xref: /openbmc/linux/arch/sparc/kernel/ioport.c (revision e983940270f10fe8551baf0098be76ea478294a3)
1 /*
2  * ioport.c:  Simple io mapping allocator.
3  *
4  * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
5  * Copyright (C) 1995 Miguel de Icaza (miguel@nuclecu.unam.mx)
6  *
7  * 1996: sparc_free_io, 1999: ioremap()/iounmap() by Pete Zaitcev.
8  *
9  * 2000/01/29
10  * <rth> zait: as long as pci_alloc_consistent produces something addressable,
11  *	things are ok.
12  * <zaitcev> rth: no, it is relevant, because get_free_pages returns you a
13  *	pointer into the big page mapping
14  * <rth> zait: so what?
15  * <rth> zait: remap_it_my_way(virt_to_phys(get_free_page()))
16  * <zaitcev> Hmm
17  * <zaitcev> Suppose I did this remap_it_my_way(virt_to_phys(get_free_page())).
18  *	So far so good.
19  * <zaitcev> Now, driver calls pci_free_consistent(with result of
20  *	remap_it_my_way()).
21  * <zaitcev> How do you find the address to pass to free_pages()?
22  * <rth> zait: walk the page tables?  It's only two or three level after all.
23  * <rth> zait: you have to walk them anyway to remove the mapping.
24  * <zaitcev> Hmm
25  * <zaitcev> Sounds reasonable
26  */
27 
28 #include <linux/module.h>
29 #include <linux/sched.h>
30 #include <linux/kernel.h>
31 #include <linux/errno.h>
32 #include <linux/types.h>
33 #include <linux/ioport.h>
34 #include <linux/mm.h>
35 #include <linux/slab.h>
36 #include <linux/pci.h>		/* struct pci_dev */
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/scatterlist.h>
40 #include <linux/of_device.h>
41 
42 #include <asm/io.h>
43 #include <asm/vaddrs.h>
44 #include <asm/oplib.h>
45 #include <asm/prom.h>
46 #include <asm/page.h>
47 #include <asm/pgalloc.h>
48 #include <asm/dma.h>
49 #include <asm/iommu.h>
50 #include <asm/io-unit.h>
51 #include <asm/leon.h>
52 
53 const struct sparc32_dma_ops *sparc32_dma_ops;
54 
55 /* This function must make sure that caches and memory are coherent after DMA
56  * On LEON systems without cache snooping it flushes the entire D-CACHE.
57  */
58 static inline void dma_make_coherent(unsigned long pa, unsigned long len)
59 {
60 	if (sparc_cpu_model == sparc_leon) {
61 		if (!sparc_leon3_snooping_enabled())
62 			leon_flush_dcache_all();
63 	}
64 }
65 
66 static void __iomem *_sparc_ioremap(struct resource *res, u32 bus, u32 pa, int sz);
67 static void __iomem *_sparc_alloc_io(unsigned int busno, unsigned long phys,
68     unsigned long size, char *name);
69 static void _sparc_free_io(struct resource *res);
70 
71 static void register_proc_sparc_ioport(void);
72 
73 /* This points to the next to use virtual memory for DVMA mappings */
74 static struct resource _sparc_dvma = {
75 	.name = "sparc_dvma", .start = DVMA_VADDR, .end = DVMA_END - 1
76 };
77 /* This points to the start of I/O mappings, cluable from outside. */
78 /*ext*/ struct resource sparc_iomap = {
79 	.name = "sparc_iomap", .start = IOBASE_VADDR, .end = IOBASE_END - 1
80 };
81 
82 /*
83  * Our mini-allocator...
84  * Boy this is gross! We need it because we must map I/O for
85  * timers and interrupt controller before the kmalloc is available.
86  */
87 
88 #define XNMLN  15
89 #define XNRES  10	/* SS-10 uses 8 */
90 
91 struct xresource {
92 	struct resource xres;	/* Must be first */
93 	int xflag;		/* 1 == used */
94 	char xname[XNMLN+1];
95 };
96 
97 static struct xresource xresv[XNRES];
98 
99 static struct xresource *xres_alloc(void) {
100 	struct xresource *xrp;
101 	int n;
102 
103 	xrp = xresv;
104 	for (n = 0; n < XNRES; n++) {
105 		if (xrp->xflag == 0) {
106 			xrp->xflag = 1;
107 			return xrp;
108 		}
109 		xrp++;
110 	}
111 	return NULL;
112 }
113 
114 static void xres_free(struct xresource *xrp) {
115 	xrp->xflag = 0;
116 }
117 
118 /*
119  * These are typically used in PCI drivers
120  * which are trying to be cross-platform.
