1 /* 2 * ioport.c: Simple io mapping allocator. 3 * 4 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) 5 * Copyright (C) 1995 Miguel de Icaza (miguel@nuclecu.unam.mx) 6 * 7 * 1996: sparc_free_io, 1999: ioremap()/iounmap() by Pete Zaitcev. 8 * 9 * 2000/01/29 10 * <rth> zait: as long as pci_alloc_consistent produces something addressable, 11 * things are ok. 12 * <zaitcev> rth: no, it is relevant, because get_free_pages returns you a 13 * pointer into the big page mapping 14 * <rth> zait: so what? 15 * <rth> zait: remap_it_my_way(virt_to_phys(get_free_page())) 16 * <zaitcev> Hmm 17 * <zaitcev> Suppose I did this remap_it_my_way(virt_to_phys(get_free_page())). 18 * So far so good. 19 * <zaitcev> Now, driver calls pci_free_consistent(with result of 20 * remap_it_my_way()). 21 * <zaitcev> How do you find the address to pass to free_pages()? 22 * <rth> zait: walk the page tables? It's only two or three level after all. 23 * <rth> zait: you have to walk them anyway to remove the mapping. 24 * <zaitcev> Hmm 25 * <zaitcev> Sounds reasonable 26 */ 27 28 #include <linux/module.h> 29 #include <linux/sched.h> 30 #include <linux/kernel.h> 31 #include <linux/errno.h> 32 #include <linux/types.h> 33 #include <linux/ioport.h> 34 #include <linux/mm.h> 35 #include <linux/slab.h> 36 #include <linux/pci.h> /* struct pci_dev */ 37 #include <linux/proc_fs.h> 38 #include <linux/seq_file.h> 39 #include <linux/scatterlist.h> 40 #include <linux/of_device.h> 41 42 #include <asm/io.h> 43 #include <asm/vaddrs.h> 44 #include <asm/oplib.h> 45 #include <asm/prom.h> 46 #include <asm/page.h> 47 #include <asm/pgalloc.h> 48 #include <asm/dma.h> 49 #include <asm/iommu.h> 50 #include <asm/io-unit.h> 51 52 #define mmu_inval_dma_area(p, l) /* Anton pulled it out for 2.4.0-xx */ 53 54 static struct resource *_sparc_find_resource(struct resource *r, 55 unsigned long); 56 57 static void __iomem *_sparc_ioremap(struct resource *res, u32 bus, u32 pa, int sz); 58 static void __iomem *_sparc_alloc_io(unsigned int busno, unsigned long phys, 59 unsigned long size, char *name); 60 static void _sparc_free_io(struct resource *res); 61 62 static void register_proc_sparc_ioport(void); 63 64 /* This points to the next to use virtual memory for DVMA mappings */ 65 static struct resource _sparc_dvma = { 66 .name = "sparc_dvma", .start = DVMA_VADDR, .end = DVMA_END - 1 67 }; 68 /* This points to the start of I/O mappings, cluable from outside. */ 69 /*ext*/ struct resource sparc_iomap = { 70 .name = "sparc_iomap", .start = IOBASE_VADDR, .end = IOBASE_END - 1 71 }; 72 73 /* 74 * Our mini-allocator... 75 * Boy this is gross! We need it because we must map I/O for 76 * timers and interrupt controller before the kmalloc is available. 77 */ 78 79 #define XNMLN 15 80 #define XNRES 10 /* SS-10 uses 8 */ 81 82 struct xresource { 83 struct resource xres; /* Must be first */ 84 int xflag; /* 1 == used */ 85 char xname[XNMLN+1]; 86 }; 87 88 static struct xresource xresv[XNRES]; 89 90 static struct xresource *xres_alloc(void) { 91 struct xresource *xrp; 92 int n; 93 94 xrp = xresv; 95 for (n = 0; n < XNRES; n++) { 96 if (xrp->xflag == 0) { 97 xrp->xflag = 1; 98 return xrp; 99 } 100 xrp++; 101 } 102 return NULL; 103 } 104 105 static void xres_free(struct xresource *xrp) { 106 xrp->xflag = 0; 107 } 108 109 /* 110 * These are typically used in PCI drivers 111 * which are trying to be cross-platform. 