xref: /openbmc/linux/arch/sparc/kernel/irq_32.c (revision e23feb16)
1 /*
2  * Interrupt request handling routines. On the
3  * Sparc the IRQs are basically 'cast in stone'
4  * and you are supposed to probe the prom's device
5  * node trees to find out who's got which IRQ.
6  *
7  *  Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
8  *  Copyright (C) 1995 Miguel de Icaza (miguel@nuclecu.unam.mx)
9  *  Copyright (C) 1995,2002 Pete A. Zaitcev (zaitcev@yahoo.com)
10  *  Copyright (C) 1996 Dave Redman (djhr@tadpole.co.uk)
11  *  Copyright (C) 1998-2000 Anton Blanchard (anton@samba.org)
12  */
13 
14 #include <linux/kernel_stat.h>
15 #include <linux/seq_file.h>
16 #include <linux/export.h>
17 
18 #include <asm/cacheflush.h>
19 #include <asm/cpudata.h>
20 #include <asm/pcic.h>
21 #include <asm/leon.h>
22 
23 #include "kernel.h"
24 #include "irq.h"
25 
26 /* platform specific irq setup */
27 struct sparc_config sparc_config;
28 
29 unsigned long arch_local_irq_save(void)
30 {
31 	unsigned long retval;
32 	unsigned long tmp;
33 
34 	__asm__ __volatile__(
35 		"rd	%%psr, %0\n\t"
36 		"or	%0, %2, %1\n\t"
37 		"wr	%1, 0, %%psr\n\t"
38 		"nop; nop; nop\n"
39 		: "=&r" (retval), "=r" (tmp)
40 		: "i" (PSR_PIL)
41 		: "memory");
42 
43 	return retval;
44 }
45 EXPORT_SYMBOL(arch_local_irq_save);
46 
47 void arch_local_irq_enable(void)
48 {
49 	unsigned long tmp;
50 
51 	__asm__ __volatile__(
52 		"rd	%%psr, %0\n\t"
53 		"andn	%0, %1, %0\n\t"
54 		"wr	%0, 0, %%psr\n\t"
55 		"nop; nop; nop\n"
56 		: "=&r" (tmp)
57 		: "i" (PSR_PIL)
58 		: "memory");
59 }
60 EXPORT_SYMBOL(arch_local_irq_enable);
61 
62 void arch_local_irq_restore(unsigned long old_psr)
63 {
64 	unsigned long tmp;
65 
66 	__asm__ __volatile__(
67 		"rd	%%psr, %0\n\t"
68 		"and	%2, %1, %2\n\t"
69 		"andn	%0, %1, %0\n\t"
70 		"wr	%0, %2, %%psr\n\t"
71 		"nop; nop; nop\n"
72 		: "=&r" (tmp)
73 		: "i" (PSR_PIL), "r" (old_psr)
74 		: "memory");
75 }
76 EXPORT_SYMBOL(arch_local_irq_restore);
77 
78 /*
79  * Dave Redman (djhr@tadpole.co.uk)
80  *
81  * IRQ numbers.. These are no longer restricted to 15..
82  *
83  * this is done to enable SBUS cards and onboard IO to be masked
84  * correctly. using the interrupt level isn't good enough.
85  *
86  * For example:
87  *   A device interrupting at sbus level6 and the Floppy both come in
88  *   at IRQ11, but enabling and disabling them requires writing to
89  *   different bits in the SLAVIO/SEC.
90  *
91  * As a result of these changes sun4m machines could now support
92  * directed CPU interrupts using the existing enable/disable irq code
93  * with tweaks.
94  *
95  * Sun4d complicates things even further.  IRQ numbers are arbitrary
96  * 32-bit values in that case.  Since this is similar to sparc64,
97  * we adopt a virtual IRQ numbering scheme as is done there.
98  * Virutal interrupt numbers are allocated by build_irq().  So NR_IRQS
99  * just becomes a limit of how many interrupt sources we can handle in
100  * a single system.  Even fully loaded SS2000 machines top off at
101  * about 32 interrupt sources or so, therefore a NR_IRQS value of 64
102  * is more than enough.
103   *
104  * We keep a map of per-PIL enable interrupts.  These get wired
105  * up via the irq_chip->startup() method which gets invoked by
106  * the generic IRQ layer during request_irq().
