 371 372 return 0; 373 } 374 375 static void sun4v_irq_disable(unsigned int virt_irq) 376 { 377 unsigned int ino = virt_irq_table[virt_irq].dev_ino; 378 int err; 379 380 err = sun4v_intr_setenabled(ino, HV_INTR_DISABLED); 381 if (err != HV_EOK) 382 printk(KERN_ERR "sun4v_intr_setenabled(%x): " 383 "err(%d)\n", ino, err); 384 } 385 386 static void sun4v_irq_eoi(unsigned int virt_irq) 387 { 388 unsigned int ino = virt_irq_table[virt_irq].dev_ino; 389 struct irq_desc *desc = irq_desc + virt_irq; 390 int err; 391 392 if (unlikely(desc->status & (IRQ_DISABLED|IRQ_INPROGRESS))) 393 return; 394 395 err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE); 396 if (err != HV_EOK) 397 printk(KERN_ERR "sun4v_intr_setstate(%x): " 398 "err(%d)\n", ino, err); 399 } 400 401 static void sun4v_virq_enable(unsigned int virt_irq) 402 { 403 unsigned long cpuid, dev_handle, dev_ino; 404 int err; 405 406 cpuid = irq_choose_cpu(virt_irq); 407 408 dev_handle = virt_irq_table[virt_irq].dev_handle; 409 dev_ino = virt_irq_table[virt_irq].dev_ino; 410 411 err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid); 412 if (err != HV_EOK) 413 printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): " 414 "err(%d)\n", 415 dev_handle, dev_ino, cpuid, err); 416 err = sun4v_vintr_set_state(dev_handle, dev_ino, 417 HV_INTR_STATE_IDLE); 418 if (err != HV_EOK) 419 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx," 420 "HV_INTR_STATE_IDLE): err(%d)\n", 421 dev_handle, dev_ino, err); 422 err = sun4v_vintr_set_valid(dev_handle, dev_ino, 423 HV_INTR_ENABLED); 424 if (err != HV_EOK) 425 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx," 426 "HV_INTR_ENABLED): err(%d)\n", 427 dev_handle, dev_ino, err); 428 } 429 430 static int sun4v_virt_set_affinity(unsigned int virt_irq, 431 const struct cpumask *mask) 432 { 433 unsigned long cpuid, dev_handle, dev_ino; 434 int err; 435 436 cpuid = irq_choose_cpu(virt_irq); 437 438 dev_handle = virt_irq_table[virt_irq].dev_handle; 439 dev_ino = virt_irq_table[virt_irq].dev_ino; 440 441 err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid); 442 if (err != HV_EOK) 443 printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): " 444 "err(%d)\n", 445 dev_handle, dev_ino, cpuid, err); 446 447 return 0; 448 } 449 450 static void sun4v_virq_disable(unsigned int virt_irq) 451 { 452 unsigned long dev_handle, dev_ino; 453 int err; 454 455 dev_handle = virt_irq_table[virt_irq].dev_handle; 456 dev_ino = virt_irq_table[virt_irq].dev_ino; 457 458 err = sun4v_vintr_set_valid(dev_handle, dev_ino, 459 HV_INTR_DISABLED); 460 if (err != HV_EOK) 461 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx," 462 "HV_INTR_DISABLED): err(%d)\n", 463 dev_handle, dev_ino, err); 464 } 465 466 static void sun4v_virq_eoi(unsigned int virt_irq) 467 { 468 struct irq_desc *desc = irq_desc + virt_irq; 469 unsigned long dev_handle, dev_ino; 470 int err; 471 472 if (unlikely(desc->status & (IRQ_DISABLED|IRQ_INPROGRESS))) 473 return; 474 475 dev_handle = virt_irq_table[virt_irq].dev_handle; 476 