121  *
122  * Bus type is always zero on IIep.
123  */
124 void __iomem *ioremap(unsigned long offset, unsigned long size)
125 {
126 	char name[14];
127 
128 	sprintf(name, "phys_%08x", (u32)offset);
129 	return _sparc_alloc_io(0, offset, size, name);
130 }
131 EXPORT_SYMBOL(ioremap);
132 
133 /*
134  * Complementary to ioremap().
135  */
136 void iounmap(volatile void __iomem *virtual)
137 {
138 	unsigned long vaddr = (unsigned long) virtual & PAGE_MASK;
139 	struct resource *res;
140 
141 	/*
142 	 * XXX Too slow. Can have 8192 DVMA pages on sun4m in the worst case.
143 	 * This probably warrants some sort of hashing.
144 	*/
145 	if ((res = lookup_resource(&sparc_iomap, vaddr)) == NULL) {
146 		printk("free_io/iounmap: cannot free %lx\n", vaddr);
147 		return;
148 	}
149 	_sparc_free_io(res);
150 
151 	if ((char *)res >= (char*)xresv && (char *)res < (char *)&xresv[XNRES]) {
152 		xres_free((struct xresource *)res);
153 	} else {
154 		kfree(res);
155 	}
156 }
157 EXPORT_SYMBOL(iounmap);
158 
159 void __iomem *of_ioremap(struct resource *res, unsigned long offset,
160 			 unsigned long size, char *name)
161 {
162 	return _sparc_alloc_io(res->flags & 0xF,
163 			       res->start + offset,
164 			       size, name);
165 }
166 EXPORT_SYMBOL(of_ioremap);
167 
168 void of_iounmap(struct resource *res, void __iomem *base, unsigned long size)
169 {
170 	iounmap(base);
171 }
172 EXPORT_SYMBOL(of_iounmap);
173 
174 /*
175  * Meat of mapping
176  */
177 static void __iomem *_sparc_alloc_io(unsigned int busno, unsigned long phys,
178     unsigned long size, char *name)
179 {
180 	static int printed_full;
181 	struct xresource *xres;
182 	struct resource *res;
183 	char *tack;
184 	int tlen;
185 	void __iomem *va;	/* P3 diag */
186 
187 	if (name == NULL) name = "???";
188 
189 	if ((xres = xres_alloc()) != NULL) {
190 		tack = xres->xname;
191 		res = &xres->xres;
192 	} else {
193 		if (!printed_full) {
194 			printk("ioremap: done with statics, switching to malloc\n");
195 			printed_full = 1;
196 		}
197 		tlen = strlen(name);
198 		tack = kmalloc(sizeof (struct resource) + tlen + 1, GFP_KERNEL);
199 		if (tack == NULL) return NULL;
200 		memset(tack, 0, sizeof(struct resource));
201 		res = (struct resource *) tack;
202 		tack += sizeof (struct resource);
203 	}
204 
205 	strlcpy(tack, name, XNMLN+1);
206 	res->name = tack;
207 
208 	va = _sparc_ioremap(res, busno, phys, size);
209 	/* printk("ioremap(0x%x:%08lx[0x%lx])=%p\n", busno, phys, size, va); */ /* P3 diag */
210 	return va;
211 }
212 
213 /*
214  */
215 static void __iomem *
216 _sparc_ioremap(struct resource *res, u32 bus, u32 pa, int sz)
217 {
218 	unsigned long offset = ((unsigned long) pa) & (~PAGE_MASK);
219 
220 	if (allocate_resource(&sparc_iomap, res,
221 	    (offset + sz + PAGE_SIZE-1) & PAGE_MASK,
222 	    sparc_iomap.start, sparc_iomap.end, PAGE_SIZE, NULL, NULL) != 0) {
223 		/* Usually we cannot see printks in this case. */
224 		prom_printf("alloc_io_res(%s): cannot occupy\n",
225 		    (res->name != NULL)? res->name: "???");
226 		prom_halt();
227 	}
228 
229 	pa &= PAGE_MASK;
230 	srmmu_mapiorange(bus, pa, res->start, resource_size(res));
231 
232 	return (void __iomem *)(unsigned long)(res->start + offset);
233 }
234 
235 /*
236  * Complementary to _sparc_ioremap().