112 * 113 * Bus type is always zero on IIep. 114 */ 115 void __iomem *ioremap(unsigned long offset, unsigned long size) 116 { 117 char name[14]; 118 119 sprintf(name, "phys_%08x", (u32)offset); 120 return _sparc_alloc_io(0, offset, size, name); 121 } 122 EXPORT_SYMBOL(ioremap); 123 124 /* 125 * Comlimentary to ioremap(). 126 */ 127 void iounmap(volatile void __iomem *virtual) 128 { 129 unsigned long vaddr = (unsigned long) virtual & PAGE_MASK; 130 struct resource *res; 131 132 if ((res = _sparc_find_resource(&sparc_iomap, vaddr)) == NULL) { 133 printk("free_io/iounmap: cannot free %lx\n", vaddr); 134 return; 135 } 136 _sparc_free_io(res); 137 138 if ((char *)res >= (char*)xresv && (char *)res < (char *)&xresv[XNRES]) { 139 xres_free((struct xresource *)res); 140 } else { 141 kfree(res); 142 } 143 } 144 EXPORT_SYMBOL(iounmap); 145 146 void __iomem *of_ioremap(struct resource *res, unsigned long offset, 147 unsigned long size, char *name) 148 { 149 return _sparc_alloc_io(res->flags & 0xF, 150 res->start + offset, 151 size, name); 152 } 153 EXPORT_SYMBOL(of_ioremap); 154 155 void of_iounmap(struct resource *res, void __iomem *base, unsigned long size) 156 { 157 iounmap(base); 158 } 159 EXPORT_SYMBOL(of_iounmap); 160 161 /* 162 * Meat of mapping 163 */ 164 static void __iomem *_sparc_alloc_io(unsigned int busno, unsigned long phys, 165 unsigned long size, char *name) 166 { 167 static int printed_full; 168 struct xresource *xres; 169 struct resource *res; 170 char *tack; 171 int tlen; 172 void __iomem *va; /* P3 diag */ 173 174 if (name == NULL) name = "???"; 175 176 if ((xres = xres_alloc()) != 0) { 177 tack = xres->xname; 178 res = &xres->xres; 179 } else { 180 if (!printed_full) { 181 printk("ioremap: done with statics, switching to malloc\n"); 182 printed_full = 1; 183 } 184 tlen = strlen(name); 185 tack = kmalloc(sizeof (struct resource) + tlen + 1, GFP_KERNEL); 186 if (tack == NULL) return NULL; 187 memset(tack, 0, sizeof(struct resource)); 188 res = (struct resource *) tack; 189 tack += sizeof (struct resource); 190 } 191 192 strlcpy(tack, name, XNMLN+1); 193 res->name = tack; 194 195 va = _sparc_ioremap(res, busno, phys, size); 196 /* printk("ioremap(0x%x:%08lx[0x%lx])=%p\n", busno, phys, size, va); */ /* P3 diag */ 197 return va; 198 } 199 200 /* 201 */ 202 static void __iomem * 203 _sparc_ioremap(struct resource *res, u32 bus, u32 pa, int sz) 204 { 205 unsigned long offset = ((unsigned long) pa) & (~PAGE_MASK); 206 207 if (allocate_resource(&sparc_iomap, res, 208 (offset + sz + PAGE_SIZE-1) & PAGE_MASK, 209 sparc_iomap.start, sparc_iomap.end, PAGE_SIZE, NULL, NULL) != 0) { 210 /* Usually we cannot see printks in this case. */ 211 prom_printf("alloc_io_res(%s): cannot occupy\n", 212 (res->name != NULL)? res->name: "???"); 213 prom_halt(); 214 } 215 216 pa &= PAGE_MASK; 217 sparc_mapiorange(bus, pa, res->start, res->end - res->start + 1); 218 219 return (void __iomem *)(unsigned long)(res->start + offset); 220 } 221 222 /* 223 * Comlimentary to _sparc_ioremap(). 