1 /* 2 * ioport.c: Simple io mapping allocator. 3 * 4 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) 5 * Copyright (C) 1995 Miguel de Icaza (miguel@nuclecu.unam.mx) 6 * 7 * 1996: sparc_free_io, 1999: ioremap()/iounmap() by Pete Zaitcev. 8 * 9 * 2000/01/29 10 * <rth> zait: as long as pci_alloc_consistent produces something addressable, 11 * things are ok. 12 * <zaitcev> rth: no, it is relevant, because get_free_pages returns you a 13 * pointer into the big page mapping 14 * <rth> zait: so what? 15 * <rth> zait: remap_it_my_way(virt_to_phys(get_free_page())) 16 * <zaitcev> Hmm 17 * <zaitcev> Suppose I did this remap_it_my_way(virt_to_phys(get_free_page())). 18 * So far so good. 19 * <zaitcev> Now, driver calls pci_free_consistent(with result of 20 * remap_it_my_way()). 21 * <zaitcev> How do you find the address to pass to free_pages()? 22 * <rth> zait: walk the page tables? It's only two or three level after all. 23 * <rth> zait: you have to walk them anyway to remove the mapping. 24 * <zaitcev> Hmm 25 * <zaitcev> Sounds reasonable 26 */ 27 28 #include <linux/module.h> 29 #include <linux/sched.h> 30 #include <linux/kernel.h> 31 #include <linux/errno.h> 32 #include <linux/types.h> 33 #include <linux/ioport.h> 34 #include <linux/mm.h> 35 #include <linux/slab.h> 36 #include <linux/pci.h> /* struct pci_dev */ 37 #include <linux/proc_fs.h> 38 #include <linux/scatterlist.h> 39 40 #include <asm/io.h> 41 #include <asm/vaddrs.h> 42 #include <asm/oplib.h> 43 #include <asm/prom.h> 44 #include <asm/of_device.h> 45 #include <asm/sbus.h> 46 #include <asm/page.h> 47 #include <asm/pgalloc.h> 48 #include <asm/dma.h> 49 50 #define mmu_inval_dma_area(p, l) /* Anton pulled it out for 2.4.0-xx */ 51 52 static struct resource *_sparc_find_resource(struct resource *r, 53 unsigned long); 54 55 static void __iomem *_sparc_ioremap(struct resource *res, u32 bus, u32 pa, int sz); 56 static void __iomem *_sparc_alloc_io(unsigned int busno, unsigned long phys, 57 unsigned long size, char *name); 58 static void _sparc_free_io(struct resource *res); 59 60 static void register_proc_sparc_ioport(void); 61 62 /* This points to the next to use virtual memory for DVMA mappings */ 63 static struct resource _sparc_dvma = { 64 .name = "sparc_dvma", .start = DVMA_VADDR, .end = DVMA_END - 1 65 }; 66 /* This points to the start of I/O mappings, cluable from outside. */ 67 /*ext*/ struct resource sparc_iomap = { 68 .name = "sparc_iomap", .start = IOBASE_VADDR, .end = IOBASE_END - 1 69 }; 70 71 /* 72 * Our mini-allocator... 73 * Boy this is gross! We need it because we must map I/O for 74 * timers and interrupt controller before the kmalloc is available. 75 */ 76 77 #define XNMLN 15 78 #define XNRES 10 /* SS-10 uses 8 */ 79 80 struct xresource { 81 struct resource xres; /* Must be first */ 82 int xflag; /* 1 == used */ 83 char xname[XNMLN+1]; 84 }; 85 86 static struct xresource xresv[XNRES]; 87 88 static struct xresource *xres_alloc(void) { 89 struct xresource *xrp; 90 int n; 91 92 xrp = xresv; 93 for (n = 0; n < XNRES; n++) { 94 if (xrp->xflag == 0) { 95 xrp->xflag = 1; 96 return xrp; 97 } 98 xrp++; 99 } 100 return NULL; 101 } 102 103 static void xres_free(struct xresource *xrp) { 104 xrp->xflag = 0; 105 } 106 107 /* 108 * These are typically used in PCI drivers 109 * which are trying to be cross-platform. 