237  */
238 static void _sparc_free_io(struct resource *res)
239 {
240 	unsigned long plen;
241 
242 	plen = resource_size(res);
243 	BUG_ON((plen & (PAGE_SIZE-1)) != 0);
244 	srmmu_unmapiorange(res->start, plen);
245 	release_resource(res);
246 }
247 
248 #ifdef CONFIG_SBUS
249 
250 void sbus_set_sbus64(struct device *dev, int x)
251 {
252 	printk("sbus_set_sbus64: unsupported\n");
253 }
254 EXPORT_SYMBOL(sbus_set_sbus64);
255 
256 /*
257  * Allocate a chunk of memory suitable for DMA.
258  * Typically devices use them for control blocks.
259  * CPU may access them without any explicit flushing.
260  */
261 static void *sbus_alloc_coherent(struct device *dev, size_t len,
262 				 dma_addr_t *dma_addrp, gfp_t gfp,
263 				 unsigned long attrs)
264 {
265 	struct platform_device *op = to_platform_device(dev);
266 	unsigned long len_total = PAGE_ALIGN(len);
267 	unsigned long va;
268 	struct resource *res;
269 	int order;
270 
271 	/* XXX why are some lengths signed, others unsigned? */
272 	if (len <= 0) {
273 		return NULL;
274 	}
275 	/* XXX So what is maxphys for us and how do drivers know it? */
276 	if (len > 256*1024) {			/* __get_free_pages() limit */
277 		return NULL;
278 	}
279 
280 	order = get_order(len_total);
281 	va = __get_free_pages(gfp, order);
282 	if (va == 0)
283 		goto err_nopages;
284 
285 	if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL)
286 		goto err_nomem;
287 
288 	if (allocate_resource(&_sparc_dvma, res, len_total,
289 	    _sparc_dvma.start, _sparc_dvma.end, PAGE_SIZE, NULL, NULL) != 0) {
290 		printk("sbus_alloc_consistent: cannot occupy 0x%lx", len_total);
291 		goto err_nova;
292 	}
293 
294 	// XXX The sbus_map_dma_area does this for us below, see comments.
295 	// srmmu_mapiorange(0, virt_to_phys(va), res->start, len_total);
296 	/*
297 	 * XXX That's where sdev would be used. Currently we load
298 	 * all iommu tables with the same translations.
299 	 */
300 	if (sbus_map_dma_area(dev, dma_addrp, va, res->start, len_total) != 0)
301 		goto err_noiommu;
302 
303 	res->name = op->dev.of_node->name;
304 
305 	return (void *)(unsigned long)res->start;
306 
307 err_noiommu:
308 	release_resource(res);
309 err_nova:
310 	kfree(res);
311 err_nomem:
312 	free_pages(va, order);
313 err_nopages:
314 	return NULL;
315 }
316 
317 static void sbus_free_coherent(struct device *dev, size_t n, void *p,
318 			       dma_addr_t ba, unsigned long attrs)
319 {
320 	struct resource *res;
321 	struct page *pgv;
322 
323 	if ((res = lookup_resource(&_sparc_dvma,
324 	    (unsigned long)p)) == NULL) {
325 		printk("sbus_free_consistent: cannot free %p\n", p);
326 		return;
327 	}
328 
329 	if (((unsigned long)p & (PAGE_SIZE-1)) != 0) {
330 		printk("sbus_free_consistent: unaligned va %p\n", p);
331 		return;
332 	}
333 
334 	n = PAGE_ALIGN(n);
335 	if (resource_size(res) != n) {
336 		printk("sbus_free_consistent: region 0x%lx asked 0x%zx\n",
337 		    (long)resource_size(res), n);
338 		return;
339 	}
340 
341 	release_resource(res);
342 	kfree(res);
343 
344 	pgv = virt_to_page(p);
345 	sbus_unmap_dma_area(dev, ba, n);
346 
347 	__free_pages(pgv, get_order(n));
348 }
349 
350 /*
351  * Map a chunk of memory so that devices can see it.
352  * CPU view of this memory may be inconsistent with
353  * a device view and explicit flushing is necessary.