107  */
108 
109 
110 /* Table of allocated irqs. Unused entries has irq == 0 */
111 static struct irq_bucket irq_table[NR_IRQS];
112 /* Protect access to irq_table */
113 static DEFINE_SPINLOCK(irq_table_lock);
114 
115 /* Map between the irq identifier used in hw to the irq_bucket. */
116 struct irq_bucket *irq_map[SUN4D_MAX_IRQ];
117 /* Protect access to irq_map */
118 static DEFINE_SPINLOCK(irq_map_lock);
119 
120 /* Allocate a new irq from the irq_table */
121 unsigned int irq_alloc(unsigned int real_irq, unsigned int pil)
122 {
123 	unsigned long flags;
124 	unsigned int i;
125 
126 	spin_lock_irqsave(&irq_table_lock, flags);
127 	for (i = 1; i < NR_IRQS; i++) {
128 		if (irq_table[i].real_irq == real_irq && irq_table[i].pil == pil)
129 			goto found;
130 	}
131 
132 	for (i = 1; i < NR_IRQS; i++) {
133 		if (!irq_table[i].irq)
134 			break;
135 	}
136 
137 	if (i < NR_IRQS) {
138 		irq_table[i].real_irq = real_irq;
139 		irq_table[i].irq = i;
140 		irq_table[i].pil = pil;
141 	} else {
142 		printk(KERN_ERR "IRQ: Out of virtual IRQs.\n");
143 		i = 0;
144 	}
145 found:
146 	spin_unlock_irqrestore(&irq_table_lock, flags);
147 
148 	return i;
149 }
150 
151 /* Based on a single pil handler_irq may need to call several
152  * interrupt handlers. Use irq_map as entry to irq_table,
153  * and let each entry in irq_table point to the next entry.
154  */
155 void irq_link(unsigned int irq)
156 {
157 	struct irq_bucket *p;
158 	unsigned long flags;
159 	unsigned int pil;
160 
161 	BUG_ON(irq >= NR_IRQS);
162 
163 	spin_lock_irqsave(&irq_map_lock, flags);
164 
165 	p = &irq_table[irq];
166 	pil = p->pil;
167 	BUG_ON(pil > SUN4D_MAX_IRQ);
168 	p->next = irq_map[pil];
169 	irq_map[pil] = p;
170 
171 	spin_unlock_irqrestore(&irq_map_lock, flags);
172 }
173 
174 void irq_unlink(unsigned int irq)
175 {
176 	struct irq_bucket *p, **pnext;
177 	unsigned long flags;
178 
179 	BUG_ON(irq >= NR_IRQS);
180 
181 	spin_lock_irqsave(&irq_map_lock, flags);
182 
183 	p = &irq_table[irq];
184 	BUG_ON(p->pil > SUN4D_MAX_IRQ);
185 	pnext = &irq_map[p->pil];
186 	while (*pnext != p)
187 		pnext = &(*pnext)->next;
188 	*pnext = p->next;
189 
190 	spin_unlock_irqrestore(&irq_map_lock, flags);
191 }
192 
193 
194 /* /proc/interrupts printing */
195 int arch_show_interrupts(struct seq_file *p, int prec)
196 {
197 	int j;
198 
199 #ifdef CONFIG_SMP
200 	seq_printf(p, "RES: ");
201 	for_each_online_cpu(j)
202 		seq_printf(p, "%10u ", cpu_data(j).irq_resched_count);
203 	seq_printf(p, "     IPI rescheduling interrupts\n");
204 	seq_printf(p, "CAL: ");
205 	for_each_online_cpu(j)
206 		seq_printf(p, "%10u ", cpu_data(j).irq_call_count);
207 	seq_printf(p, "     IPI function call interrupts\n");
208 #endif
209 	seq_printf(p, "NMI: ");
210 	for_each_online_cpu(j)
211 		seq_printf(p, "%10u ", cpu_data(j).counter);
212 	seq_printf(p, "     Non-maskable interrupts\n");
213 	return 0;
214 }
215 
216 void handler_irq(unsigned int pil, struct pt_regs *regs)
217 {
218 	struct pt_regs *old_regs;
219 	struct irq_bucket *p;
220 
221 	BUG_ON(pil > 15);
222 	old_regs = set_irq_regs(regs);
223 	irq_enter();
224 
225 	p = irq_map[pil];
226 	while (p) {
227 		struct irq_bucket *next = p->next;
228 
229 		generic_handle_irq(p->irq);
230 		p = next;
231 	}
232 	irq_exit();
233 	set_irq_regs(old_regs);
234 }
235 
236 #if defined(CONFIG_BLK_DEV_FD) || defined(CONFIG_BLK_DEV_FD_MODULE)
237 static unsigned int floppy_irq;
238 
239 int sparc_floppy_request_irq(unsigned int irq, irq_handler_t irq_handler)