110 * 111 * Bus type is always zero on IIep. 112 */ 113 void __iomem *ioremap(unsigned long offset, unsigned long size) 114 { 115 char name[14]; 116 117 sprintf(name, "phys_%08x", (u32)offset); 118 return _sparc_alloc_io(0, offset, size, name); 119 } 120 121 /* 122 * Comlimentary to ioremap(). 123 */ 124 void iounmap(volatile void __iomem *virtual) 125 { 126 unsigned long vaddr = (unsigned long) virtual & PAGE_MASK; 127 struct resource *res; 128 129 if ((res = _sparc_find_resource(&sparc_iomap, vaddr)) == NULL) { 130 printk("free_io/iounmap: cannot free %lx\n", vaddr); 131 return; 132 } 133 _sparc_free_io(res); 134 135 if ((char *)res >= (char*)xresv && (char *)res < (char *)&xresv[XNRES]) { 136 xres_free((struct xresource *)res); 137 } else { 138 kfree(res); 139 } 140 } 141 142 /* 143 */ 144 void __iomem *sbus_ioremap(struct resource *phyres, unsigned long offset, 145 unsigned long size, char *name) 146 { 147 return _sparc_alloc_io(phyres->flags & 0xF, 148 phyres->start + offset, size, name); 149 } 150 151 void __iomem *of_ioremap(struct resource *res, unsigned long offset, 152 unsigned long size, char *name) 153 { 154 return _sparc_alloc_io(res->flags & 0xF, 155 res->start + offset, 156 size, name); 157 } 158 EXPORT_SYMBOL(of_ioremap); 159 160 void of_iounmap(struct resource *res, void __iomem *base, unsigned long size) 161 { 162 iounmap(base); 163 } 164 EXPORT_SYMBOL(of_iounmap); 165 166 /* 167 */ 168 void sbus_iounmap(volatile void __iomem *addr, unsigned long size) 169 { 170 iounmap(addr); 171 } 172 173 /* 174 * Meat of mapping 175 */ 176 static void __iomem *_sparc_alloc_io(unsigned int busno, unsigned long phys, 177 unsigned long size, char *name) 178 { 179 static int printed_full; 180 struct xresource *xres; 181 struct resource *res; 182 char *tack; 183 int tlen; 184 void __iomem *va; /* P3 diag */ 185 186 if (name == NULL) name = "???"; 187 188 if ((xres = xres_alloc()) != 0) { 189 tack = xres->xname; 190 res = &xres->xres; 191 } else { 192 if (!printed_full) { 193 printk("ioremap: done with statics, switching to malloc\n"); 194 printed_full = 1; 195 } 196 tlen = strlen(name); 197 tack = kmalloc(sizeof (struct resource) + tlen + 1, GFP_KERNEL); 198 if (tack == NULL) return NULL; 199 memset(tack, 0, sizeof(struct resource)); 200 res = (struct resource *) tack; 201 tack += sizeof (struct resource); 202 } 203 204 strlcpy(tack, name, XNMLN+1); 205 res->name = tack; 206 207 va = _sparc_ioremap(res, busno, phys, size); 208 /* printk("ioremap(0x%x:%08lx[0x%lx])=%p\n", busno, phys, size, va); */ /* P3 diag */ 209 return va; 210 } 211 212 /* 213 */ 214 static void __iomem * 215 _sparc_ioremap(struct resource *res, u32 bus, u32 pa, int sz) 216 { 217 unsigned long offset = ((unsigned long) pa) & (~PAGE_MASK); 218 219 if (allocate_resource(&sparc_iomap, res, 220 (offset + sz + PAGE_SIZE-1) & PAGE_MASK, 221 sparc_iomap.start, sparc_iomap.end, PAGE_SIZE, NULL, NULL) != 0) { 222 /* Usually we cannot see printks in this case. */ 223 prom_printf("alloc_io_res(%s): cannot occupy\n", 224 (res->name != NULL)? res->name: "???"); 225 prom_halt(); 226 } 227 228 pa &= PAGE_MASK; 229 sparc_mapiorange(bus, pa, res->start, res->end - res->start + 1); 230 231 return (void __iomem *)(unsigned long)(res->start + offset); 232 } 233 234 /* 235 * Comlimentary to _sparc_ioremap(). 