354  */
355 static dma_addr_t sbus_map_page(struct device *dev, struct page *page,
356 				unsigned long offset, size_t len,
357 				enum dma_data_direction dir,
358 				unsigned long attrs)
359 {
360 	void *va = page_address(page) + offset;
361 
362 	/* XXX why are some lengths signed, others unsigned? */
363 	if (len <= 0) {
364 		return 0;
365 	}
366 	/* XXX So what is maxphys for us and how do drivers know it? */
367 	if (len > 256*1024) {			/* __get_free_pages() limit */
368 		return 0;
369 	}
370 	return mmu_get_scsi_one(dev, va, len);
371 }
372 
373 static void sbus_unmap_page(struct device *dev, dma_addr_t ba, size_t n,
374 			    enum dma_data_direction dir, unsigned long attrs)
375 {
376 	mmu_release_scsi_one(dev, ba, n);
377 }
378 
379 static int sbus_map_sg(struct device *dev, struct scatterlist *sg, int n,
380 		       enum dma_data_direction dir, unsigned long attrs)
381 {
382 	mmu_get_scsi_sgl(dev, sg, n);
383 	return n;
384 }
385 
386 static void sbus_unmap_sg(struct device *dev, struct scatterlist *sg, int n,
387 			  enum dma_data_direction dir, unsigned long attrs)
388 {
389 	mmu_release_scsi_sgl(dev, sg, n);
390 }
391 
392 static void sbus_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
393 				 int n,	enum dma_data_direction dir)
394 {
395 	BUG();
396 }
397 
398 static void sbus_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
399 				    int n, enum dma_data_direction dir)
400 {
401 	BUG();
402 }
403 
404 static struct dma_map_ops sbus_dma_ops = {
405 	.alloc			= sbus_alloc_coherent,
406 	.free			= sbus_free_coherent,
407 	.map_page		= sbus_map_page,
408 	.unmap_page		= sbus_unmap_page,
409 	.map_sg			= sbus_map_sg,
410 	.unmap_sg		= sbus_unmap_sg,
411 	.sync_sg_for_cpu	= sbus_sync_sg_for_cpu,
412 	.sync_sg_for_device	= sbus_sync_sg_for_device,
413 };
414 
415 static int __init sparc_register_ioport(void)
416 {
417 	register_proc_sparc_ioport();
418 
419 	return 0;
420 }
421 
422 arch_initcall(sparc_register_ioport);
423 
424 #endif /* CONFIG_SBUS */
425 
426 
427 /* Allocate and map kernel buffer using consistent mode DMA for a device.
428  * hwdev should be valid struct pci_dev pointer for PCI devices.
429  */
430 static void *pci32_alloc_coherent(struct device *dev, size_t len,
431 				  dma_addr_t *pba, gfp_t gfp,
432 				  unsigned long attrs)
433 {
434 	unsigned long len_total = PAGE_ALIGN(len);
435 	void *va;
436 	struct resource *res;
437 	int order;
438 
439 	if (len == 0) {
440 		return NULL;
441 	}
442 	if (len > 256*1024) {			/* __get_free_pages() limit */
443 		return NULL;
444 	}
445 
446 	order = get_order(len_total);
447 	va = (void *) __get_free_pages(gfp, order);
448 	if (va == NULL) {
449 		printk("pci_alloc_consistent: no %ld pages\n", len_total>>PAGE_SHIFT);
450 		goto err_nopages;
451 	}
452 
453 	if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL) {
454 		printk("pci_alloc_consistent: no core\n");
455 		goto err_nomem;
456 	}
457 
458 	if (allocate_resource(&_sparc_dvma, res, len_total,
459 	    _sparc_dvma.start, _sparc_dvma.end, PAGE_SIZE, NULL, NULL) != 0) {
460 		printk("pci_alloc_consistent: cannot occupy 0x%lx", len_total);
461 		goto err_nova;
462 	}
463 	srmmu_mapiorange(0, virt_to_phys(va), res->start, len_total);
464 
465 	*pba = virt_to_phys(va); /* equals virt_to_bus (R.I.P.) for us. */
466 	return (void *) res->start;
467 
468 err_nova:
469 	kfree(res);
470 err_nomem:
471 	free_pages((unsigned long)va, order);
472 err_nopages:
473 	return NULL;
474 }
475 
476 /* Free and unmap a consistent DMA buffer.
477  * cpu_addr is what was returned from pci_alloc_consistent,
478  * size must be the same as what as passed into pci_alloc_consistent,
479  * and likewise dma_addr must be the same as what *dma_addrp was set to.
480  *
481  * References to the memory and mappings associated with cpu_addr/dma_addr
482  * past this call are illegal.