dev_ino = virt_irq_table[virt_irq].dev_ino; 477 478 err = sun4v_vintr_set_state(dev_handle, dev_ino, 479 HV_INTR_STATE_IDLE); 480 if (err != HV_EOK) 481 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx," 482 "HV_INTR_STATE_IDLE): err(%d)\n", 483 dev_handle, dev_ino, err); 484 } 485 486 static struct irq_chip sun4u_irq = { 487 .name = "sun4u", 488 .enable = sun4u_irq_enable, 489 .disable = sun4u_irq_disable, 490 .eoi = sun4u_irq_eoi, 491 .set_affinity = sun4u_set_affinity, 492 }; 493 494 static struct irq_chip sun4v_irq = { 495 .name = "sun4v", 496 .enable = sun4v_irq_enable, 497 .disable = sun4v_irq_disable, 498 .eoi = sun4v_irq_eoi, 499 .set_affinity = sun4v_set_affinity, 500 }; 501 502 static struct irq_chip sun4v_virq = { 503 .name = "vsun4v", 504 .enable = sun4v_virq_enable, 505 .disable = sun4v_virq_disable, 506 .eoi = sun4v_virq_eoi, 507 .set_affinity = sun4v_virt_set_affinity, 508 }; 509 510 static void pre_flow_handler(unsigned int virt_irq, 511 struct irq_desc *desc) 512 { 513 struct irq_handler_data *data = get_irq_chip_data(virt_irq); 514 unsigned int ino = virt_irq_table[virt_irq].dev_ino; 515 516 data->pre_handler(ino, data->arg1, data->arg2); 517 518 handle_fasteoi_irq(virt_irq, desc); 519 } 520 521 void irq_install_pre_handler(int virt_irq, 522 void (*func)(unsigned int, void *, void *), 523 void *arg1, void *arg2) 524 { 525 struct irq_handler_data *data = get_irq_chip_data(virt_irq); 526 struct irq_desc *desc = irq_desc + virt_irq; 527 528 data->pre_handler = func; 529 data->arg1 = arg1; 530 data->arg2 = arg2; 531 532 desc->handle_irq = pre_flow_handler; 533 } 534 535 unsigned int build_irq(int inofixup, unsigned long iclr, unsigned long imap) 536 { 537 struct ino_bucket *bucket; 538 struct irq_handler_data *data; 539 unsigned int virt_irq; 540 int ino; 541 542 BUG_ON(tlb_type == hypervisor); 543 544 ino = (upa_readq(imap) & (IMAP_IGN | IMAP_INO)) + inofixup; 545 bucket = &ivector_table[ino]; 546 virt_irq = bucket_get_virt_irq(__pa(bucket)); 547 if (!virt_irq) { 548 virt_irq = virt_irq_alloc(0, ino); 549 bucket_set_virt_irq(__pa(bucket), virt_irq); 550 set_irq_chip_and_handler_name(virt_irq, 551 &sun4u_irq, 552 handle_fasteoi_irq, 553 "IVEC"); 554 } 555 556 data = get_irq_chip_data(virt_irq); 557 if (unlikely(data)) 558 goto out; 559 560 data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC); 561 if (unlikely(!data)) { 562 prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n"); 563 prom_halt(); 564 } 565 set_irq_chip_data(virt_irq, data); 566 567 data->imap = imap; 568 data->iclr = iclr; 569 570 out: 571 return virt_irq; 572 } 573 574 static unsigned int sun4v_build_common(unsigned long sysino, 575 struct irq_chip *chip) 576 { 577 struct ino_bucket *bucket; 578 struct irq_handler_data *data; 579 unsigned int virt_irq; 580 581 BUG_ON(tlb_type != hypervisor); 582 583 bucket = &ivector_table[sysino]; 584 virt_irq = bucket_get_virt_irq(__pa(bucket)); 585 if (!virt_irq) { 586 virt_irq = virt_irq_alloc(0, sysino); 587 bucket_set_virt_irq(__pa(bucket), virt_irq); 