236 */ 237 static void _sparc_free_io(struct resource *res) 238 { 239 unsigned long plen; 240 241 plen = res->end - res->start + 1; 242 BUG_ON((plen & (PAGE_SIZE-1)) != 0); 243 sparc_unmapiorange(res->start, plen); 244 release_resource(res); 245 } 246 247 #ifdef CONFIG_SBUS 248 249 void sbus_set_sbus64(struct sbus_dev *sdev, int x) 250 { 251 printk("sbus_set_sbus64: unsupported\n"); 252 } 253 254 extern unsigned int sun4d_build_irq(struct sbus_dev *sdev, int irq); 255 void __init sbus_fill_device_irq(struct sbus_dev *sdev) 256 { 257 struct linux_prom_irqs irqs[PROMINTR_MAX]; 258 int len; 259 260 len = prom_getproperty(sdev->prom_node, "intr", 261 (char *)irqs, sizeof(irqs)); 262 if (len != -1) { 263 sdev->num_irqs = len / 8; 264 if (sdev->num_irqs == 0) { 265 sdev->irqs[0] = 0; 266 } else if (sparc_cpu_model == sun4d) { 267 for (len = 0; len < sdev->num_irqs; len++) 268 sdev->irqs[len] = 269 sun4d_build_irq(sdev, irqs[len].pri); 270 } else { 271 for (len = 0; len < sdev->num_irqs; len++) 272 sdev->irqs[len] = irqs[len].pri; 273 } 274 } else { 275 int interrupts[PROMINTR_MAX]; 276 277 /* No "intr" node found-- check for "interrupts" node. 278 * This node contains SBus interrupt levels, not IPLs 279 * as in "intr", and no vector values. We convert 280 * SBus interrupt levels to PILs (platform specific). 281 */ 282 len = prom_getproperty(sdev->prom_node, "interrupts", 283 (char *)interrupts, sizeof(interrupts)); 284 if (len == -1) { 285 sdev->irqs[0] = 0; 286 sdev->num_irqs = 0; 287 } else { 288 sdev->num_irqs = len / sizeof(int); 289 for (len = 0; len < sdev->num_irqs; len++) { 290 sdev->irqs[len] = 291 sbint_to_irq(sdev, interrupts[len]); 292 } 293 } 294 } 295 } 296 297 /* 298 * Allocate a chunk of memory suitable for DMA. 299 * Typically devices use them for control blocks. 300 * CPU may access them without any explicit flushing. 301 * 302 * XXX Some clever people know that sdev is not used and supply NULL. Watch. 303 */ 304 void *sbus_alloc_consistent(struct sbus_dev *sdev, long len, u32 *dma_addrp) 305 { 306 unsigned long len_total = (len + PAGE_SIZE-1) & PAGE_MASK; 307 unsigned long va; 308 struct resource *res; 309 int order; 310 311 /* XXX why are some lengths signed, others unsigned? */ 312 if (len <= 0) { 313 return NULL; 314 } 315 /* XXX So what is maxphys for us and how do drivers know it? */ 316 if (len > 256*1024) { /* __get_free_pages() limit */ 317 return NULL; 318 } 319 320 order = get_order(len_total); 321 if ((va = __get_free_pages(GFP_KERNEL|__GFP_COMP, order)) == 0) 322 goto err_nopages; 323 324 if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL) 325 goto err_nomem; 326 327 if (allocate_resource(&_sparc_dvma, res, len_total, 328 _sparc_dvma.start, _sparc_dvma.end, PAGE_SIZE, NULL, NULL) != 0) { 329 printk("sbus_alloc_consistent: cannot occupy 0x%lx", len_total); 330 goto err_nova; 331 } 332 mmu_inval_dma_area(va, len_total); 333 // XXX The mmu_map_dma_area does this for us below, see comments. 334 // sparc_mapiorange(0, virt_to_phys(va), res->start, len_total); 335 /* 336 * XXX That's where sdev would be used. Currently we load 337 * all iommu tables with the same translations. 