483  */
484 static void pci32_free_coherent(struct device *dev, size_t n, void *p,
485 				dma_addr_t ba, unsigned long attrs)
486 {
487 	struct resource *res;
488 
489 	if ((res = lookup_resource(&_sparc_dvma,
490 	    (unsigned long)p)) == NULL) {
491 		printk("pci_free_consistent: cannot free %p\n", p);
492 		return;
493 	}
494 
495 	if (((unsigned long)p & (PAGE_SIZE-1)) != 0) {
496 		printk("pci_free_consistent: unaligned va %p\n", p);
497 		return;
498 	}
499 
500 	n = PAGE_ALIGN(n);
501 	if (resource_size(res) != n) {
502 		printk("pci_free_consistent: region 0x%lx asked 0x%lx\n",
503 		    (long)resource_size(res), (long)n);
504 		return;
505 	}
506 
507 	dma_make_coherent(ba, n);
508 	srmmu_unmapiorange((unsigned long)p, n);
509 
510 	release_resource(res);
511 	kfree(res);
512 	free_pages((unsigned long)phys_to_virt(ba), get_order(n));
513 }
514 
515 /*
516  * Same as pci_map_single, but with pages.
517  */
518 static dma_addr_t pci32_map_page(struct device *dev, struct page *page,
519 				 unsigned long offset, size_t size,
520 				 enum dma_data_direction dir,
521 				 unsigned long attrs)
522 {
523 	/* IIep is write-through, not flushing. */
524 	return page_to_phys(page) + offset;
525 }
526 
527 static void pci32_unmap_page(struct device *dev, dma_addr_t ba, size_t size,
528 			     enum dma_data_direction dir, unsigned long attrs)
529 {
530 	if (dir != PCI_DMA_TODEVICE)
531 		dma_make_coherent(ba, PAGE_ALIGN(size));
532 }
533 
534 /* Map a set of buffers described by scatterlist in streaming
535  * mode for DMA.  This is the scatter-gather version of the
536  * above pci_map_single interface.  Here the scatter gather list
537  * elements are each tagged with the appropriate dma address
538  * and length.  They are obtained via sg_dma_{address,length}(SG).
539  *
540  * NOTE: An implementation may be able to use a smaller number of
541  *       DMA address/length pairs than there are SG table elements.
542  *       (for example via virtual mapping capabilities)
543  *       The routine returns the number of addr/length pairs actually
544  *       used, at most nents.
545  *
546  * Device ownership issues as mentioned above for pci_map_single are
547  * the same here.
548  */
549 static int pci32_map_sg(struct device *device, struct scatterlist *sgl,
550 			int nents, enum dma_data_direction dir,
551 			unsigned long attrs)
552 {
553 	struct scatterlist *sg;
554 	int n;
555 
556 	/* IIep is write-through, not flushing. */
557 	for_each_sg(sgl, sg, nents, n) {
558 		sg->dma_address = sg_phys(sg);
559 		sg->dma_length = sg->length;
560 	}
561 	return nents;
562 }
563 
564 /* Unmap a set of streaming mode DMA translations.
565  * Again, cpu read rules concerning calls here are the same as for
566  * pci_unmap_single() above.
567  */
568 static void pci32_unmap_sg(struct device *dev, struct scatterlist *sgl,
569 			   int nents, enum dma_data_direction dir,
570 			   unsigned long attrs)
571 {
572 	struct scatterlist *sg;
573 	int n;
574 
575 	if (dir != PCI_DMA_TODEVICE) {
576 		for_each_sg(sgl, sg, nents, n) {
577 			dma_make_coherent(sg_phys(sg), PAGE_ALIGN(sg->length));
578 		}
579 	}
580 }
581 
582 /* Make physical memory consistent for a single
583  * streaming mode DMA translation before or after a transfer.
584  *
585  * If you perform a pci_map_single() but wish to interrogate the
586  * buffer using the cpu, yet do not wish to teardown the PCI dma
587  * mapping, you must call this function before doing so.  At the
588  * next point you give the PCI dma address back to the card, you
589  * must first perform a pci_dma_sync_for_device, and then the
590  * device again owns the buffer.
