xref: /openbmc/linux/arch/sparc/kernel/irq_64.c (revision 6ee73861)
1 /* irq.c: UltraSparc IRQ handling/init/registry.
2  *
3  * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
4  * Copyright (C) 1998  Eddie C. Dost    (ecd@skynet.be)
5  * Copyright (C) 1998  Jakub Jelinek    (jj@ultra.linux.cz)
6  */
7 
8 #include <linux/module.h>
9 #include <linux/sched.h>
10 #include <linux/linkage.h>
11 #include <linux/ptrace.h>
12 #include <linux/errno.h>
13 #include <linux/kernel_stat.h>
14 #include <linux/signal.h>
15 #include <linux/mm.h>
16 #include <linux/interrupt.h>
17 #include <linux/slab.h>
18 #include <linux/random.h>
19 #include <linux/init.h>
20 #include <linux/delay.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/irq.h>
24 
25 #include <asm/ptrace.h>
26 #include <asm/processor.h>
27 #include <asm/atomic.h>
28 #include <asm/system.h>
29 #include <asm/irq.h>
30 #include <asm/io.h>
31 #include <asm/iommu.h>
32 #include <asm/upa.h>
33 #include <asm/oplib.h>
34 #include <asm/prom.h>
35 #include <asm/timer.h>
36 #include <asm/smp.h>
37 #include <asm/starfire.h>
38 #include <asm/uaccess.h>
39 #include <asm/cache.h>
40 #include <asm/cpudata.h>
41 #include <asm/auxio.h>
42 #include <asm/head.h>
43 #include <asm/hypervisor.h>
44 #include <asm/cacheflush.h>
45 
46 #include "entry.h"
47 #include "cpumap.h"
48 
49 #define NUM_IVECS	(IMAP_INR + 1)
50 
51 struct ino_bucket *ivector_table;
52 unsigned long ivector_table_pa;
53 
54 /* On several sun4u processors, it is illegal to mix bypass and
55  * non-bypass accesses.  Therefore we access all INO buckets
56  * using bypass accesses only.
57  */
58 static unsigned long bucket_get_chain_pa(unsigned long bucket_pa)
59 {
60 	unsigned long ret;
61 
62 	__asm__ __volatile__("ldxa	[%1] %2, %0"
63 			     : "=&r" (ret)
64 			     : "r" (bucket_pa +
65 				    offsetof(struct ino_bucket,
66 					     __irq_chain_pa)),
67 			       "i" (ASI_PHYS_USE_EC));
68 
69 	return ret;
70 }
71 
72 static void bucket_clear_chain_pa(unsigned long bucket_pa)
73 {
74 	__asm__ __volatile__("stxa	%%g0, [%0] %1"
75 			     : /* no outputs */
76 			     : "r" (bucket_pa +
77 				    offsetof(struct ino_bucket,
78 					     __irq_chain_pa)),
79 			       "i" (ASI_PHYS_USE_EC));
80 }
81 
82 static unsigned int bucket_get_virt_irq(unsigned long bucket_pa)
83 {
84 	unsigned int ret;
85 
86 	__asm__ __volatile__("lduwa	[%1] %2, %0"
87 			     : "=&r" (ret)
88 			     : "r" (bucket_pa +
89 				    offsetof(struct ino_bucket,
90 					     __virt_irq)),
91 			       "i" (ASI_PHYS_USE_EC));
92 
93 	return ret;
94 }
95 
96 static void bucket_set_virt_irq(unsigned long bucket_pa,
97 				unsigned int virt_irq)
98 {
99 	__asm__ __volatile__("stwa	%0, [%1] %2"
100 			     : /* no outputs */
101 			     : "r" (virt_irq),
102 			       "r" (bucket_pa +
103 				    offsetof(struct ino_bucket,
104 					     __virt_irq)),
105 			       "i" (ASI_PHYS_USE_EC));
106 }
107 
108 #define irq_work_pa(__cpu)	&(trap_block[(__cpu)].irq_worklist_pa)
109 
110 static struct {
111 	unsigned int dev_handle;
112 	unsigned int dev_ino;
113 	unsigned int in_use;
114 } virt_irq_table[NR_IRQS];
115 static DEFINE_SPINLOCK(virt_irq_alloc_lock);
116 
117 unsigned char virt_irq_alloc(unsigned int dev_handle,
118 			     unsigned int dev_ino)
119 {
120 	unsigned long flags;
121 	unsigned char ent;
122 
123 	BUILD_BUG_ON(NR_IRQS >= 256);
124 
125 	spin_lock_irqsave(&virt_irq_alloc_lock, flags);
126 
127 	for (ent = 1; ent < NR_IRQS; ent++) {
128 		if (!virt_irq_table[ent].in_use)
129 			break;
130 	}
131 	if (ent >= NR_IRQS) {
132 		printk(KERN_ERR "IRQ: Out of virtual IRQs.\n");
133 		ent = 0;
134 	} else {
135 		virt_irq_table[ent].dev_handle = dev_handle;
136 		virt_irq_table[ent].dev_ino = dev_ino;
137 		virt_irq_table[ent].in_use = 1;
