1 /* 2 * ioport.c: Simple io mapping allocator. 3 * 4 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) 5 * Copyright (C) 1995 Miguel de Icaza (miguel@nuclecu.unam.mx) 6 * 7 * 1996: sparc_free_io, 1999: ioremap()/iounmap() by Pete Zaitcev. 8 * 9 * 2000/01/29 10 * <rth> zait: as long as pci_alloc_consistent produces something addressable, 11 * things are ok. 12 * <zaitcev> rth: no, it is relevant, because get_free_pages returns you a 13 * pointer into the big page mapping 14 * <rth> zait: so what? 15 * <rth> zait: remap_it_my_way(virt_to_phys(get_free_page())) 16 * <zaitcev> Hmm 17 * <zaitcev> Suppose I did this remap_it_my_way(virt_to_phys(get_free_page())). 18 * So far so good. 19 * <zaitcev> Now, driver calls pci_free_consistent(with result of 20 * remap_it_my_way()). 21 * <zaitcev> How do you find the address to pass to free_pages()? 22 * <rth> zait: walk the page tables? It's only two or three level after all. 23 * <rth> zait: you have to walk them anyway to remove the mapping. 24 * <zaitcev> Hmm 25 * <zaitcev> Sounds reasonable 26 */ 27 28 #include <linux/module.h> 29 #include <linux/sched.h> 30 #include <linux/kernel.h> 31 #include <linux/errno.h> 32 #include <linux/types.h> 33 #include <linux/ioport.h> 34 #include <linux/mm.h> 35 #include <linux/slab.h> 36 #include <linux/pci.h> /* struct pci_dev */ 37 #include <linux/proc_fs.h> 38 #include <linux/seq_file.h> 39 #include <linux/scatterlist.h> 40 #include <linux/of_device.h> 41 42 #include <asm/io.h> 43 #include <asm/vaddrs.h> 44 #include <asm/oplib.h> 45 #include <asm/prom.h> 46 #include <asm/page.h> 47 #include <asm/pgalloc.h> 48 #include <asm/dma.h> 49 #include <asm/iommu.h> 50 #include <asm/io-unit.h> 51 #include <asm/leon.h> 52 53 /* This function must make sure that caches and memory are coherent after DMA 54 * On LEON systems without cache snooping it flushes the entire D-CACHE. 55 */ 56 #ifndef CONFIG_SPARC_LEON 57 static inline void dma_make_coherent(unsigned long pa, unsigned long len) 58 { 59 } 60 #else 61 static inline void dma_make_coherent(unsigned long pa, unsigned long len) 62 { 63 if (!sparc_leon3_snooping_enabled()) 64 leon_flush_dcache_all(); 65 } 66 #endif 67 68 static void __iomem *_sparc_ioremap(struct resource *res, u32 bus, u32 pa, int sz); 69 static void __iomem *_sparc_alloc_io(unsigned int busno, unsigned long phys, 70 unsigned long size, char *name); 71 static void _sparc_free_io(struct resource *res); 72 73 static void register_proc_sparc_ioport(void); 74 75 /* This points to the next to use virtual memory for DVMA mappings */ 76 static struct resource _sparc_dvma = { 77 .name = "sparc_dvma", .start = DVMA_VADDR, .end = DVMA_END - 1 78 }; 79 /* This points to the start of I/O mappings, cluable from outside. */ 80 /*ext*/ struct resource sparc_iomap = { 81 .name = "sparc_iomap", .start = IOBASE_VADDR, .end = IOBASE_END - 1 82 }; 83 84 /* 85 * Our mini-allocator... 86 * Boy this is gross! We need it because we must map I/O for 87 * timers and interrupt controller before the kmalloc is available. 88 */ 89 90 #define XNMLN 15 91 #define XNRES 10 /* SS-10 uses 8 */ 92 93 struct xresource { 94 struct resource xres; /* Must be first */ 95 int xflag; /* 1 == used */ 96 char xname[XNMLN+1]; 97 }; 98 99 static struct xresource xresv[XNRES]; 100 101 static struct xresource *xres_alloc(void) { 102 struct xresource *xrp; 103 int n; 104 105 xrp = xresv; 106 for (n = 0; n < XNRES; n++) { 107 if (xrp->xflag == 0) { 108 xrp->xflag = 1; 109 return xrp; 110 } 111 xrp++; 112 } 113 return NULL; 114 } 115 116 static void xres_free(struct xresource *xrp) { 117 xrp->xflag = 0; 118 } 119 120 /* 121 * These are typically used in PCI drivers 122 * which are trying to be cross-platform. 