224 */ 225 static void _sparc_free_io(struct resource *res) 226 { 227 unsigned long plen; 228 229 plen = res->end - res->start + 1; 230 BUG_ON((plen & (PAGE_SIZE-1)) != 0); 231 sparc_unmapiorange(res->start, plen); 232 release_resource(res); 233 } 234 235 #ifdef CONFIG_SBUS 236 237 void sbus_set_sbus64(struct device *dev, int x) 238 { 239 printk("sbus_set_sbus64: unsupported\n"); 240 } 241 EXPORT_SYMBOL(sbus_set_sbus64); 242 243 /* 244 * Allocate a chunk of memory suitable for DMA. 245 * Typically devices use them for control blocks. 246 * CPU may access them without any explicit flushing. 247 */ 248 static void *sbus_alloc_coherent(struct device *dev, size_t len, 249 dma_addr_t *dma_addrp, gfp_t gfp) 250 { 251 struct of_device *op = to_of_device(dev); 252 unsigned long len_total = (len + PAGE_SIZE-1) & PAGE_MASK; 253 unsigned long va; 254 struct resource *res; 255 int order; 256 257 /* XXX why are some lengths signed, others unsigned? */ 258 if (len <= 0) { 259 return NULL; 260 } 261 /* XXX So what is maxphys for us and how do drivers know it? */ 262 if (len > 256*1024) { /* __get_free_pages() limit */ 263 return NULL; 264 } 265 266 order = get_order(len_total); 267 if ((va = __get_free_pages(GFP_KERNEL|__GFP_COMP, order)) == 0) 268 goto err_nopages; 269 270 if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL) 271 goto err_nomem; 272 273 if (allocate_resource(&_sparc_dvma, res, len_total, 274 _sparc_dvma.start, _sparc_dvma.end, PAGE_SIZE, NULL, NULL) != 0) { 275 printk("sbus_alloc_consistent: cannot occupy 0x%lx", len_total); 276 goto err_nova; 277 } 278 mmu_inval_dma_area(va, len_total); 279 // XXX The mmu_map_dma_area does this for us below, see comments. 280 // sparc_mapiorange(0, virt_to_phys(va), res->start, len_total); 281 /* 282 * XXX That's where sdev would be used. Currently we load 283 * all iommu tables with the same translations. 284 */ 285 if (mmu_map_dma_area(dev, dma_addrp, va, res->start, len_total) != 0) 286 goto err_noiommu; 287 288 res->name = op->node->name; 289 290 return (void *)(unsigned long)res->start; 291 292 err_noiommu: 293 release_resource(res); 294 err_nova: 295 free_pages(va, order); 296 err_nomem: 297 kfree(res); 298 err_nopages: 299 return NULL; 300 } 301 302 static void sbus_free_coherent(struct device *dev, size_t n, void *p, 303 dma_addr_t ba) 304 { 305 struct resource *res; 306 struct page *pgv; 307 308 if ((res = _sparc_find_resource(&_sparc_dvma, 309 (unsigned long)p)) == NULL) { 310 printk("sbus_free_consistent: cannot free %p\n", p); 311 return; 312 } 313 314 if (((unsigned long)p & (PAGE_SIZE-1)) != 0) { 315 printk("sbus_free_consistent: unaligned va %p\n", p); 316 return; 317 } 318 319 n = (n + PAGE_SIZE-1) & PAGE_MASK; 320 if ((res->end-res->start)+1 != n) { 321 printk("sbus_free_consistent: region 0x%lx asked 0x%zx\n", 322 (long)((res->end-res->start)+1), n); 323 return; 324 } 325 326 release_resource(res); 327 kfree(res); 328 329 /* mmu_inval_dma_area(va, n); */ /* it's consistent, isn't it */ 330 pgv = virt_to_page(p); 331 mmu_unmap_dma_area(dev, ba, n); 332 333 __free_pages(pgv, get_order(n)); 334 } 335 336 /* 337 * Map a chunk of memory so that devices can see it. 338 * CPU view of this memory may be inconsistent with 339 * a device view and explicit flushing is necessary. 