138 	}
139 
140 	spin_unlock_irqrestore(&virt_irq_alloc_lock, flags);
141 
142 	return ent;
143 }
144 
145 #ifdef CONFIG_PCI_MSI
146 void virt_irq_free(unsigned int virt_irq)
147 {
148 	unsigned long flags;
149 
150 	if (virt_irq >= NR_IRQS)
151 		return;
152 
153 	spin_lock_irqsave(&virt_irq_alloc_lock, flags);
154 
155 	virt_irq_table[virt_irq].in_use = 0;
156 
157 	spin_unlock_irqrestore(&virt_irq_alloc_lock, flags);
158 }
159 #endif
160 
161 /*
162  * /proc/interrupts printing:
163  */
164 
165 int show_interrupts(struct seq_file *p, void *v)
166 {
167 	int i = *(loff_t *) v, j;
168 	struct irqaction * action;
169 	unsigned long flags;
170 
171 	if (i == 0) {
172 		seq_printf(p, "           ");
173 		for_each_online_cpu(j)
174 			seq_printf(p, "CPU%d       ",j);
175 		seq_putc(p, '\n');
176 	}
177 
178 	if (i < NR_IRQS) {
179 		spin_lock_irqsave(&irq_desc[i].lock, flags);
180 		action = irq_desc[i].action;
181 		if (!action)
182 			goto skip;
183 		seq_printf(p, "%3d: ",i);
184 #ifndef CONFIG_SMP
185 		seq_printf(p, "%10u ", kstat_irqs(i));
186 #else
187 		for_each_online_cpu(j)
188 			seq_printf(p, "%10u ", kstat_irqs_cpu(i, j));
189 #endif
190 		seq_printf(p, " %9s", irq_desc[i].chip->typename);
191 		seq_printf(p, "  %s", action->name);
192 
193 		for (action=action->next; action; action = action->next)
194 			seq_printf(p, ", %s", action->name);
195 
196 		seq_putc(p, '\n');
197 skip:
198 		spin_unlock_irqrestore(&irq_desc[i].lock, flags);
199 	} else if (i == NR_IRQS) {
200 		seq_printf(p, "NMI: ");
201 		for_each_online_cpu(j)
202 			seq_printf(p, "%10u ", cpu_data(j).__nmi_count);
203 		seq_printf(p, "     Non-maskable interrupts\n");
204 	}
205 	return 0;
206 }
207 
208 static unsigned int sun4u_compute_tid(unsigned long imap, unsigned long cpuid)
209 {
210 	unsigned int tid;
211 
212 	if (this_is_starfire) {
213 		tid = starfire_translate(imap, cpuid);
214 		tid <<= IMAP_TID_SHIFT;
215 		tid &= IMAP_TID_UPA;
216 	} else {
217 		if (tlb_type == cheetah || tlb_type == cheetah_plus) {
218 			unsigned long ver;
219 
220 			__asm__ ("rdpr %%ver, %0" : "=r" (ver));
221 			if ((ver >> 32UL) == __JALAPENO_ID ||
222 			    (ver >> 32UL) == __SERRANO_ID) {
223 				tid = cpuid << IMAP_TID_SHIFT;
224 				tid &= IMAP_TID_JBUS;
225 			} else {
226 				unsigned int a = cpuid & 0x1f;
227 				unsigned int n = (cpuid >> 5) & 0x1f;
228 
229 				tid = ((a << IMAP_AID_SHIFT) |
230 				       (n << IMAP_NID_SHIFT));
231 				tid &= (IMAP_AID_SAFARI |
232 					IMAP_NID_SAFARI);
233 			}
234 		} else {
235 			tid = cpuid << IMAP_TID_SHIFT;
236 			tid &= IMAP_TID_UPA;
237 		}
238 	}
239 
240 	return tid;
241 }
242 
243 struct irq_handler_data {
244 	unsigned long	iclr;
245 	unsigned long	imap;
246 
247 	void		(*pre_handler)(unsigned int, void *, void *);
248 	void		*arg1;
249 	void		*arg2;
250 };
251 
252 #ifdef CONFIG_SMP
253 static int irq_choose_cpu(unsigned int virt_irq)
254 {
255 	cpumask_t mask;
256 	int cpuid;
257 
258 	cpumask_copy(&mask, irq_desc[virt_irq].affinity);
259 	if (cpus_equal(mask, cpu_online_map)) {
260 		cpuid = map_to_cpu(virt_irq);
261 	} else {
262 		cpumask_t tmp;
263 
264 		cpus_and(tmp, cpu_online_map, mask);
265 		cpuid = cpus_empty(tmp) ? map_to_cpu(virt_irq) : first_cpu(tmp);
266 	}
267 
268 	return cpuid;
269 }
270 #else
271 static int irq_choose_cpu(unsigned int virt_irq)
272 {
273 	return real_hard_smp_processor_id();
274 }
275 #endif
276 
277 static void sun4u_irq_enable(unsigned int virt_irq)
278 {
279 	struct irq_handler_data *data = get_irq_chip_data(virt_irq);
280 
281 	if (likely(data)) {
282 		unsigned long cpuid, imap, val;
283 		unsigned int tid;
284 
285 		cpuid = irq_choose_cpu(virt_irq);
286 		imap = data->imap;
287 
288 		tid = sun4u_compute_tid(imap, cpuid);