123 * 124 * Bus type is always zero on IIep. 125 */ 126 void __iomem *ioremap(unsigned long offset, unsigned long size) 127 { 128 char name[14]; 129 130 sprintf(name, "phys_%08x", (u32)offset); 131 return _sparc_alloc_io(0, offset, size, name); 132 } 133 EXPORT_SYMBOL(ioremap); 134 135 /* 136 * Comlimentary to ioremap(). 137 */ 138 void iounmap(volatile void __iomem *virtual) 139 { 140 unsigned long vaddr = (unsigned long) virtual & PAGE_MASK; 141 struct resource *res; 142 143 /* 144 * XXX Too slow. Can have 8192 DVMA pages on sun4m in the worst case. 145 * This probably warrants some sort of hashing. 146 */ 147 if ((res = lookup_resource(&sparc_iomap, vaddr)) == NULL) { 148 printk("free_io/iounmap: cannot free %lx\n", vaddr); 149 return; 150 } 151 _sparc_free_io(res); 152 153 if ((char *)res >= (char*)xresv && (char *)res < (char *)&xresv[XNRES]) { 154 xres_free((struct xresource *)res); 155 } else { 156 kfree(res); 157 } 158 } 159 EXPORT_SYMBOL(iounmap); 160 161 void __iomem *of_ioremap(struct resource *res, unsigned long offset, 162 unsigned long size, char *name) 163 { 164 return _sparc_alloc_io(res->flags & 0xF, 165 res->start + offset, 166 size, name); 167 } 168 EXPORT_SYMBOL(of_ioremap); 169 170 void of_iounmap(struct resource *res, void __iomem *base, unsigned long size) 171 { 172 iounmap(base); 173 } 174 EXPORT_SYMBOL(of_iounmap); 175 176 /* 177 * Meat of mapping 178 */ 179 static void __iomem *_sparc_alloc_io(unsigned int busno, unsigned long phys, 180 unsigned long size, char *name) 181 { 182 static int printed_full; 183 struct xresource *xres; 184 struct resource *res; 185 char *tack; 186 int tlen; 187 void __iomem *va; /* P3 diag */ 188 189 if (name == NULL) name = "???"; 190 191 if ((xres = xres_alloc()) != 0) { 192 tack = xres->xname; 193 res = &xres->xres; 194 } else { 195 if (!printed_full) { 196 printk("ioremap: done with statics, switching to malloc\n"); 197 printed_full = 1; 198 } 199 tlen = strlen(name); 200 tack = kmalloc(sizeof (struct resource) + tlen + 1, GFP_KERNEL); 201 if (tack == NULL) return NULL; 202 memset(tack, 0, sizeof(struct resource)); 203 res = (struct resource *) tack; 204 tack += sizeof (struct resource); 205 } 206 207 strlcpy(tack, name, XNMLN+1); 208 res->name = tack; 209 210 va = _sparc_ioremap(res, busno, phys, size); 211 /* printk("ioremap(0x%x:%08lx[0x%lx])=%p\n", busno, phys, size, va); */ /* P3 diag */ 212 return va; 213 } 214 215 /* 216 */ 217 static void __iomem * 218 _sparc_ioremap(struct resource *res, u32 bus, u32 pa, int sz) 219 { 220 unsigned long offset = ((unsigned long) pa) & (~PAGE_MASK); 221 222 if (allocate_resource(&sparc_iomap, res, 223 (offset + sz + PAGE_SIZE-1) & PAGE_MASK, 224 sparc_iomap.start, sparc_iomap.end, PAGE_SIZE, NULL, NULL) != 0) { 225 /* Usually we cannot see printks in this case. */ 226 prom_printf("alloc_io_res(%s): cannot occupy\n", 227 (res->name != NULL)? res->name: "???"); 228 prom_halt(); 229 } 230 231 pa &= PAGE_MASK; 232 sparc_mapiorange(bus, pa, res->start, resource_size(res)); 233 234 return (void __iomem *)(unsigned long)(res->start + offset); 235 } 236 237 /* 238 * Comlimentary to _sparc_ioremap(). 