340 */ 341 static dma_addr_t sbus_map_page(struct device *dev, struct page *page, 342 unsigned long offset, size_t len, 343 enum dma_data_direction dir, 344 struct dma_attrs *attrs) 345 { 346 void *va = page_address(page) + offset; 347 348 /* XXX why are some lengths signed, others unsigned? */ 349 if (len <= 0) { 350 return 0; 351 } 352 /* XXX So what is maxphys for us and how do drivers know it? */ 353 if (len > 256*1024) { /* __get_free_pages() limit */ 354 return 0; 355 } 356 return mmu_get_scsi_one(dev, va, len); 357 } 358 359 static void sbus_unmap_page(struct device *dev, dma_addr_t ba, size_t n, 360 enum dma_data_direction dir, struct dma_attrs *attrs) 361 { 362 mmu_release_scsi_one(dev, ba, n); 363 } 364 365 static int sbus_map_sg(struct device *dev, struct scatterlist *sg, int n, 366 enum dma_data_direction dir, struct dma_attrs *attrs) 367 { 368 mmu_get_scsi_sgl(dev, sg, n); 369 370 /* 371 * XXX sparc64 can return a partial length here. sun4c should do this 372 * but it currently panics if it can't fulfill the request - Anton 373 */ 374 return n; 375 } 376 377 static void sbus_unmap_sg(struct device *dev, struct scatterlist *sg, int n, 378 enum dma_data_direction dir, struct dma_attrs *attrs) 379 { 380 mmu_release_scsi_sgl(dev, sg, n); 381 } 382 383 static void sbus_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 384 int n, enum dma_data_direction dir) 385 { 386 BUG(); 387 } 388 389 static void sbus_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 390 int n, enum dma_data_direction dir) 391 { 392 BUG(); 393 } 394 395 struct dma_map_ops sbus_dma_ops = { 396 .alloc_coherent = sbus_alloc_coherent, 397 .free_coherent = sbus_free_coherent, 398 .map_page = sbus_map_page, 399 .unmap_page = sbus_unmap_page, 400 .map_sg = sbus_map_sg, 401 .unmap_sg = sbus_unmap_sg, 402 .sync_sg_for_cpu = sbus_sync_sg_for_cpu, 403 .sync_sg_for_device = sbus_sync_sg_for_device, 404 }; 405 406 struct dma_map_ops *dma_ops = &sbus_dma_ops; 407 EXPORT_SYMBOL(dma_ops); 408 409 static int __init sparc_register_ioport(void) 410 { 411 register_proc_sparc_ioport(); 412 413 return 0; 414 } 415 416 arch_initcall(sparc_register_ioport); 417 418 #endif /* CONFIG_SBUS */ 419 420 #ifdef CONFIG_PCI 421 422 /* Allocate and map kernel buffer using consistent mode DMA for a device. 423 * hwdev should be valid struct pci_dev pointer for PCI devices. 