289 
290 		val = upa_readq(imap);
291 		val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
292 			 IMAP_AID_SAFARI | IMAP_NID_SAFARI);
293 		val |= tid | IMAP_VALID;
294 		upa_writeq(val, imap);
295 		upa_writeq(ICLR_IDLE, data->iclr);
296 	}
297 }
298 
299 static int sun4u_set_affinity(unsigned int virt_irq,
300 			       const struct cpumask *mask)
301 {
302 	sun4u_irq_enable(virt_irq);
303 
304 	return 0;
305 }
306 
307 /* Don't do anything.  The desc->status check for IRQ_DISABLED in
308  * handler_irq() will skip the handler call and that will leave the
309  * interrupt in the sent state.  The next ->enable() call will hit the
310  * ICLR register to reset the state machine.
311  *
312  * This scheme is necessary, instead of clearing the Valid bit in the
313  * IMAP register, to handle the case of IMAP registers being shared by
314  * multiple INOs (and thus ICLR registers).  Since we use a different
315  * virtual IRQ for each shared IMAP instance, the generic code thinks
316  * there is only one user so it prematurely calls ->disable() on
317  * free_irq().
318  *
319  * We have to provide an explicit ->disable() method instead of using
320  * NULL to get the default.  The reason is that if the generic code
321  * sees that, it also hooks up a default ->shutdown method which
322  * invokes ->mask() which we do not want.  See irq_chip_set_defaults().
323  */
324 static void sun4u_irq_disable(unsigned int virt_irq)
325 {
326 }
327 
328 static void sun4u_irq_eoi(unsigned int virt_irq)
329 {
330 	struct irq_handler_data *data = get_irq_chip_data(virt_irq);
331 	struct irq_desc *desc = irq_desc + virt_irq;
332 
333 	if (unlikely(desc->status & (IRQ_DISABLED|IRQ_INPROGRESS)))
334 		return;
335 
336 	if (likely(data))
337 		upa_writeq(ICLR_IDLE, data->iclr);
338 }
339 
340 static void sun4v_irq_enable(unsigned int virt_irq)
341 {
342 	unsigned int ino = virt_irq_table[virt_irq].dev_ino;
343 	unsigned long cpuid = irq_choose_cpu(virt_irq);
344 	int err;
345 
346 	err = sun4v_intr_settarget(ino, cpuid);
347 	if (err != HV_EOK)
348 		printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
349 		       "err(%d)\n", ino, cpuid, err);
350 	err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
351 	if (err != HV_EOK)
352 		printk(KERN_ERR "sun4v_intr_setstate(%x): "
353 		       "err(%d)\n", ino, err);
354 	err = sun4v_intr_setenabled(ino, HV_INTR_ENABLED);
355 	if (err != HV_EOK)
356 		printk(KERN_ERR "sun4v_intr_setenabled(%x): err(%d)\n",
357 		       ino, err);
358 }
359 
360 static int sun4v_set_affinity(unsigned int virt_irq,
361 			       const struct cpumask *mask)
362 {
363 	unsigned int ino = virt_irq_table[virt_irq].dev_ino;
364 	unsigned long cpuid = irq_choose_cpu(virt_irq);
365 	int err;
366 
367 	err = sun4v_intr_settarget(ino, cpuid);
368 	if (err != HV_EOK)
369 		printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
370 		       "err(%d)\n", ino, cpuid, err);
371 
372 	return 0;
373 }
374 
375 static void sun4v_irq_disable(unsigned int virt_irq)
376 {
377 	unsigned int ino = virt_irq_table[virt_irq].dev_ino;
378 	int err;
379 
380 	err = sun4v_intr_setenabled(ino, HV_INTR_DISABLED);
381 	if (err != HV_EOK)
382 		printk(KERN_ERR "sun4v_intr_setenabled(%x): "
383 		       "err(%d)\n", ino, err);
384 }
385 
386 static void sun4v_irq_eoi(unsigned int virt_irq)
387 {
388 	unsigned int ino = virt_irq_table[virt_irq].dev_ino;
389 	struct irq_desc *desc = irq_desc + virt_irq;
390 	int err;
391 
392 	if (unlikely(desc->status & (IRQ_DISABLED|IRQ_INPROGRESS)))
393 		return;
394 
395 	err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
396 	if (err != HV_EOK)
397 		printk(KERN_ERR "sun4v_intr_setstate(%x): "
398 		       "err(%d)\n", ino, err);
399 }
400 