338 */ 339 if (mmu_map_dma_area(dma_addrp, va, res->start, len_total) != 0) 340 goto err_noiommu; 341 342 /* Set the resource name, if known. */ 343 if (sdev) { 344 res->name = sdev->prom_name; 345 } 346 347 return (void *)(unsigned long)res->start; 348 349 err_noiommu: 350 release_resource(res); 351 err_nova: 352 free_pages(va, order); 353 err_nomem: 354 kfree(res); 355 err_nopages: 356 return NULL; 357 } 358 359 void sbus_free_consistent(struct sbus_dev *sdev, long n, void *p, u32 ba) 360 { 361 struct resource *res; 362 struct page *pgv; 363 364 if ((res = _sparc_find_resource(&_sparc_dvma, 365 (unsigned long)p)) == NULL) { 366 printk("sbus_free_consistent: cannot free %p\n", p); 367 return; 368 } 369 370 if (((unsigned long)p & (PAGE_SIZE-1)) != 0) { 371 printk("sbus_free_consistent: unaligned va %p\n", p); 372 return; 373 } 374 375 n = (n + PAGE_SIZE-1) & PAGE_MASK; 376 if ((res->end-res->start)+1 != n) { 377 printk("sbus_free_consistent: region 0x%lx asked 0x%lx\n", 378 (long)((res->end-res->start)+1), n); 379 return; 380 } 381 382 release_resource(res); 383 kfree(res); 384 385 /* mmu_inval_dma_area(va, n); */ /* it's consistent, isn't it */ 386 pgv = mmu_translate_dvma(ba); 387 mmu_unmap_dma_area(ba, n); 388 389 __free_pages(pgv, get_order(n)); 390 } 391 392 /* 393 * Map a chunk of memory so that devices can see it. 394 * CPU view of this memory may be inconsistent with 395 * a device view and explicit flushing is necessary. 396 */ 397 dma_addr_t sbus_map_single(struct sbus_dev *sdev, void *va, size_t len, int direction) 398 { 399 /* XXX why are some lengths signed, others unsigned? */ 400 if (len <= 0) { 401 return 0; 402 } 403 /* XXX So what is maxphys for us and how do drivers know it? */ 404 if (len > 256*1024) { /* __get_free_pages() limit */ 405 return 0; 406 } 407 return mmu_get_scsi_one(va, len, sdev->bus); 408 } 409 410 void sbus_unmap_single(struct sbus_dev *sdev, dma_addr_t ba, size_t n, int direction) 411 { 412 mmu_release_scsi_one(ba, n, sdev->bus); 413 } 414 415 int sbus_map_sg(struct sbus_dev *sdev, struct scatterlist *sg, int n, int direction) 416 { 417 mmu_get_scsi_sgl(sg, n, sdev->bus); 418 419 /* 420 * XXX sparc64 can return a partial length here. sun4c should do this 421 * but it currently panics if it can't fulfill the request - Anton 422 */ 423 return n; 424 } 425 426 void sbus_unmap_sg(struct sbus_dev *sdev, struct scatterlist *sg, int n, int direction) 427 { 428 mmu_release_scsi_sgl(sg, n, sdev->bus); 429 } 430 431 /* 432 */ 433 void sbus_dma_sync_single_for_cpu(struct sbus_dev *sdev, dma_addr_t ba, size_t size, int direction) 434 { 435 #if 0 436 unsigned long va; 437 struct resource *res; 438 439 /* We do not need the resource, just print a message if invalid. */ 440 res = _sparc_find_resource(&_sparc_dvma, ba); 441 if (res == NULL) 442 panic("sbus_dma_sync_single: 0x%x\n", ba); 443 444 va = page_address(mmu_translate_dvma(ba)); /* XXX higmem */ 445 /* 446 * XXX This bogosity will be fixed with the iommu rewrite coming soon 447 * to a kernel near you. - Anton 448 */ 449 /* mmu_inval_dma_area(va, (size + PAGE_SIZE-1) & PAGE_MASK); */ 450 #endif 451 } 452 453 void sbus_dma_sync_single_for_device(struct sbus_dev *sdev, dma_addr_t ba, size_t size, int direction) 454 { 455 #if 0 456 