240 {
241 	unsigned int cpu_irq;
242 	int err;
243 
244 
245 	err = request_irq(irq, irq_handler, 0, "floppy", NULL);
246 	if (err)
247 		return -1;
248 
249 	/* Save for later use in floppy interrupt handler */
250 	floppy_irq = irq;
251 
252 	cpu_irq = (irq & (NR_IRQS - 1));
253 
254 	/* Dork with trap table if we get this far. */
255 #define INSTANTIATE(table) \
256 	table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_one = SPARC_RD_PSR_L0; \
257 	table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_two = \
258 		SPARC_BRANCH((unsigned long) floppy_hardint, \
259 			     (unsigned long) &table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_two);\
260 	table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_three = SPARC_RD_WIM_L3; \
261 	table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_four = SPARC_NOP;
262 
263 	INSTANTIATE(sparc_ttable)
264 
265 #if defined CONFIG_SMP
266 	if (sparc_cpu_model != sparc_leon) {
267 		struct tt_entry *trap_table;
268 
269 		trap_table = &trapbase_cpu1;
270 		INSTANTIATE(trap_table)
271 		trap_table = &trapbase_cpu2;
272 		INSTANTIATE(trap_table)
273 		trap_table = &trapbase_cpu3;
274 		INSTANTIATE(trap_table)
275 	}
276 #endif
277 #undef INSTANTIATE
278 	/*
279 	 * XXX Correct thing whould be to flush only I- and D-cache lines
280 	 * which contain the handler in question. But as of time of the
281 	 * writing we have no CPU-neutral interface to fine-grained flushes.
282 	 */
283 	flush_cache_all();
284 	return 0;
285 }
286 EXPORT_SYMBOL(sparc_floppy_request_irq);
287 
288 /*
289  * These variables are used to access state from the assembler
290  * interrupt handler, floppy_hardint, so we cannot put these in
291  * the floppy driver image because that would not work in the
292  * modular case.
293  */
294 volatile unsigned char *fdc_status;
295 EXPORT_SYMBOL(fdc_status);
296 
297 char *pdma_vaddr;
298 EXPORT_SYMBOL(pdma_vaddr);
299 
300 unsigned long pdma_size;
301 EXPORT_SYMBOL(pdma_size);
302 
303 volatile int doing_pdma;
304 EXPORT_SYMBOL(doing_pdma);
305 
306 char *pdma_base;
307 EXPORT_SYMBOL(pdma_base);
308 
309 unsigned long pdma_areasize;
310 EXPORT_SYMBOL(pdma_areasize);
311 
312 /* Use the generic irq support to call floppy_interrupt
313  * which was setup using request_irq() in sparc_floppy_request_irq().
314  * We only have one floppy interrupt so we do not need to check
315  * for additional handlers being wired up by irq_link()
316  */
317 void sparc_floppy_irq(int irq, void *dev_id, struct pt_regs *regs)
318 {
319 	struct pt_regs *old_regs;
320 
321 	old_regs = set_irq_regs(regs);
322 	irq_enter();
323 	generic_handle_irq(floppy_irq);
324 	irq_exit();
325 	set_irq_regs(old_regs);
326 }
327 #endif
328 
329 /* djhr
330  * This could probably be made indirect too and assigned in the CPU
331  * bits of the code. That would be much nicer I think and would also
332  * fit in with the idea of being able to tune your kernel for your machine
333  * by removing unrequired machine and device support.
334  *
335  */
336 
337 void __init init_IRQ(void)
338 {
339 	switch (sparc_cpu_model) {
340 	case sun4m:
341 		pcic_probe();
342 		if (pcic_present())
343 			sun4m_pci_init_IRQ();
344 		else
345 			sun4m_init_IRQ();
346 		break;
347 
348 	case sun4d:
349 		sun4d_init_IRQ();
350 		break;
351 
352 	case sparc_leon:
353 		leon_init_IRQ();
354 		break;
355 
356 	default:
357 		prom_printf("Cannot initialize IRQs on this Sun machine...");
358 		break;
359 	}
360 }
361 
362