588 set_irq_chip_and_handler_name(virt_irq, chip, 589 handle_fasteoi_irq, 590 "IVEC"); 591 } 592 593 data = get_irq_chip_data(virt_irq); 594 if (unlikely(data)) 595 goto out; 596 597 data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC); 598 if (unlikely(!data)) { 599 prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n"); 600 prom_halt(); 601 } 602 set_irq_chip_data(virt_irq, data); 603 604 /* Catch accidental accesses to these things. IMAP/ICLR handling 605 * is done by hypervisor calls on sun4v platforms, not by direct 606 * register accesses. 607 */ 608 data->imap = ~0UL; 609 data->iclr = ~0UL; 610 611 out: 612 return virt_irq; 613 } 614 615 unsigned int sun4v_build_irq(u32 devhandle, unsigned int devino) 616 { 617 unsigned long sysino = sun4v_devino_to_sysino(devhandle, devino); 618 619 return sun4v_build_common(sysino, &sun4v_irq); 620 } 621 622 unsigned int sun4v_build_virq(u32 devhandle, unsigned int devino) 623 { 624 struct irq_handler_data *data; 625 unsigned long hv_err, cookie; 626 struct ino_bucket *bucket; 627 struct irq_desc *desc; 628 unsigned int virt_irq; 629 630 bucket = kzalloc(sizeof(struct ino_bucket), GFP_ATOMIC); 631 if (unlikely(!bucket)) 632 return 0; 633 __flush_dcache_range((unsigned long) bucket, 634 ((unsigned long) bucket + 635 sizeof(struct ino_bucket))); 636 637 virt_irq = virt_irq_alloc(devhandle, devino); 638 bucket_set_virt_irq(__pa(bucket), virt_irq); 639 640 set_irq_chip_and_handler_name(virt_irq, &sun4v_virq, 641 handle_fasteoi_irq, 642 "IVEC"); 643 644 data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC); 645 if (unlikely(!data)) 646 return 0; 647 648 /* In order to make the LDC channel startup sequence easier, 649 * especially wrt. locking, we do not let request_irq() enable 650 * the interrupt. 651 */ 652 desc = irq_desc + virt_irq; 653 desc->status |= IRQ_NOAUTOEN; 654 655 set_irq_chip_data(virt_irq, data); 656 657 /* Catch accidental accesses to these things. IMAP/ICLR handling 658 * is done by hypervisor calls on sun4v platforms, not by direct 659 * register accesses. 660 */ 661 data->imap = ~0UL; 662 data->iclr = ~0UL; 663 664 cookie = ~__pa(bucket); 665 hv_err = sun4v_vintr_set_cookie(devhandle, devino, cookie); 666 if (hv_err) { 667 prom_printf("IRQ: Fatal, cannot set cookie for [%x:%x] " 668 "err=%lu\n", devhandle, devino, hv_err); 669 prom_halt(); 670 } 671 672 return virt_irq; 673 } 674 675 void ack_bad_irq(unsigned int virt_irq) 676 { 677 unsigned int ino = virt_irq_table[virt_irq].dev_ino; 678 679 if (!ino) 680 ino = 0xdeadbeef; 681 682 printk(KERN_CRIT "Unexpected IRQ from ino[%x] virt_irq[%u]\n", 683 ino, virt_irq); 684 } 685 686 void *hardirq_stack[NR_CPUS]; 687 void *softirq_stack[NR_CPUS]; 688 689 static __attribute__((always_inline)) void *set_hardirq_stack(void) 690 { 691 void *orig_sp, *sp = hardirq_stack[smp_processor_id()]; 692 693 __asm__ __volatile__("mov %%sp, %0" : "=r" (orig_sp)); 694 if (orig_sp < sp || 695 orig_sp > (sp + THREAD_SIZE)) { 696 sp += THREAD_SIZE - 192 - STACK_BIAS; 697 __asm__ __volatile__("mov %0, %%sp" : : "r" (sp)); 698 } 699 700 return orig_sp; 701 } 702 static __attribute__((always_inline)) void restore_hardirq_stack(void *orig_sp) 703 { 704 __asm__ __volatile__("mov %0, %%sp" : : "r" (orig_sp)); 705 } 706 707 void handler_irq(int irq, struct pt_regs *regs) 708 { 709 unsigned long pstate, bucket_pa; 710 struct pt_regs *old_regs; 711 void *orig_sp; 712 713 clear_softint(1 << irq); 714 715 old_regs = set_irq_regs(regs); 716 irq_enter(); 717 718 /* Grab an atomic snapshot of the pending IVECs. */ 719 __asm__ __volatile__("rdpr %%pstate, %0\n\t" 720 "wrpr %0, %3, %%pstate\n\t" 721 "ldx [%2], %1\n\t" 722 "stx %%g0, [%2]\n\t" 723 "wrpr %0, 0x0, %%pstate\n\t" 724 : "=&r" (pstate), "=&r" (bucket_pa) 725 : "r" (irq_work_pa(smp_processor_id())), 726 "i" (PSTATE_IE) 727 : "memory"); 728 729 orig_sp = set_hardirq_stack(); 730 731 while (bucket_pa) { 732 struct irq_desc *desc; 733 unsigned long next_pa; 734 unsigned int virt_irq; 735 736 next_pa = bucket_get_chain_pa(bucket_pa); 737 virt_irq = bucket_get_virt_irq(bucket_pa); 738 bucket_clear_chain_pa(bucket_pa); 739 740 desc = irq_desc + virt_irq; 741 742 if (!(desc->status & IRQ_DISABLED)) 743 desc->handle_irq(virt_irq, desc); 744 745 bucket_pa = next_pa; 746 } 747 748 restore_hardirq_stack(orig_sp); 749 750 irq_exit(); 751 set_irq_regs(old_regs); 752 } 753 754 void do_softirq(void) 755 { 756 unsigned long flags; 757 758 if (in_interrupt()) 759 return; 760 761 local_irq_save(flags); 762 763 if (local_softirq_pending()) { 764 void *orig_sp, *sp = softirq_stack[smp_processor_id()]; 765 766 sp += THREAD_SIZE - 192 - STACK_BIAS; 767 768 __asm__ __volatile__("mov %%sp, %0\n\t" 769 "mov %1, %%sp" 770 : "=&r" (orig_sp) 771 : "r" (sp)); 772 __do_softirq(); 773 __asm__ __volatile__("mov %0, %%sp" 774 : : "r" (orig_sp)); 775 } 776 777 local_irq_restore(flags); 778 } 779 780 #ifdef CONFIG_HOTPLUG_CPU 781 void fixup_irqs(void) 782 { 783 unsigned int irq; 784 785 for (irq = 0; irq < NR_IRQS; irq++) { 786 unsigned long flags; 787 788 raw_spin_lock_irqsave(&irq_desc[irq].lock, flags); 789 if (irq_desc[irq].action && 790 !(irq_desc[irq].status & IRQ_PER_CPU)) { 791 if (irq_desc[irq].chip->set_affinity) 792 irq_desc[irq].chip->set_affinity(irq, 793 irq_desc[irq].affinity); 794 } 795 raw_spin_unlock_irqrestore(&irq_desc[irq].lock, flags); 796 } 797 798 tick_ops->disable_irq(); 799 } 800 #endif 801 802 struct sun5_timer { 803 u64 count0; 804 u64 limit0; 805 u64 count1; 806 u64 limit1; 807 }; 808 809 static struct sun5_timer *prom_timers; 810 static u64 prom_limit0, prom_limit1; 811 812 static void map_prom_timers(void) 813 { 814 struct device_node *dp; 815 const unsigned int *addr; 816 817 /* PROM timer node hangs out in the top level of device siblings... */ 818 dp = of_find_node_by_path("/"); 819 dp = dp->child; 820 while (dp) { 821 if (!strcmp(dp->name, "counter-timer")) 822 break; 823 dp = dp->sibling; 824 } 825 826 /* Assume if node is not present, PROM uses different tick mechanism 827 * which we should not care about. 