239 */ 240 static void _sparc_free_io(struct resource *res) 241 { 242 unsigned long plen; 243 244 plen = resource_size(res); 245 BUG_ON((plen & (PAGE_SIZE-1)) != 0); 246 sparc_unmapiorange(res->start, plen); 247 release_resource(res); 248 } 249 250 #ifdef CONFIG_SBUS 251 252 void sbus_set_sbus64(struct device *dev, int x) 253 { 254 printk("sbus_set_sbus64: unsupported\n"); 255 } 256 EXPORT_SYMBOL(sbus_set_sbus64); 257 258 /* 259 * Allocate a chunk of memory suitable for DMA. 260 * Typically devices use them for control blocks. 261 * CPU may access them without any explicit flushing. 262 */ 263 static void *sbus_alloc_coherent(struct device *dev, size_t len, 264 dma_addr_t *dma_addrp, gfp_t gfp, 265 struct dma_attrs *attrs) 266 { 267 struct platform_device *op = to_platform_device(dev); 268 unsigned long len_total = PAGE_ALIGN(len); 269 unsigned long va; 270 struct resource *res; 271 int order; 272 273 /* XXX why are some lengths signed, others unsigned? */ 274 if (len <= 0) { 275 return NULL; 276 } 277 /* XXX So what is maxphys for us and how do drivers know it? */ 278 if (len > 256*1024) { /* __get_free_pages() limit */ 279 return NULL; 280 } 281 282 order = get_order(len_total); 283 if ((va = __get_free_pages(GFP_KERNEL|__GFP_COMP, order)) == 0) 284 goto err_nopages; 285 286 if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL) 287 goto err_nomem; 288 289 if (allocate_resource(&_sparc_dvma, res, len_total, 290 _sparc_dvma.start, _sparc_dvma.end, PAGE_SIZE, NULL, NULL) != 0) { 291 printk("sbus_alloc_consistent: cannot occupy 0x%lx", len_total); 292 goto err_nova; 293 } 294 295 // XXX The mmu_map_dma_area does this for us below, see comments. 296 // sparc_mapiorange(0, virt_to_phys(va), res->start, len_total); 297 /* 298 * XXX That's where sdev would be used. Currently we load 299 * all iommu tables with the same translations. 300 */ 301 if (mmu_map_dma_area(dev, dma_addrp, va, res->start, len_total) != 0) 302 goto err_noiommu; 303 304 res->name = op->dev.of_node->name; 305 306 return (void *)(unsigned long)res->start; 307 308 err_noiommu: 309 release_resource(res); 310 err_nova: 311 kfree(res); 312 err_nomem: 313 free_pages(va, order); 314 err_nopages: 315 return NULL; 316 } 317 318 static void sbus_free_coherent(struct device *dev, size_t n, void *p, 319 dma_addr_t ba, struct dma_attrs *attrs) 320 { 321 struct resource *res; 322 struct page *pgv; 323 324 if ((res = lookup_resource(&_sparc_dvma, 325 (unsigned long)p)) == NULL) { 326 printk("sbus_free_consistent: cannot free %p\n", p); 327 return; 328 } 329 330 if (((unsigned long)p & (PAGE_SIZE-1)) != 0) { 331 printk("sbus_free_consistent: unaligned va %p\n", p); 332 return; 333 } 334 335 n = PAGE_ALIGN(n); 336 if (resource_size(res) != n) { 337 printk("sbus_free_consistent: region 0x%lx asked 0x%zx\n", 338 (long)resource_size(res), n); 339 return; 340 } 341 342 release_resource(res); 343 kfree(res); 344 345 pgv = virt_to_page(p); 346 mmu_unmap_dma_area(dev, ba, n); 347 348 __free_pages(pgv, get_order(n)); 349 } 350 351 /* 352 * Map a chunk of memory so that devices can see it. 353 * CPU view of this memory may be inconsistent with 354 * a device view and explicit flushing is necessary. 355 */ 356 static dma_addr_t sbus_map_page(struct device *dev, struct page *page, 357 unsigned long offset, size_t len, 358 enum dma_data_direction dir, 359 struct dma_attrs *attrs) 360 { 361 void *va = page_address(page) + offset; 362 363 /* XXX why are some lengths signed, others unsigned? */ 364 if (len <= 0) { 365 return 0; 366 } 367 /* XXX So what is maxphys for us and how do drivers know it? */ 368 if (len > 256*1024) { /* __get_free_pages() limit */ 369 return 0; 370 } 371 return mmu_get_scsi_one(dev, va, len); 372 } 