424 */ 425 static void *pci32_alloc_coherent(struct device *dev, size_t len, 426 dma_addr_t *pba, gfp_t gfp) 427 { 428 unsigned long len_total = (len + PAGE_SIZE-1) & PAGE_MASK; 429 unsigned long va; 430 struct resource *res; 431 int order; 432 433 if (len == 0) { 434 return NULL; 435 } 436 if (len > 256*1024) { /* __get_free_pages() limit */ 437 return NULL; 438 } 439 440 order = get_order(len_total); 441 va = __get_free_pages(GFP_KERNEL, order); 442 if (va == 0) { 443 printk("pci_alloc_consistent: no %ld pages\n", len_total>>PAGE_SHIFT); 444 return NULL; 445 } 446 447 if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL) { 448 free_pages(va, order); 449 printk("pci_alloc_consistent: no core\n"); 450 return NULL; 451 } 452 453 if (allocate_resource(&_sparc_dvma, res, len_total, 454 _sparc_dvma.start, _sparc_dvma.end, PAGE_SIZE, NULL, NULL) != 0) { 455 printk("pci_alloc_consistent: cannot occupy 0x%lx", len_total); 456 free_pages(va, order); 457 kfree(res); 458 return NULL; 459 } 460 mmu_inval_dma_area(va, len_total); 461 #if 0 462 /* P3 */ printk("pci_alloc_consistent: kva %lx uncva %lx phys %lx size %lx\n", 463 (long)va, (long)res->start, (long)virt_to_phys(va), len_total); 464 #endif 465 sparc_mapiorange(0, virt_to_phys(va), res->start, len_total); 466 467 *pba = virt_to_phys(va); /* equals virt_to_bus (R.I.P.) for us. */ 468 return (void *) res->start; 469 } 470 471 /* Free and unmap a consistent DMA buffer. 472 * cpu_addr is what was returned from pci_alloc_consistent, 473 * size must be the same as what as passed into pci_alloc_consistent, 474 * and likewise dma_addr must be the same as what *dma_addrp was set to. 475 * 476 * References to the memory and mappings associated with cpu_addr/dma_addr 477 * past this call are illegal. 478 */ 479 static void pci32_free_coherent(struct device *dev, size_t n, void *p, 480 dma_addr_t ba) 481 { 482 struct resource *res; 483 unsigned long pgp; 484 485 if ((res = _sparc_find_resource(&_sparc_dvma, 486 (unsigned long)p)) == NULL) { 487 printk("pci_free_consistent: cannot free %p\n", p); 488 return; 489 } 490 491 if (((unsigned long)p & (PAGE_SIZE-1)) != 0) { 492 printk("pci_free_consistent: unaligned va %p\n", p); 493 return; 494 } 495 496 n = (n + PAGE_SIZE-1) & PAGE_MASK; 497 if ((res->end-res->start)+1 != n) { 498 printk("pci_free_consistent: region 0x%lx asked 0x%lx\n", 499 (long)((res->end-res->start)+1), (long)n); 500 return; 501 } 502 503 pgp = (unsigned long) phys_to_virt(ba); /* bus_to_virt actually */ 504 mmu_inval_dma_area(pgp, n); 505 sparc_unmapiorange((unsigned long)p, n); 506 507 release_resource(res); 508 kfree(res); 509 510 free_pages(pgp, get_order(n)); 511 } 512 513 /* 514 * Same as pci_map_single, but with pages. 515 */ 516 static dma_addr_t pci32_map_page(struct device *dev, struct page *page, 517 unsigned long offset, size_t size, 518 enum dma_data_direction dir, 519 struct dma_attrs *attrs) 520 { 521 /* IIep is write-through, not flushing. */ 522 return page_to_phys(page) + offset; 523 } 524 525 /* Map a set of buffers described by scatterlist in streaming 526 * mode for DMA. This is the scather-gather version of the 527 * above pci_map_single interface. Here the scatter gather list 528 * elements are each tagged with the appropriate dma address 529 * and length. They are obtained via sg_dma_{address,length}(SG). 530 * 531 * NOTE: An implementation may be able to use a smaller number of 532 * DMA address/length pairs than there are SG table elements. 533 * (for example via virtual mapping capabilities) 534 * The routine returns the number of addr/length pairs actually 535 * used, at most nents. 