401 static void sun4v_virq_enable(unsigned int virt_irq)
402 {
403 	unsigned long cpuid, dev_handle, dev_ino;
404 	int err;
405 
406 	cpuid = irq_choose_cpu(virt_irq);
407 
408 	dev_handle = virt_irq_table[virt_irq].dev_handle;
409 	dev_ino = virt_irq_table[virt_irq].dev_ino;
410 
411 	err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
412 	if (err != HV_EOK)
413 		printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
414 		       "err(%d)\n",
415 		       dev_handle, dev_ino, cpuid, err);
416 	err = sun4v_vintr_set_state(dev_handle, dev_ino,
417 				    HV_INTR_STATE_IDLE);
418 	if (err != HV_EOK)
419 		printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
420 		       "HV_INTR_STATE_IDLE): err(%d)\n",
421 		       dev_handle, dev_ino, err);
422 	err = sun4v_vintr_set_valid(dev_handle, dev_ino,
423 				    HV_INTR_ENABLED);
424 	if (err != HV_EOK)
425 		printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
426 		       "HV_INTR_ENABLED): err(%d)\n",
427 		       dev_handle, dev_ino, err);
428 }
429 
430 static int sun4v_virt_set_affinity(unsigned int virt_irq,
431 				    const struct cpumask *mask)
432 {
433 	unsigned long cpuid, dev_handle, dev_ino;
434 	int err;
435 
436 	cpuid = irq_choose_cpu(virt_irq);
437 
438 	dev_handle = virt_irq_table[virt_irq].dev_handle;
439 	dev_ino = virt_irq_table[virt_irq].dev_ino;
440 
441 	err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
442 	if (err != HV_EOK)
443 		printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
444 		       "err(%d)\n",
445 		       dev_handle, dev_ino, cpuid, err);
446 
447 	return 0;
448 }
449 
450 static void sun4v_virq_disable(unsigned int virt_irq)
451 {
452 	unsigned long dev_handle, dev_ino;
453 	int err;
454 
455 	dev_handle = virt_irq_table[virt_irq].dev_handle;
456 	dev_ino = virt_irq_table[virt_irq].dev_ino;
457 
458 	err = sun4v_vintr_set_valid(dev_handle, dev_ino,
459 				    HV_INTR_DISABLED);
460 	if (err != HV_EOK)
461 		printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
462 		       "HV_INTR_DISABLED): err(%d)\n",
463 		       dev_handle, dev_ino, err);
464 }
465 
466 static void sun4v_virq_eoi(unsigned int virt_irq)
467 {
468 	struct irq_desc *desc = irq_desc + virt_irq;
469 	unsigned long dev_handle, dev_ino;
470 	int err;
471 
472 	if (unlikely(desc->status & (IRQ_DISABLED|IRQ_INPROGRESS)))
473 		return;
474 
475 	dev_handle = virt_irq_table[virt_irq].dev_handle;
476 	dev_ino = virt_irq_table[virt_irq].dev_ino;
477 
478 	err = sun4v_vintr_set_state(dev_handle, dev_ino,
479 				    HV_INTR_STATE_IDLE);
480 	if (err != HV_EOK)
481 		printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
482 		       "HV_INTR_STATE_IDLE): err(%d)\n",
483 		       dev_handle, dev_ino, err);
484 }
485 
486 static struct irq_chip sun4u_irq = {
487 	.typename	= "sun4u",
488 	.enable		= sun4u_irq_enable,
489 	.disable	= sun4u_irq_disable,
490 	.eoi		= sun4u_irq_eoi,
491 	.set_affinity	= sun4u_set_affinity,
492 };
493 
494 static struct irq_chip sun4v_irq = {
495 	.typename	= "sun4v",
496 	.enable		= sun4v_irq_enable,
497 	.disable	= sun4v_irq_disable,
498 	.eoi		= sun4v_irq_eoi,
499 	.set_affinity	= sun4v_set_affinity,
500 };
501 
502 static struct irq_chip sun4v_virq = {
503 	.typename	= "vsun4v",
504 	.enable		= sun4v_virq_enable,
505 	.disable	= sun4v_virq_disable,
506 	.eoi		= sun4v_virq_eoi,
507 	.set_affinity	= sun4v_virt_set_affinity,
508 };
509 
510 static void pre_flow_handler(unsigned int virt_irq,
511 				      struct irq_desc *desc)
512 {
513 	struct irq_handler_data *data = get_irq_chip_data(virt_irq);
514 	unsigned int ino = virt_irq_table[virt_irq].dev_ino;
515 
516 	data->pre_handler(ino, data->arg1, data->arg2);
517 
518 	handle_fasteoi_irq(virt_irq, desc);
519 }
520 
521 void irq_install_pre_handler(int virt_irq,