373 374 static void sbus_unmap_page(struct device *dev, dma_addr_t ba, size_t n, 375 enum dma_data_direction dir, struct dma_attrs *attrs) 376 { 377 mmu_release_scsi_one(dev, ba, n); 378 } 379 380 static int sbus_map_sg(struct device *dev, struct scatterlist *sg, int n, 381 enum dma_data_direction dir, struct dma_attrs *attrs) 382 { 383 mmu_get_scsi_sgl(dev, sg, n); 384 385 /* 386 * XXX sparc64 can return a partial length here. sun4c should do this 387 * but it currently panics if it can't fulfill the request - Anton 388 */ 389 return n; 390 } 391 392 static void sbus_unmap_sg(struct device *dev, struct scatterlist *sg, int n, 393 enum dma_data_direction dir, struct dma_attrs *attrs) 394 { 395 mmu_release_scsi_sgl(dev, sg, n); 396 } 397 398 static void sbus_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 399 int n, enum dma_data_direction dir) 400 { 401 BUG(); 402 } 403 404 static void sbus_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 405 int n, enum dma_data_direction dir) 406 { 407 BUG(); 408 } 409 410 struct dma_map_ops sbus_dma_ops = { 411 .alloc = sbus_alloc_coherent, 412 .free = sbus_free_coherent, 413 .map_page = sbus_map_page, 414 .unmap_page = sbus_unmap_page, 415 .map_sg = sbus_map_sg, 416 .unmap_sg = sbus_unmap_sg, 417 .sync_sg_for_cpu = sbus_sync_sg_for_cpu, 418 .sync_sg_for_device = sbus_sync_sg_for_device, 419 }; 420 421 static int __init sparc_register_ioport(void) 422 { 423 register_proc_sparc_ioport(); 424 425 return 0; 426 } 427 428 arch_initcall(sparc_register_ioport); 429 430 #endif /* CONFIG_SBUS */ 431 432 433 /* LEON reuses PCI DMA ops */ 434 #if defined(CONFIG_PCI) || defined(CONFIG_SPARC_LEON) 435 436 /* Allocate and map kernel buffer using consistent mode DMA for a device. 437 * hwdev should be valid struct pci_dev pointer for PCI devices. 438 */ 439 static void *pci32_alloc_coherent(struct device *dev, size_t len, 440 dma_addr_t *pba, gfp_t gfp, 441 struct dma_attrs *attrs) 442 { 443 unsigned long len_total = PAGE_ALIGN(len); 444 void *va; 445 struct resource *res; 446 int order; 447 448 if (len == 0) { 449 return NULL; 450 } 451 if (len > 256*1024) { /* __get_free_pages() limit */ 452 return NULL; 453 } 454 455 order = get_order(len_total); 456 va = (void *) __get_free_pages(GFP_KERNEL, order); 457 if (va == NULL) { 458 printk("pci_alloc_consistent: no %ld pages\n", len_total>>PAGE_SHIFT); 459 goto err_nopages; 460 } 461 462 if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL) { 463 printk("pci_alloc_consistent: no core\n"); 464 goto err_nomem; 465 } 466 467 if (allocate_resource(&_sparc_dvma, res, len_total, 468 _sparc_dvma.start, _sparc_dvma.end, PAGE_SIZE, NULL, NULL) != 0) { 469 printk("pci_alloc_consistent: cannot occupy 0x%lx", len_total); 470 goto err_nova; 471 } 472 sparc_mapiorange(0, virt_to_phys(va), res->start, len_total); 473 474 *pba = virt_to_phys(va); /* equals virt_to_bus (R.I.P.) for us. */ 475 return (void *) res->start; 476 477 err_nova: 478 kfree(res); 479 err_nomem: 480 free_pages((unsigned long)va, order); 481 err_nopages: 482 return NULL; 483 } 484 485 /* Free and unmap a consistent DMA buffer. 486 * cpu_addr is what was returned from pci_alloc_consistent, 487 * size must be the same as what as passed into pci_alloc_consistent, 488 * and likewise dma_addr must be the same as what *dma_addrp was set to. 489 * 490 * References to the memory and mappings associated with cpu_addr/dma_addr 491 * past this call are illegal. 