536 * 537 * Device ownership issues as mentioned above for pci_map_single are 538 * the same here. 539 */ 540 static int pci32_map_sg(struct device *device, struct scatterlist *sgl, 541 int nents, enum dma_data_direction dir, 542 struct dma_attrs *attrs) 543 { 544 struct scatterlist *sg; 545 int n; 546 547 /* IIep is write-through, not flushing. */ 548 for_each_sg(sgl, sg, nents, n) { 549 BUG_ON(page_address(sg_page(sg)) == NULL); 550 sg->dma_address = virt_to_phys(sg_virt(sg)); 551 sg->dma_length = sg->length; 552 } 553 return nents; 554 } 555 556 /* Unmap a set of streaming mode DMA translations. 557 * Again, cpu read rules concerning calls here are the same as for 558 * pci_unmap_single() above. 559 */ 560 static void pci32_unmap_sg(struct device *dev, struct scatterlist *sgl, 561 int nents, enum dma_data_direction dir, 562 struct dma_attrs *attrs) 563 { 564 struct scatterlist *sg; 565 int n; 566 567 if (dir != PCI_DMA_TODEVICE) { 568 for_each_sg(sgl, sg, nents, n) { 569 BUG_ON(page_address(sg_page(sg)) == NULL); 570 mmu_inval_dma_area( 571 (unsigned long) page_address(sg_page(sg)), 572 (sg->length + PAGE_SIZE-1) & PAGE_MASK); 573 } 574 } 575 } 576 577 /* Make physical memory consistent for a single 578 * streaming mode DMA translation before or after a transfer. 579 * 580 * If you perform a pci_map_single() but wish to interrogate the 581 * buffer using the cpu, yet do not wish to teardown the PCI dma 582 * mapping, you must call this function before doing so. At the 583 * next point you give the PCI dma address back to the card, you 584 * must first perform a pci_dma_sync_for_device, and then the 585 * device again owns the buffer. 586 */ 587 static void pci32_sync_single_for_cpu(struct device *dev, dma_addr_t ba, 588 size_t size, enum dma_data_direction dir) 589 { 590 if (dir != PCI_DMA_TODEVICE) { 591 mmu_inval_dma_area((unsigned long)phys_to_virt(ba), 592 (size + PAGE_SIZE-1) & PAGE_MASK); 593 } 594 } 595 596 static void pci32_sync_single_for_device(struct device *dev, dma_addr_t ba, 597 size_t size, enum dma_data_direction dir) 598 { 599 if (dir != PCI_DMA_TODEVICE) { 600 mmu_inval_dma_area((unsigned long)phys_to_virt(ba), 601 (size + PAGE_SIZE-1) & PAGE_MASK); 602 } 603 } 604 605 /* Make physical memory consistent for a set of streaming 606 * mode DMA translations after a transfer. 607 * 608 * The same as pci_dma_sync_single_* but for a scatter-gather list, 609 * same rules and usage. 610 */ 611 static void pci32_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl, 612 int nents, enum dma_data_direction dir) 613 { 614 struct scatterlist *sg; 615 int n; 616 617 if (dir != PCI_DMA_TODEVICE) { 618 for_each_sg(sgl, sg, nents, n) { 619 BUG_ON(page_address(sg_page(sg)) == NULL); 620 mmu_inval_dma_area( 621 (unsigned long) page_address(sg_page(sg)), 622 (sg->length + PAGE_SIZE-1) & PAGE_MASK); 623 } 624 } 625 } 626 627 static void pci32_sync_sg_for_device(struct device *device, struct scatterlist *sgl, 628 int nents, enum dma_data_direction dir) 629 { 630 struct scatterlist *sg; 631 int n; 632 