522 			     void (*func)(unsigned int, void *, void *),
523 			     void *arg1, void *arg2)
524 {
525 	struct irq_handler_data *data = get_irq_chip_data(virt_irq);
526 	struct irq_desc *desc = irq_desc + virt_irq;
527 
528 	data->pre_handler = func;
529 	data->arg1 = arg1;
530 	data->arg2 = arg2;
531 
532 	desc->handle_irq = pre_flow_handler;
533 }
534 
535 unsigned int build_irq(int inofixup, unsigned long iclr, unsigned long imap)
536 {
537 	struct ino_bucket *bucket;
538 	struct irq_handler_data *data;
539 	unsigned int virt_irq;
540 	int ino;
541 
542 	BUG_ON(tlb_type == hypervisor);
543 
544 	ino = (upa_readq(imap) & (IMAP_IGN | IMAP_INO)) + inofixup;
545 	bucket = &ivector_table[ino];
546 	virt_irq = bucket_get_virt_irq(__pa(bucket));
547 	if (!virt_irq) {
548 		virt_irq = virt_irq_alloc(0, ino);
549 		bucket_set_virt_irq(__pa(bucket), virt_irq);
550 		set_irq_chip_and_handler_name(virt_irq,
551 					      &sun4u_irq,
552 					      handle_fasteoi_irq,
553 					      "IVEC");
554 	}
555 
556 	data = get_irq_chip_data(virt_irq);
557 	if (unlikely(data))
558 		goto out;
559 
560 	data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
561 	if (unlikely(!data)) {
562 		prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
563 		prom_halt();
564 	}
565 	set_irq_chip_data(virt_irq, data);
566 
567 	data->imap  = imap;
568 	data->iclr  = iclr;
569 
570 out:
571 	return virt_irq;
572 }
573 
574 static unsigned int sun4v_build_common(unsigned long sysino,
575 				       struct irq_chip *chip)
576 {
577 	struct ino_bucket *bucket;
578 	struct irq_handler_data *data;
579 	unsigned int virt_irq;
580 
581 	BUG_ON(tlb_type != hypervisor);
582 
583 	bucket = &ivector_table[sysino];
584 	virt_irq = bucket_get_virt_irq(__pa(bucket));
585 	if (!virt_irq) {
586 		virt_irq = virt_irq_alloc(0, sysino);
587 		bucket_set_virt_irq(__pa(bucket), virt_irq);
588 		set_irq_chip_and_handler_name(virt_irq, chip,
589 					      handle_fasteoi_irq,
590 					      "IVEC");
591 	}
592 
593 	data = get_irq_chip_data(virt_irq);
594 	if (unlikely(data))
595 		goto out;
596 
597 	data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
598 	if (unlikely(!data)) {
599 		prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
600 		prom_halt();
601 	}
602 	set_irq_chip_data(virt_irq, data);
603 
604 	/* Catch accidental accesses to these things.  IMAP/ICLR handling
605 	 * is done by hypervisor calls on sun4v platforms, not by direct
606 	 * register accesses.
607 	 */
608 	data->imap = ~0UL;
609 	data->iclr = ~0UL;
610 
611 out:
612 	return virt_irq;
613 }
614 
615 unsigned int sun4v_build_irq(u32 devhandle, unsigned int devino)
616 {
617 	unsigned long sysino = sun4v_devino_to_sysino(devhandle, devino);
618 
619 	return sun4v_build_common(sysino, &sun4v_irq);
620 }
621 
622 unsigned int sun4v_build_virq(u32 devhandle, unsigned int devino)
623 {
624 	struct irq_handler_data *data;
625 	unsigned long hv_err, cookie;
626 	struct ino_bucket *bucket;
627 	struct irq_desc *desc;
628 	unsigned int virt_irq;
629 
630 	bucket = kzalloc(sizeof(struct ino_bucket), GFP_ATOMIC);
631 	if (unlikely(!bucket))
632 		return 0;
633 	__flush_dcache_range((unsigned long) bucket,
634 			     ((unsigned long) bucket +
635 			      sizeof(struct ino_bucket)));
636 
637 	virt_irq = virt_irq_alloc(devhandle, devino);
638 	bucket_set_virt_irq(__pa(bucket), virt_irq);
639 
640 	set_irq_chip_and_handler_name(virt_irq, &sun4v_virq,
641 				      handle_fasteoi_irq,
642 				      "IVEC");
643 
644 	data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
645 	if (unlikely(!data))
646 		return 0;
647 
648 	/* In order to make the LDC channel startup sequence easier,
649 	 * especially wrt. locking, we do not let request_irq() enable
650 	 * the interrupt.