492 */ 493 static void pci32_free_coherent(struct device *dev, size_t n, void *p, 494 dma_addr_t ba, struct dma_attrs *attrs) 495 { 496 struct resource *res; 497 498 if ((res = lookup_resource(&_sparc_dvma, 499 (unsigned long)p)) == NULL) { 500 printk("pci_free_consistent: cannot free %p\n", p); 501 return; 502 } 503 504 if (((unsigned long)p & (PAGE_SIZE-1)) != 0) { 505 printk("pci_free_consistent: unaligned va %p\n", p); 506 return; 507 } 508 509 n = PAGE_ALIGN(n); 510 if (resource_size(res) != n) { 511 printk("pci_free_consistent: region 0x%lx asked 0x%lx\n", 512 (long)resource_size(res), (long)n); 513 return; 514 } 515 516 dma_make_coherent(ba, n); 517 sparc_unmapiorange((unsigned long)p, n); 518 519 release_resource(res); 520 kfree(res); 521 free_pages((unsigned long)phys_to_virt(ba), get_order(n)); 522 } 523 524 /* 525 * Same as pci_map_single, but with pages. 526 */ 527 static dma_addr_t pci32_map_page(struct device *dev, struct page *page, 528 unsigned long offset, size_t size, 529 enum dma_data_direction dir, 530 struct dma_attrs *attrs) 531 { 532 /* IIep is write-through, not flushing. */ 533 return page_to_phys(page) + offset; 534 } 535 536 static void pci32_unmap_page(struct device *dev, dma_addr_t ba, size_t size, 537 enum dma_data_direction dir, struct dma_attrs *attrs) 538 { 539 if (dir != PCI_DMA_TODEVICE) 540 dma_make_coherent(ba, PAGE_ALIGN(size)); 541 } 542 543 /* Map a set of buffers described by scatterlist in streaming 544 * mode for DMA. This is the scather-gather version of the 545 * above pci_map_single interface. Here the scatter gather list 546 * elements are each tagged with the appropriate dma address 547 * and length. They are obtained via sg_dma_{address,length}(SG). 548 * 549 * NOTE: An implementation may be able to use a smaller number of 550 * DMA address/length pairs than there are SG table elements. 551 * (for example via virtual mapping capabilities) 552 * The routine returns the number of addr/length pairs actually 553 * used, at most nents. 554 * 555 * Device ownership issues as mentioned above for pci_map_single are 556 * the same here. 557 */ 558 static int pci32_map_sg(struct device *device, struct scatterlist *sgl, 559 int nents, enum dma_data_direction dir, 560 struct dma_attrs *attrs) 561 { 562 struct scatterlist *sg; 563 int n; 564 565 /* IIep is write-through, not flushing. */ 566 for_each_sg(sgl, sg, nents, n) { 567 sg->dma_address = sg_phys(sg); 568 sg->dma_length = sg->length; 569 } 570 return nents; 571 } 572 573 /* Unmap a set of streaming mode DMA translations. 574 * Again, cpu read rules concerning calls here are the same as for 575 * pci_unmap_single() above. 576 */ 577 static void pci32_unmap_sg(struct device *dev, struct scatterlist *sgl, 578 int nents, enum dma_data_direction dir, 579 struct dma_attrs *attrs) 580 { 581 struct scatterlist *sg; 582 int n; 583 584 if (dir != PCI_DMA_TODEVICE) { 585 for_each_sg(sgl, sg, nents, n) { 586 dma_make_coherent(sg_phys(sg), PAGE_ALIGN(sg->length)); 587 } 588 } 589 } 590 591 /* Make physical memory consistent for a single 592 * streaming mode DMA translation before or after a transfer. 593 * 594 * If you perform a pci_map_single() but wish to interrogate the 595 * buffer using the cpu, yet do not wish to teardown the PCI dma 596 * mapping, you must call this function before doing so. At the 597 * next point you give the PCI dma address back to the card, you 598 * must first perform a pci_dma_sync_for_device, and then the 599 * device again owns the buffer. 