591  */
592 static void pci32_sync_single_for_cpu(struct device *dev, dma_addr_t ba,
593 				      size_t size, enum dma_data_direction dir)
594 {
595 	if (dir != PCI_DMA_TODEVICE) {
596 		dma_make_coherent(ba, PAGE_ALIGN(size));
597 	}
598 }
599 
600 static void pci32_sync_single_for_device(struct device *dev, dma_addr_t ba,
601 					 size_t size, enum dma_data_direction dir)
602 {
603 	if (dir != PCI_DMA_TODEVICE) {
604 		dma_make_coherent(ba, PAGE_ALIGN(size));
605 	}
606 }
607 
608 /* Make physical memory consistent for a set of streaming
609  * mode DMA translations after a transfer.
610  *
611  * The same as pci_dma_sync_single_* but for a scatter-gather list,
612  * same rules and usage.
613  */
614 static void pci32_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl,
615 				  int nents, enum dma_data_direction dir)
616 {
617 	struct scatterlist *sg;
618 	int n;
619 
620 	if (dir != PCI_DMA_TODEVICE) {
621 		for_each_sg(sgl, sg, nents, n) {
622 			dma_make_coherent(sg_phys(sg), PAGE_ALIGN(sg->length));
623 		}
624 	}
625 }
626 
627 static void pci32_sync_sg_for_device(struct device *device, struct scatterlist *sgl,
628 				     int nents, enum dma_data_direction dir)
629 {
630 	struct scatterlist *sg;
631 	int n;
632 
633 	if (dir != PCI_DMA_TODEVICE) {
634 		for_each_sg(sgl, sg, nents, n) {
635 			dma_make_coherent(sg_phys(sg), PAGE_ALIGN(sg->length));
636 		}
637 	}
638 }
639 
640 struct dma_map_ops pci32_dma_ops = {
641 	.alloc			= pci32_alloc_coherent,
642 	.free			= pci32_free_coherent,
643 	.map_page		= pci32_map_page,
644 	.unmap_page		= pci32_unmap_page,
645 	.map_sg			= pci32_map_sg,
646 	.unmap_sg		= pci32_unmap_sg,
647 	.sync_single_for_cpu	= pci32_sync_single_for_cpu,
648 	.sync_single_for_device	= pci32_sync_single_for_device,
649 	.sync_sg_for_cpu	= pci32_sync_sg_for_cpu,
650 	.sync_sg_for_device	= pci32_sync_sg_for_device,
651 };
652 EXPORT_SYMBOL(pci32_dma_ops);
653 
654 /* leon re-uses pci32_dma_ops */
655 struct dma_map_ops *leon_dma_ops = &pci32_dma_ops;
656 EXPORT_SYMBOL(leon_dma_ops);
657 
658 struct dma_map_ops *dma_ops = &sbus_dma_ops;
659 EXPORT_SYMBOL(dma_ops);
660 
661 
662 /*
663  * Return whether the given PCI device DMA address mask can be
664  * supported properly.  For example, if your device can only drive the
665  * low 24-bits during PCI bus mastering, then you would pass
666  * 0x00ffffff as the mask to this function.
667  */
668 int dma_supported(struct device *dev, u64 mask)
669 {
670 	if (dev_is_pci(dev))
671 		return 1;
672 
673 	return 0;
674 }
675 EXPORT_SYMBOL(dma_supported);
676 
677 #ifdef CONFIG_PROC_FS
678 
679 static int sparc_io_proc_show(struct seq_file *m, void *v)
680 {
681 	struct resource *root = m->private, *r;
682 	const char *nm;
683 
684 	for (r = root->child; r != NULL; r = r->sibling) {
685 		if ((nm = r->name) == NULL) nm = "???";
686 		seq_printf(m, "%016llx-%016llx: %s\n",
687 				(unsigned long long)r->start,
688 				(unsigned long long)r->end, nm);
689 	}
690 
691 	return 0;
692 }
693 
694 static int sparc_io_proc_open(struct inode *inode, struct file *file)
695 {
696 	return single_open(file, sparc_io_proc_show, PDE_DATA(inode));
697 }
698 
699 static const struct file_operations sparc_io_proc_fops = {
700 	.owner		= THIS_MODULE,
701 	.open		= sparc_io_proc_open,
702 	.read		= seq_read,
703 	.llseek		= seq_lseek,
704 	.release	= single_release,
705 };
706 #endif /* CONFIG_PROC_FS */
707 
708 static void register_proc_sparc_ioport(void)
709 {
710 #ifdef CONFIG_PROC_FS
711 	proc_create_data("io_map", 0, NULL, &sparc_io_proc_fops, &sparc_iomap);
712 	proc_create_data("dvma_map", 0, NULL, &sparc_io_proc_fops, &_sparc_dvma);
713 #endif
714 }
715