828 */ 829 if (!dp) { 830 prom_timers = (struct sun5_timer *) 0; 831 return; 832 } 833 834 /* If PROM is really using this, it must be mapped by him. */ 835 addr = of_get_property(dp, "address", NULL); 836 if (!addr) { 837 prom_printf("PROM does not have timer mapped, trying to continue.\n"); 838 prom_timers = (struct sun5_timer *) 0; 839 return; 840 } 841 prom_timers = (struct sun5_timer *) ((unsigned long)addr[0]); 842 } 843 844 static void kill_prom_timer(void) 845 { 846 if (!prom_timers) 847 return; 848 849 /* Save them away for later. */ 850 prom_limit0 = prom_timers->limit0; 851 prom_limit1 = prom_timers->limit1; 852 853 /* Just as in sun4c/sun4m PROM uses timer which ticks at IRQ 14. 854 * We turn both off here just to be paranoid. 855 */ 856 prom_timers->limit0 = 0; 857 prom_timers->limit1 = 0; 858 859 /* Wheee, eat the interrupt packet too... */ 860 __asm__ __volatile__( 861 " mov 0x40, %%g2\n" 862 " ldxa [%%g0] %0, %%g1\n" 863 " ldxa [%%g2] %1, %%g1\n" 864 " stxa %%g0, [%%g0] %0\n" 865 " membar #Sync\n" 866 : /* no outputs */ 867 : "i" (ASI_INTR_RECEIVE), "i" (ASI_INTR_R) 868 : "g1", "g2"); 869 } 870 871 void notrace init_irqwork_curcpu(void) 872 { 873 int cpu = hard_smp_processor_id(); 874 875 trap_block[cpu].irq_worklist_pa = 0UL; 876 } 877 878 /* Please be very careful with register_one_mondo() and 879 * sun4v_register_mondo_queues(). 880 * 881 * On SMP this gets invoked from the CPU trampoline before 882 * the cpu has fully taken over the trap table from OBP, 883 * and it's kernel stack + %g6 thread register state is 884 * not fully cooked yet. 885 * 886 * Therefore you cannot make any OBP calls, not even prom_printf, 887 * from these two routines. 888 */ 889 static void __cpuinit notrace register_one_mondo(unsigned long paddr, unsigned long type, unsigned long qmask) 890 { 891 unsigned long num_entries = (qmask + 1) / 64; 892 unsigned long status; 893 894 status = sun4v_cpu_qconf(type, paddr, num_entries); 895 if (status != HV_EOK) { 896 prom_printf("SUN4V: sun4v_cpu_qconf(%lu:%lx:%lu) failed, " 897 "err %lu\n", type, paddr, num_entries, status); 898 prom_halt(); 899 } 900 } 901 902 void __cpuinit notrace sun4v_register_mondo_queues(int this_cpu) 903 { 904 struct trap_per_cpu *tb = &trap_block[this_cpu]; 905 906 register_one_mondo(tb->cpu_mondo_pa, HV_CPU_QUEUE_CPU_MONDO, 907 tb->cpu_mondo_qmask); 908 register_one_mondo(tb->dev_mondo_pa, HV_CPU_QUEUE_DEVICE_MONDO, 909 tb->dev_mondo_qmask); 910 register_one_mondo(tb->resum_mondo_pa, HV_CPU_QUEUE_RES_ERROR, 911 tb->resum_qmask); 912 register_one_mondo(tb->nonresum_mondo_pa, HV_CPU_QUEUE_NONRES_ERROR, 913 tb->nonresum_qmask); 914 } 915 916 /* Each queue region must be a power of 2 multiple of 64 bytes in 917 * size. The base real address must be aligned to the size of the 918 * region. Thus, an 8KB queue must be 8KB aligned, for example. 919 */ 920 static void __init alloc_one_queue(unsigned long *pa_ptr, unsigned long qmask) 921 { 922 unsigned long size = PAGE_ALIGN(qmask + 1); 923 unsigned long order = get_order(size); 924 unsigned long p; 925 926 p = __get_free_pages(GFP_KERNEL, order); 927 if (!p) { 928 prom_printf("SUN4V: Error, cannot allocate queue.