651 	 */
652 	desc = irq_desc + virt_irq;
653 	desc->status |= IRQ_NOAUTOEN;
654 
655 	set_irq_chip_data(virt_irq, data);
656 
657 	/* Catch accidental accesses to these things.  IMAP/ICLR handling
658 	 * is done by hypervisor calls on sun4v platforms, not by direct
659 	 * register accesses.
660 	 */
661 	data->imap = ~0UL;
662 	data->iclr = ~0UL;
663 
664 	cookie = ~__pa(bucket);
665 	hv_err = sun4v_vintr_set_cookie(devhandle, devino, cookie);
666 	if (hv_err) {
667 		prom_printf("IRQ: Fatal, cannot set cookie for [%x:%x] "
668 			    "err=%lu\n", devhandle, devino, hv_err);
669 		prom_halt();
670 	}
671 
672 	return virt_irq;
673 }
674 
675 void ack_bad_irq(unsigned int virt_irq)
676 {
677 	unsigned int ino = virt_irq_table[virt_irq].dev_ino;
678 
679 	if (!ino)
680 		ino = 0xdeadbeef;
681 
682 	printk(KERN_CRIT "Unexpected IRQ from ino[%x] virt_irq[%u]\n",
683 	       ino, virt_irq);
684 }
685 
686 void *hardirq_stack[NR_CPUS];
687 void *softirq_stack[NR_CPUS];
688 
689 static __attribute__((always_inline)) void *set_hardirq_stack(void)
690 {
691 	void *orig_sp, *sp = hardirq_stack[smp_processor_id()];
692 
693 	__asm__ __volatile__("mov %%sp, %0" : "=r" (orig_sp));
694 	if (orig_sp < sp ||
695 	    orig_sp > (sp + THREAD_SIZE)) {
696 		sp += THREAD_SIZE - 192 - STACK_BIAS;
697 		__asm__ __volatile__("mov %0, %%sp" : : "r" (sp));
698 	}
699 
700 	return orig_sp;
701 }
702 static __attribute__((always_inline)) void restore_hardirq_stack(void *orig_sp)
703 {
704 	__asm__ __volatile__("mov %0, %%sp" : : "r" (orig_sp));
705 }
706 
707 void handler_irq(int irq, struct pt_regs *regs)
708 {
709 	unsigned long pstate, bucket_pa;
710 	struct pt_regs *old_regs;
711 	void *orig_sp;
712 
713 	clear_softint(1 << irq);
714 
715 	old_regs = set_irq_regs(regs);
716 	irq_enter();
717 
718 	/* Grab an atomic snapshot of the pending IVECs.  */
719 	__asm__ __volatile__("rdpr	%%pstate, %0\n\t"
720 			     "wrpr	%0, %3, %%pstate\n\t"
721 			     "ldx	[%2], %1\n\t"
722 			     "stx	%%g0, [%2]\n\t"
723 			     "wrpr	%0, 0x0, %%pstate\n\t"
724 			     : "=&r" (pstate), "=&r" (bucket_pa)
725 			     : "r" (irq_work_pa(smp_processor_id())),
726 			       "i" (PSTATE_IE)
727 			     : "memory");
728 
729 	orig_sp = set_hardirq_stack();
730 
731 	while (bucket_pa) {
732 		struct irq_desc *desc;
733 		unsigned long next_pa;
734 		unsigned int virt_irq;
735 
736 		next_pa = bucket_get_chain_pa(bucket_pa);
737 		virt_irq = bucket_get_virt_irq(bucket_pa);
738 		bucket_clear_chain_pa(bucket_pa);
739 
740 		desc = irq_desc + virt_irq;
741 
742 		if (!(desc->status & IRQ_DISABLED))
743 			desc->handle_irq(virt_irq, desc);
744 
745 		bucket_pa = next_pa;
746 	}
747 
748 	restore_hardirq_stack(orig_sp);
749 
750 	irq_exit();
751 	set_irq_regs(old_regs);
752 }
753 
754 void do_softirq(void)
755 {
756 	unsigned long flags;
757 
758 	if (in_interrupt())
759 		return;
760 
761 	local_irq_save(flags);
762 
763 	if (local_softirq_pending()) {
764 		void *orig_sp, *sp = softirq_stack[smp_processor_id()];
765 
766 		sp += THREAD_SIZE - 192 - STACK_BIAS;
767 
768 		__asm__ __volatile__("mov %%sp, %0\n\t"
769 				     "mov %1, %%sp"
770 				     : "=&r" (orig_sp)
771 				     : "r" (sp));
772 		__do_softirq();
773 		__asm__ __volatile__("mov %0, %%sp"
774 				     : : "r" (orig_sp));
775 	}
776 
777 	local_irq_restore(flags);
778 }
779 
780 #ifdef CONFIG_HOTPLUG_CPU
781 void fixup_irqs(void)
782 {
783 	unsigned int irq;
784 
785 	for (irq = 0; irq < NR_IRQS; irq++) {
786 		unsigned long flags;
787 
788 		spin_lock_irqsave(&irq_desc[irq].lock, flags);
789 		if (irq_desc[irq].action &&
790 		    !(irq_desc[irq].status & IRQ_PER_CPU)) {
791 			if (irq_desc[irq].chip->set_affinity)
792 				irq_desc[irq].chip->set_affinity(irq,
793 					irq_desc[irq].affinity);
794 		}
795 		spin_unlock_irqrestore(&irq_desc[irq].lock, flags);
796 	}
797 
798 	tick_ops->disable_irq();
799 }
800 #endif
801 
802 struct sun5_timer {
803 	u64	count0;
804 	u64	limit0;
805 	u64	count1;
806 	u64	limit1;
807 };
808 
809 static struct sun5_timer *prom_timers;
810 static u64 prom_limit0, prom_limit1;
811 
812 static void map_prom_timers(void)
813 {
814 	struct device_node *dp;
815 	const unsigned int *addr;
816 
817 	/* PROM timer node hangs out in the top level of device siblings... */
818 	dp = of_find_node_by_path("/");
819 	dp = dp->child;
820 	while (dp) {
821 		if (!strcmp(dp->name, "counter-timer"))
822 			break;
823 		dp = dp->sibling;
824 	}
825 
826 	/* Assume if node is not present, PROM uses different tick mechanism
827 	 * which we should not care about.