unsigned long va; 457 struct resource *res; 458 459 /* We do not need the resource, just print a message if invalid. */ 460 res = _sparc_find_resource(&_sparc_dvma, ba); 461 if (res == NULL) 462 panic("sbus_dma_sync_single: 0x%x\n", ba); 463 464 va = page_address(mmu_translate_dvma(ba)); /* XXX higmem */ 465 /* 466 * XXX This bogosity will be fixed with the iommu rewrite coming soon 467 * to a kernel near you. - Anton 468 */ 469 /* mmu_inval_dma_area(va, (size + PAGE_SIZE-1) & PAGE_MASK); */ 470 #endif 471 } 472 473 void sbus_dma_sync_sg_for_cpu(struct sbus_dev *sdev, struct scatterlist *sg, int n, int direction) 474 { 475 printk("sbus_dma_sync_sg_for_cpu: not implemented yet\n"); 476 } 477 478 void sbus_dma_sync_sg_for_device(struct sbus_dev *sdev, struct scatterlist *sg, int n, int direction) 479 { 480 printk("sbus_dma_sync_sg_for_device: not implemented yet\n"); 481 } 482 483 /* Support code for sbus_init(). */ 484 /* 485 * XXX This functions appears to be a distorted version of 486 * prom_sbus_ranges_init(), with all sun4d stuff cut away. 487 * Ask DaveM what is going on here, how is sun4d supposed to work... XXX 488 */ 489 /* added back sun4d patch from Thomas Bogendoerfer - should be OK (crn) */ 490 void __init sbus_arch_bus_ranges_init(struct device_node *pn, struct sbus_bus *sbus) 491 { 492 int parent_node = pn->node; 493 494 if (sparc_cpu_model == sun4d) { 495 struct linux_prom_ranges iounit_ranges[PROMREG_MAX]; 496 int num_iounit_ranges, len; 497 498 len = prom_getproperty(parent_node, "ranges", 499 (char *) iounit_ranges, 500 sizeof (iounit_ranges)); 501 if (len != -1) { 502 num_iounit_ranges = 503 (len / sizeof(struct linux_prom_ranges)); 504 prom_adjust_ranges(sbus->sbus_ranges, 505 sbus->num_sbus_ranges, 506 iounit_ranges, num_iounit_ranges); 507 } 508 } 509 } 510 511 void __init sbus_setup_iommu(struct sbus_bus *sbus, struct device_node *dp) 512 { 513 #ifndef CONFIG_SUN4 514 struct device_node *parent = dp->parent; 515 516 if (sparc_cpu_model != sun4d && 517 parent != NULL && 518 !strcmp(parent->name, "iommu")) { 519 extern void iommu_init(int iommu_node, struct sbus_bus *sbus); 520 521 iommu_init(parent->node, sbus); 522 } 523 524 if (sparc_cpu_model == sun4d) { 525 extern void iounit_init(int sbi_node, int iounit_node, 526 struct sbus_bus *sbus); 527 528 iounit_init(dp->node, parent->node, sbus); 529 } 530 #endif 531 } 532 533 void __init sbus_setup_arch_props(struct sbus_bus *sbus, struct device_node *dp) 534 { 535 if (sparc_cpu_model == sun4d) { 536 struct device_node *parent = dp->parent; 537 538 sbus->devid = of_getintprop_default(parent, "device-id", 0); 539 sbus->board = of_getintprop_default(parent, "board#", 0); 540 } 541 } 542 543 int __init sbus_arch_preinit(void) 544 { 545 register_proc_sparc_ioport(); 546 547 #ifdef CONFIG_SUN4 548 { 549 extern void sun4_dvma_init(void); 550 sun4_dvma_init(); 551 } 552 return 1; 553 #else 554 return 0; 555 #endif 556 } 557 558 void __init sbus_arch_postinit(void) 559 { 560 if (sparc_cpu_model == sun4d) { 561 extern void sun4d_init_sbi_irq(void); 562 sun4d_init_sbi_irq(); 563 } 564 } 565 #endif /* CONFIG_SBUS */ 566 567 #ifdef CONFIG_PCI 568 569 /* Allocate and map kernel buffer using consistent mode DMA for a device. 