\n"); 929 prom_halt(); 930 } 931 932 *pa_ptr = __pa(p); 933 } 934 935 static void __init init_cpu_send_mondo_info(struct trap_per_cpu *tb) 936 { 937 #ifdef CONFIG_SMP 938 unsigned long page; 939 940 BUILD_BUG_ON((NR_CPUS * sizeof(u16)) > (PAGE_SIZE - 64)); 941 942 page = get_zeroed_page(GFP_KERNEL); 943 if (!page) { 944 prom_printf("SUN4V: Error, cannot allocate cpu mondo page.\n"); 945 prom_halt(); 946 } 947 948 tb->cpu_mondo_block_pa = __pa(page); 949 tb->cpu_list_pa = __pa(page + 64); 950 #endif 951 } 952 953 /* Allocate mondo and error queues for all possible cpus. */ 954 static void __init sun4v_init_mondo_queues(void) 955 { 956 int cpu; 957 958 for_each_possible_cpu(cpu) { 959 struct trap_per_cpu *tb = &trap_block[cpu]; 960 961 alloc_one_queue(&tb->cpu_mondo_pa, tb->cpu_mondo_qmask); 962 alloc_one_queue(&tb->dev_mondo_pa, tb->dev_mondo_qmask); 963 alloc_one_queue(&tb->resum_mondo_pa, tb->resum_qmask); 964 alloc_one_queue(&tb->resum_kernel_buf_pa, tb->resum_qmask); 965 alloc_one_queue(&tb->nonresum_mondo_pa, tb->nonresum_qmask); 966 alloc_one_queue(&tb->nonresum_kernel_buf_pa, 967 tb->nonresum_qmask); 968 } 969 } 970 971 static void __init init_send_mondo_info(void) 972 { 973 int cpu; 974 975 for_each_possible_cpu(cpu) { 976 struct trap_per_cpu *tb = &trap_block[cpu]; 977 978 init_cpu_send_mondo_info(tb); 979 } 980 } 981 982 static struct irqaction timer_irq_action = { 983 .name = "timer", 984 }; 985 986 /* Only invoked on boot processor. */ 987 void __init init_IRQ(void) 988 { 989 unsigned long size; 990 991 map_prom_timers(); 992 kill_prom_timer(); 993 994 size = sizeof(struct ino_bucket) * NUM_IVECS; 995 ivector_table = kzalloc(size, GFP_KERNEL); 996 if (!ivector_table) { 997 prom_printf("Fatal error, cannot allocate ivector_table\n"); 998 prom_halt(); 999 } 1000 __flush_dcache_range((unsigned long) ivector_table, 1001 ((unsigned long) ivector_table) + size); 1002 1003 ivector_table_pa = __pa(ivector_table); 1004 1005 if (tlb_type == hypervisor) 1006 sun4v_init_mondo_queues(); 1007 1008 init_send_mondo_info(); 1009 1010 if (tlb_type == hypervisor) { 1011 /* Load up the boot cpu's entries. */ 1012 sun4v_register_mondo_queues(hard_smp_processor_id()); 1013 } 1014 1015 /* We need to clear any IRQ's pending in the soft interrupt 1016 * registers, a spurious one could be left around from the 1017 * PROM timer which we just disabled. 1018 */ 1019 clear_softint(get_softint()); 1020 1021 /* Now that ivector table is initialized, it is safe 1022 * to receive IRQ vector traps. We will normally take 1023 * one or two right now, in case some device PROM used 1024 * to boot us wants to speak to us. We just ignore them. 1025 */ 1026 __asm__ __volatile__("rdpr %%pstate, %%g1\n\t" 1027 "or %%g1, %0, %%g1\n\t" 1028 "wrpr %%g1, 0x0, %%pstate" 1029 : /* No outputs */ 1030 : "i" (PSTATE_IE) 1031 : "g1"); 1032 1033 irq_desc[0].action = &timer_irq_action; 1034 } 1035