828 	 */
829 	if (!dp) {
830 		prom_timers = (struct sun5_timer *) 0;
831 		return;
832 	}
833 
834 	/* If PROM is really using this, it must be mapped by him. */
835 	addr = of_get_property(dp, "address", NULL);
836 	if (!addr) {
837 		prom_printf("PROM does not have timer mapped, trying to continue.\n");
838 		prom_timers = (struct sun5_timer *) 0;
839 		return;
840 	}
841 	prom_timers = (struct sun5_timer *) ((unsigned long)addr[0]);
842 }
843 
844 static void kill_prom_timer(void)
845 {
846 	if (!prom_timers)
847 		return;
848 
849 	/* Save them away for later. */
850 	prom_limit0 = prom_timers->limit0;
851 	prom_limit1 = prom_timers->limit1;
852 
853 	/* Just as in sun4c/sun4m PROM uses timer which ticks at IRQ 14.
854 	 * We turn both off here just to be paranoid.
855 	 */
856 	prom_timers->limit0 = 0;
857 	prom_timers->limit1 = 0;
858 
859 	/* Wheee, eat the interrupt packet too... */
860 	__asm__ __volatile__(
861 "	mov	0x40, %%g2\n"
862 "	ldxa	[%%g0] %0, %%g1\n"
863 "	ldxa	[%%g2] %1, %%g1\n"
864 "	stxa	%%g0, [%%g0] %0\n"
865 "	membar	#Sync\n"
866 	: /* no outputs */
867 	: "i" (ASI_INTR_RECEIVE), "i" (ASI_INTR_R)
868 	: "g1", "g2");
869 }
870 
871 void notrace init_irqwork_curcpu(void)
872 {
873 	int cpu = hard_smp_processor_id();
874 
875 	trap_block[cpu].irq_worklist_pa = 0UL;
876 }
877 
878 /* Please be very careful with register_one_mondo() and
879  * sun4v_register_mondo_queues().
880  *
881  * On SMP this gets invoked from the CPU trampoline before
882  * the cpu has fully taken over the trap table from OBP,
883  * and it's kernel stack + %g6 thread register state is
884  * not fully cooked yet.
885  *
886  * Therefore you cannot make any OBP calls, not even prom_printf,
887  * from these two routines.
888  */
889 static void __cpuinit notrace register_one_mondo(unsigned long paddr, unsigned long type, unsigned long qmask)
890 {
891 	unsigned long num_entries = (qmask + 1) / 64;
892 	unsigned long status;
893 
894 	status = sun4v_cpu_qconf(type, paddr, num_entries);
895 	if (status != HV_EOK) {
896 		prom_printf("SUN4V: sun4v_cpu_qconf(%lu:%lx:%lu) failed, "
897 			    "err %lu\n", type, paddr, num_entries, status);
898 		prom_halt();
899 	}
900 }
901 
902 void __cpuinit notrace sun4v_register_mondo_queues(int this_cpu)
903 {
904 	struct trap_per_cpu *tb = &trap_block[this_cpu];
905 
906 	register_one_mondo(tb->cpu_mondo_pa, HV_CPU_QUEUE_CPU_MONDO,
907 			   tb->cpu_mondo_qmask);
908 	register_one_mondo(tb->dev_mondo_pa, HV_CPU_QUEUE_DEVICE_MONDO,
909 			   tb->dev_mondo_qmask);
910 	register_one_mondo(tb->resum_mondo_pa, HV_CPU_QUEUE_RES_ERROR,
911 			   tb->resum_qmask);
912 	register_one_mondo(tb->nonresum_mondo_pa, HV_CPU_QUEUE_NONRES_ERROR,
913 			   tb->nonresum_qmask);
914 }
915 
916 /* Each queue region must be a power of 2 multiple of 64 bytes in
917  * size.  The base real address must be aligned to the size of the
918  * region.  Thus, an 8KB queue must be 8KB aligned, for example.