600 */ 601 static void pci32_sync_single_for_cpu(struct device *dev, dma_addr_t ba, 602 size_t size, enum dma_data_direction dir) 603 { 604 if (dir != PCI_DMA_TODEVICE) { 605 dma_make_coherent(ba, PAGE_ALIGN(size)); 606 } 607 } 608 609 static void pci32_sync_single_for_device(struct device *dev, dma_addr_t ba, 610 size_t size, enum dma_data_direction dir) 611 { 612 if (dir != PCI_DMA_TODEVICE) { 613 dma_make_coherent(ba, PAGE_ALIGN(size)); 614 } 615 } 616 617 /* Make physical memory consistent for a set of streaming 618 * mode DMA translations after a transfer. 619 * 620 * The same as pci_dma_sync_single_* but for a scatter-gather list, 621 * same rules and usage. 622 */ 623 static void pci32_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl, 624 int nents, enum dma_data_direction dir) 625 { 626 struct scatterlist *sg; 627 int n; 628 629 if (dir != PCI_DMA_TODEVICE) { 630 for_each_sg(sgl, sg, nents, n) { 631 dma_make_coherent(sg_phys(sg), PAGE_ALIGN(sg->length)); 632 } 633 } 634 } 635 636 static void pci32_sync_sg_for_device(struct device *device, struct scatterlist *sgl, 637 int nents, enum dma_data_direction dir) 638 { 639 struct scatterlist *sg; 640 int n; 641 642 if (dir != PCI_DMA_TODEVICE) { 643 for_each_sg(sgl, sg, nents, n) { 644 dma_make_coherent(sg_phys(sg), PAGE_ALIGN(sg->length)); 645 } 646 } 647 } 648 649 struct dma_map_ops pci32_dma_ops = { 650 .alloc = pci32_alloc_coherent, 651 .free = pci32_free_coherent, 652 .map_page = pci32_map_page, 653 .unmap_page = pci32_unmap_page, 654 .map_sg = pci32_map_sg, 655 .unmap_sg = pci32_unmap_sg, 656 .sync_single_for_cpu = pci32_sync_single_for_cpu, 657 .sync_single_for_device = pci32_sync_single_for_device, 658 .sync_sg_for_cpu = pci32_sync_sg_for_cpu, 659 .sync_sg_for_device = pci32_sync_sg_for_device, 660 }; 661 EXPORT_SYMBOL(pci32_dma_ops); 662 663 #endif /* CONFIG_PCI || CONFIG_SPARC_LEON */ 664 665 #ifdef CONFIG_SPARC_LEON 666 struct dma_map_ops *dma_ops = &pci32_dma_ops; 667 #elif defined(CONFIG_SBUS) 668 struct dma_map_ops *dma_ops = &sbus_dma_ops; 669 #endif 670 671 EXPORT_SYMBOL(dma_ops); 672 673 674 /* 675 * Return whether the given PCI device DMA address mask can be 676 * supported properly. For example, if your device can only drive the 677 * low 24-bits during PCI bus mastering, then you would pass 678 * 0x00ffffff as the mask to this function. 679 */ 680 int dma_supported(struct device *dev, u64 mask) 681 { 682 #ifdef CONFIG_PCI 683 if (dev->bus == &pci_bus_type) 684 return 1; 685 #endif 686 return 0; 687 } 688 EXPORT_SYMBOL(dma_supported); 689 690 #ifdef CONFIG_PROC_FS 691 692 static int sparc_io_proc_show(struct seq_file *m, void *v) 693 { 694 struct resource *root = m->private, *r; 695 const char *nm; 696 697 for (r = root->child; r != NULL; r = r->sibling) { 698 if ((nm = r->name) == 0) nm = "???"; 699 seq_printf(m, "%016llx-%016llx: %s\n", 700 (unsigned long long)r->start, 701 (unsigned long long)r->end, nm); 702 } 703 704 return 0; 705 } 706 707 static int sparc_io_proc_open(struct inode *inode, struct file *file) 708 { 709 return single_open(file, sparc_io_proc_show, PDE(inode)->data); 710 } 711 712 static const struct file_operations sparc_io_proc_fops = { 713 .owner = THIS_MODULE, 714 .open = sparc_io_proc_open, 715 .read = seq_read, 716 .llseek = seq_lseek, 717 .release = single_release, 718 }; 719 #endif /* CONFIG_PROC_FS */ 720 721 static void register_proc_sparc_ioport(void) 722 { 723 #ifdef CONFIG_PROC_FS 724 proc_create_data("io_map", 0, NULL, &sparc_io_proc_fops, &sparc_iomap); 725 proc_create_data("dvma_map", 0, NULL, &sparc_io_proc_fops, &_sparc_dvma); 726 #endif 727 } 728