570 * hwdev should be valid struct pci_dev pointer for PCI devices. 571 */ 572 void *pci_alloc_consistent(struct pci_dev *pdev, size_t len, dma_addr_t *pba) 573 { 574 unsigned long len_total = (len + PAGE_SIZE-1) & PAGE_MASK; 575 unsigned long va; 576 struct resource *res; 577 int order; 578 579 if (len == 0) { 580 return NULL; 581 } 582 if (len > 256*1024) { /* __get_free_pages() limit */ 583 return NULL; 584 } 585 586 order = get_order(len_total); 587 va = __get_free_pages(GFP_KERNEL, order); 588 if (va == 0) { 589 printk("pci_alloc_consistent: no %ld pages\n", len_total>>PAGE_SHIFT); 590 return NULL; 591 } 592 593 if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL) { 594 free_pages(va, order); 595 printk("pci_alloc_consistent: no core\n"); 596 return NULL; 597 } 598 599 if (allocate_resource(&_sparc_dvma, res, len_total, 600 _sparc_dvma.start, _sparc_dvma.end, PAGE_SIZE, NULL, NULL) != 0) { 601 printk("pci_alloc_consistent: cannot occupy 0x%lx", len_total); 602 free_pages(va, order); 603 kfree(res); 604 return NULL; 605 } 606 mmu_inval_dma_area(va, len_total); 607 #if 0 608 /* P3 */ printk("pci_alloc_consistent: kva %lx uncva %lx phys %lx size %lx\n", 609 (long)va, (long)res->start, (long)virt_to_phys(va), len_total); 610 #endif 611 sparc_mapiorange(0, virt_to_phys(va), res->start, len_total); 612 613 *pba = virt_to_phys(va); /* equals virt_to_bus (R.I.P.) for us. */ 614 return (void *) res->start; 615 } 616 617 /* Free and unmap a consistent DMA buffer. 618 * cpu_addr is what was returned from pci_alloc_consistent, 619 * size must be the same as what as passed into pci_alloc_consistent, 620 * and likewise dma_addr must be the same as what *dma_addrp was set to. 621 * 622 * References to the memory and mappings associated with cpu_addr/dma_addr 623 * past this call are illegal. 624 */ 625 void pci_free_consistent(struct pci_dev *pdev, size_t n, void *p, dma_addr_t ba) 626 { 627 struct resource *res; 628 unsigned long pgp; 629 630 if ((res = _sparc_find_resource(&_sparc_dvma, 631 (unsigned long)p)) == NULL) { 632 printk("pci_free_consistent: cannot free %p\n", p); 633 return; 634 } 635 636 if (((unsigned long)p & (PAGE_SIZE-1)) != 0) { 637 printk("pci_free_consistent: unaligned va %p\n", p); 638 return; 639 } 640 641 n = (n + PAGE_SIZE-1) & PAGE_MASK; 642 if ((res->end-res->start)+1 != n) { 643 printk("pci_free_consistent: region 0x%lx asked 0x%lx\n", 644 (long)((res->end-res->start)+1), (long)n); 645 return; 646 } 647 648 pgp = (unsigned long) phys_to_virt(ba); /* bus_to_virt actually */ 649 mmu_inval_dma_area(pgp, n); 650 sparc_unmapiorange((unsigned long)p, n); 651 652 release_resource(res); 653 kfree(res); 654 655 free_pages(pgp, get_order(n)); 656 } 657 658 /* Map a single buffer of the indicated size for DMA in streaming mode. 659 * The 32-bit bus address to use is returned. 660 * 661 * Once the device is given the dma address, the device owns this memory 662 * until either pci_unmap_single or pci_dma_sync_single_* is performed. 663 */ 664 dma_addr_t pci_map_single(struct pci_dev *hwdev, void *ptr, size_t size, 665 int direction) 666 { 667 BUG_ON(direction == PCI_DMA_NONE); 668 /* IIep is write-through, not flushing. */ 669 return virt_to_phys(ptr); 670 } 671 672 /* Unmap a single streaming mode DMA translation. The dma_addr and size 673 * must match what was provided for in a previous pci_map_single call. All 674 * other usages are undefined. 