919  */
920 static void __init alloc_one_queue(unsigned long *pa_ptr, unsigned long qmask)
921 {
922 	unsigned long size = PAGE_ALIGN(qmask + 1);
923 	unsigned long order = get_order(size);
924 	unsigned long p;
925 
926 	p = __get_free_pages(GFP_KERNEL, order);
927 	if (!p) {
928 		prom_printf("SUN4V: Error, cannot allocate queue.\n");
929 		prom_halt();
930 	}
931 
932 	*pa_ptr = __pa(p);
933 }
934 
935 static void __init init_cpu_send_mondo_info(struct trap_per_cpu *tb)
936 {
937 #ifdef CONFIG_SMP
938 	unsigned long page;
939 
940 	BUILD_BUG_ON((NR_CPUS * sizeof(u16)) > (PAGE_SIZE - 64));
941 
942 	page = get_zeroed_page(GFP_KERNEL);
943 	if (!page) {
944 		prom_printf("SUN4V: Error, cannot allocate cpu mondo page.\n");
945 		prom_halt();
946 	}
947 
948 	tb->cpu_mondo_block_pa = __pa(page);
949 	tb->cpu_list_pa = __pa(page + 64);
950 #endif
951 }
952 
953 /* Allocate mondo and error queues for all possible cpus.  */
954 static void __init sun4v_init_mondo_queues(void)
955 {
956 	int cpu;
957 
958 	for_each_possible_cpu(cpu) {
959 		struct trap_per_cpu *tb = &trap_block[cpu];
960 
961 		alloc_one_queue(&tb->cpu_mondo_pa, tb->cpu_mondo_qmask);
962 		alloc_one_queue(&tb->dev_mondo_pa, tb->dev_mondo_qmask);
963 		alloc_one_queue(&tb->resum_mondo_pa, tb->resum_qmask);
964 		alloc_one_queue(&tb->resum_kernel_buf_pa, tb->resum_qmask);
965 		alloc_one_queue(&tb->nonresum_mondo_pa, tb->nonresum_qmask);
966 		alloc_one_queue(&tb->nonresum_kernel_buf_pa,
967 				tb->nonresum_qmask);
968 	}
969 }
970 
971 static void __init init_send_mondo_info(void)
972 {
973 	int cpu;
974 
975 	for_each_possible_cpu(cpu) {
976 		struct trap_per_cpu *tb = &trap_block[cpu];
977 
978 		init_cpu_send_mondo_info(tb);
979 	}
980 }
981 
982 static struct irqaction timer_irq_action = {
983 	.name = "timer",
984 };
985 
986 /* Only invoked on boot processor. */
987 void __init init_IRQ(void)
988 {
989 	unsigned long size;
990 
991 	map_prom_timers();
992 	kill_prom_timer();
993 
994 	size = sizeof(struct ino_bucket) * NUM_IVECS;
995 	ivector_table = kzalloc(size, GFP_KERNEL);
996 	if (!ivector_table) {
997 		prom_printf("Fatal error, cannot allocate ivector_table\n");
998 		prom_halt();
999 	}
1000 	__flush_dcache_range((unsigned long) ivector_table,
1001 			     ((unsigned long) ivector_table) + size);
1002 
1003 	ivector_table_pa = __pa(ivector_table);
1004 
1005 	if (tlb_type == hypervisor)
1006 		sun4v_init_mondo_queues();
1007 
1008 	init_send_mondo_info();
1009 
1010 	if (tlb_type == hypervisor) {
1011 		/* Load up the boot cpu's entries.  */
1012 		sun4v_register_mondo_queues(hard_smp_processor_id());
1013 	}
1014 
1015 	/* We need to clear any IRQ's pending in the soft interrupt
1016 	 * registers, a spurious one could be left around from the
1017 	 * PROM timer which we just disabled.
1018 	 */
1019 	clear_softint(get_softint());
1020 
1021 	/* Now that ivector table is initialized, it is safe
1022 	 * to receive IRQ vector traps.  We will normally take
1023 	 * one or two right now, in case some device PROM used
1024 	 * to boot us wants to speak to us.  We just ignore them.
1025 	 */
1026 	__asm__ __volatile__("rdpr	%%pstate, %%g1\n\t"
1027 			     "or	%%g1, %0, %%g1\n\t"
1028 			     "wrpr	%%g1, 0x0, %%pstate"
1029 			     : /* No outputs */
1030 			     : "i" (PSTATE_IE)
1031 			     : "g1");
1032 
1033 	irq_desc[0].action = &timer_irq_action;
1034 }
1035