633 if (dir != PCI_DMA_TODEVICE) { 634 for_each_sg(sgl, sg, nents, n) { 635 BUG_ON(page_address(sg_page(sg)) == NULL); 636 mmu_inval_dma_area( 637 (unsigned long) page_address(sg_page(sg)), 638 (sg->length + PAGE_SIZE-1) & PAGE_MASK); 639 } 640 } 641 } 642 643 struct dma_map_ops pci32_dma_ops = { 644 .alloc_coherent = pci32_alloc_coherent, 645 .free_coherent = pci32_free_coherent, 646 .map_page = pci32_map_page, 647 .map_sg = pci32_map_sg, 648 .unmap_sg = pci32_unmap_sg, 649 .sync_single_for_cpu = pci32_sync_single_for_cpu, 650 .sync_single_for_device = pci32_sync_single_for_device, 651 .sync_sg_for_cpu = pci32_sync_sg_for_cpu, 652 .sync_sg_for_device = pci32_sync_sg_for_device, 653 }; 654 EXPORT_SYMBOL(pci32_dma_ops); 655 656 #endif /* CONFIG_PCI */ 657 658 /* 659 * Return whether the given PCI device DMA address mask can be 660 * supported properly. For example, if your device can only drive the 661 * low 24-bits during PCI bus mastering, then you would pass 662 * 0x00ffffff as the mask to this function. 663 */ 664 int dma_supported(struct device *dev, u64 mask) 665 { 666 #ifdef CONFIG_PCI 667 if (dev->bus == &pci_bus_type) 668 return 1; 669 #endif 670 return 0; 671 } 672 EXPORT_SYMBOL(dma_supported); 673 674 int dma_set_mask(struct device *dev, u64 dma_mask) 675 { 676 #ifdef CONFIG_PCI 677 if (dev->bus == &pci_bus_type) 678 return pci_set_dma_mask(to_pci_dev(dev), dma_mask); 679 #endif 680 return -EOPNOTSUPP; 681 } 682 EXPORT_SYMBOL(dma_set_mask); 683 684 685 #ifdef CONFIG_PROC_FS 686 687 static int sparc_io_proc_show(struct seq_file *m, void *v) 688 { 689 struct resource *root = m->private, *r; 690 const char *nm; 691 692 for (r = root->child; r != NULL; r = r->sibling) { 693 if ((nm = r->name) == 0) nm = "???"; 694 seq_printf(m, "%016llx-%016llx: %s\n", 695 (unsigned long long)r->start, 696 (unsigned long long)r->end, nm); 697 } 698 699 return 0; 700 } 701 702 static int sparc_io_proc_open(struct inode *inode, struct file *file) 703 { 704 return single_open(file, sparc_io_proc_show, PDE(inode)->data); 705 } 706 707 static const struct file_operations sparc_io_proc_fops = { 708 .owner = THIS_MODULE, 709 .open = sparc_io_proc_open, 710 .read = seq_read, 711 .llseek = seq_lseek, 712 .release = single_release, 713 }; 714 #endif /* CONFIG_PROC_FS */ 715 716 /* 717 * This is a version of find_resource and it belongs to kernel/resource.c. 718 * Until we have agreement with Linus and Martin, it lingers here. 719 * 720 * XXX Too slow. Can have 8192 DVMA pages on sun4m in the worst case. 721 * This probably warrants some sort of hashing. 722 */ 723 static struct resource *_sparc_find_resource(struct resource *root, 724 unsigned long hit) 725 { 726 struct resource *tmp; 727 728 for (tmp = root->child; tmp != 0; tmp = tmp->sibling) { 729 if (tmp->start <= hit && tmp->end >= hit) 730 return tmp; 731 } 732 return NULL; 733 } 734 735 static void register_proc_sparc_ioport(void) 736 { 737 #ifdef CONFIG_PROC_FS 738 proc_create_data("io_map", 0, NULL, &sparc_io_proc_fops, &sparc_iomap); 739 proc_create_data("dvma_map", 0, NULL, &sparc_io_proc_fops, &_sparc_dvma); 740 #endif 741 } 742