675 * 676 * After this call, reads by the cpu to the buffer are guaranteed to see 677 * whatever the device wrote there. 678 */ 679 void pci_unmap_single(struct pci_dev *hwdev, dma_addr_t ba, size_t size, 680 int direction) 681 { 682 BUG_ON(direction == PCI_DMA_NONE); 683 if (direction != PCI_DMA_TODEVICE) { 684 mmu_inval_dma_area((unsigned long)phys_to_virt(ba), 685 (size + PAGE_SIZE-1) & PAGE_MASK); 686 } 687 } 688 689 /* 690 * Same as pci_map_single, but with pages. 691 */ 692 dma_addr_t pci_map_page(struct pci_dev *hwdev, struct page *page, 693 unsigned long offset, size_t size, int direction) 694 { 695 BUG_ON(direction == PCI_DMA_NONE); 696 /* IIep is write-through, not flushing. */ 697 return page_to_phys(page) + offset; 698 } 699 700 void pci_unmap_page(struct pci_dev *hwdev, 701 dma_addr_t dma_address, size_t size, int direction) 702 { 703 BUG_ON(direction == PCI_DMA_NONE); 704 /* mmu_inval_dma_area XXX */ 705 } 706 707 /* Map a set of buffers described by scatterlist in streaming 708 * mode for DMA. This is the scather-gather version of the 709 * above pci_map_single interface. Here the scatter gather list 710 * elements are each tagged with the appropriate dma address 711 * and length. They are obtained via sg_dma_{address,length}(SG). 712 * 713 * NOTE: An implementation may be able to use a smaller number of 714 * DMA address/length pairs than there are SG table elements. 715 * (for example via virtual mapping capabilities) 716 * The routine returns the number of addr/length pairs actually 717 * used, at most nents. 718 * 719 * Device ownership issues as mentioned above for pci_map_single are 720 * the same here. 721 */ 722 int pci_map_sg(struct pci_dev *hwdev, struct scatterlist *sgl, int nents, 723 int direction) 724 { 725 struct scatterlist *sg; 726 int n; 727 728 BUG_ON(direction == PCI_DMA_NONE); 729 /* IIep is write-through, not flushing. */ 730 for_each_sg(sgl, sg, nents, n) { 731 BUG_ON(page_address(sg_page(sg)) == NULL); 732 sg->dvma_address = virt_to_phys(sg_virt(sg)); 733 sg->dvma_length = sg->length; 734 } 735 return nents; 736 } 737 738 /* Unmap a set of streaming mode DMA translations. 739 * Again, cpu read rules concerning calls here are the same as for 740 * pci_unmap_single() above. 741 */ 742 void pci_unmap_sg(struct pci_dev *hwdev, struct scatterlist *sgl, int nents, 743 int direction) 744 { 745 struct scatterlist *sg; 746 int n; 747 748 BUG_ON(direction == PCI_DMA_NONE); 749 if (direction != PCI_DMA_TODEVICE) { 750 for_each_sg(sgl, sg, nents, n) { 751 BUG_ON(page_address(sg_page(sg)) == NULL); 752 mmu_inval_dma_area( 753 (unsigned long) page_address(sg_page(sg)), 754 (sg->length + PAGE_SIZE-1) & PAGE_MASK); 755 } 756 } 757 } 758 759 /* Make physical memory consistent for a single 760 * streaming mode DMA translation before or after a transfer. 761 * 762 * If you perform a pci_map_single() but wish to interrogate the 763 * buffer using the cpu, yet do not wish to teardown the PCI dma 764 * mapping, you must call this function before doing so. At the 765 * next point you give the PCI dma address back to the card, you 766 * must first perform a pci_dma_sync_for_device, and then the 767 * device again owns the buffer. 768 */ 769 void pci_dma_sync_single_for_cpu(struct pci_dev *hwdev, dma_addr_t ba, size_t size, int direction) 770 { 771 BUG_ON(direction == PCI_DMA_NONE); 772 if (direction != PCI_DMA_TODEVICE) { 773 mmu_inval_dma_area((unsigned long)phys_to_virt(ba), 774 (size + PAGE_SIZE-1) & PAGE_MASK); 775 } 776 } 777 778 void pci_dma_sync_single_for_device(struct pci_dev *hwdev, dma_addr_t ba, size_t size, int direction) 779 { 780 BUG_ON(direction == PCI_DMA_NONE); 781 if (direction != PCI_DMA_TODEVICE) { 782 mmu_inval_dma_area((unsigned long)phys_to_virt(ba), 783 (size + PAGE_SIZE-1) & PAGE_MASK); 784 } 785 } 786 787 /* Make physical memory consistent for a set of streaming 788 * mode DMA translations after a transfer. 789 * 790 * The same as pci_dma_sync_single_* but for a scatter-gather list, 791 * same rules and usage. 792 */ 793 void pci_dma_sync_sg_for_cpu(struct pci_dev *hwdev, struct scatterlist *sgl, int nents, int direction) 794 { 795 struct scatterlist *sg; 796 int n; 797 798 BUG_ON(direction == PCI_DMA_NONE); 799 if (direction != PCI_DMA_TODEVICE) { 800 for_each_sg(sgl, sg, nents, n) { 801 BUG_ON(page_address(sg_page(sg)) == NULL); 802 mmu_inval_dma_area( 803 (unsigned long) page_address(sg_page(sg)), 804 (sg->length + PAGE_SIZE-1) & PAGE_MASK); 805 } 806 } 807 } 808 809 void pci_dma_sync_sg_for_device(struct pci_dev *hwdev, struct scatterlist *sgl, int nents, int direction) 810 { 811 struct scatterlist *sg; 812 int n; 813 814 BUG_ON(direction == PCI_DMA_NONE); 815 if (direction != PCI_DMA_TODEVICE) { 816 for_each_sg(sgl, sg, nents, n) { 817 BUG_ON(page_address(sg_page(sg)) == NULL); 818 mmu_inval_dma_area( 819 (unsigned long) page_address(sg_page(sg)), 820 (sg->length + PAGE_SIZE-1) & PAGE_MASK); 821 } 822 } 823 } 824 #endif /* CONFIG_PCI */ 825 826 #ifdef CONFIG_PROC_FS 827 828 static int 829 _sparc_io_get_info(char *buf, char **start, off_t fpos, int length, int *eof, 830 void *data) 831 { 832 char *p = buf, *e = buf + length; 833 struct resource *r; 834 const char *nm; 835 836 for (r = ((struct resource *)data)->child; r != NULL; r = r->sibling) { 837 if (p + 32 >= e) /* Better than nothing */ 838 break; 839 if ((nm = r->name) == 0) nm = "???"; 840 p += sprintf(p, "%016llx-%016llx: %s\n", 841 (unsigned long long)r->start, 842 (unsigned long long)r->end, nm); 843 } 844 845 return p-buf; 846 } 847 848 #endif /* CONFIG_PROC_FS */ 849 850 /* 851 * This is a version of find_resource and it belongs to kernel/resource.c. 852 * Until we have agreement with Linus and Martin, it lingers here. 853 * 854 * XXX Too slow. Can have 8192 DVMA pages on sun4m in the worst case. 855 * This probably warrants some sort of hashing. 856 */ 857 static struct resource *_sparc_find_resource(struct resource *root, 858 unsigned long hit) 859 { 860 struct resource *tmp; 861 862 for (tmp = root->child; tmp != 0; tmp = tmp->sibling) { 863 if (tmp->start <= hit && tmp->end >= hit) 864 return tmp; 865 } 866 return NULL; 867 } 868 869 static void register_proc_sparc_ioport(void) 870 { 871 #ifdef CONFIG_PROC_FS 872 create_proc_read_entry("io_map",0,NULL,_sparc_io_get_info,&sparc_iomap); 873 create_proc_read_entry("dvma_map",0,NULL,_sparc_io_get_info,&_sparc_dvma); 874 #endif 875 } 876