1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * ioport.c: Simple io mapping allocator. 4 * 5 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) 6 * Copyright (C) 1995 Miguel de Icaza (miguel@nuclecu.unam.mx) 7 * 8 * 1996: sparc_free_io, 1999: ioremap()/iounmap() by Pete Zaitcev. 9 * 10 * 2000/01/29 11 * <rth> zait: as long as pci_alloc_consistent produces something addressable, 12 * things are ok. 13 * <zaitcev> rth: no, it is relevant, because get_free_pages returns you a 14 * pointer into the big page mapping 15 * <rth> zait: so what? 16 * <rth> zait: remap_it_my_way(virt_to_phys(get_free_page())) 17 * <zaitcev> Hmm 18 * <zaitcev> Suppose I did this remap_it_my_way(virt_to_phys(get_free_page())). 19 * So far so good. 20 * <zaitcev> Now, driver calls pci_free_consistent(with result of 21 * remap_it_my_way()). 22 * <zaitcev> How do you find the address to pass to free_pages()? 23 * <rth> zait: walk the page tables? It's only two or three level after all. 24 * <rth> zait: you have to walk them anyway to remove the mapping. 25 * <zaitcev> Hmm 26 * <zaitcev> Sounds reasonable 27 */ 28 29 #include <linux/module.h> 30 #include <linux/sched.h> 31 #include <linux/kernel.h> 32 #include <linux/errno.h> 33 #include <linux/types.h> 34 #include <linux/ioport.h> 35 #include <linux/mm.h> 36 #include <linux/slab.h> 37 #include <linux/pci.h> /* struct pci_dev */ 38 #include <linux/proc_fs.h> 39 #include <linux/seq_file.h> 40 #include <linux/scatterlist.h> 41 #include <linux/of_device.h> 42 43 #include <asm/io.h> 44 #include <asm/vaddrs.h> 45 #include <asm/oplib.h> 46 #include <asm/prom.h> 47 #include <asm/page.h> 48 #include <asm/pgalloc.h> 49 #include <asm/dma.h> 50 #include <asm/iommu.h> 51 #include <asm/io-unit.h> 52 #include <asm/leon.h> 53 54 const struct sparc32_dma_ops *sparc32_dma_ops; 55 56 /* This function must make sure that caches and memory are coherent after DMA 57 * On LEON systems without cache snooping it flushes the entire D-CACHE. 58 */ 59 static inline void dma_make_coherent(unsigned long pa, unsigned long len) 60 { 61 if (sparc_cpu_model == sparc_leon) { 62 if (!sparc_leon3_snooping_enabled()) 63 leon_flush_dcache_all(); 64 } 65 } 66 67 static void __iomem *_sparc_ioremap(struct resource *res, u32 bus, u32 pa, int sz); 68 static void __iomem *_sparc_alloc_io(unsigned int busno, unsigned long phys, 69 unsigned long size, char *name); 70 static void _sparc_free_io(struct resource *res); 71 72 static void register_proc_sparc_ioport(void); 73 74 /* This points to the next to use virtual memory for DVMA mappings */ 75 static struct resource _sparc_dvma = { 76 .name = "sparc_dvma", .start = DVMA_VADDR, .end = DVMA_END - 1 77 }; 78 /* This points to the start of I/O mappings, cluable from outside. */ 79 /*ext*/ struct resource sparc_iomap = { 80 .name = "sparc_iomap", .start = IOBASE_VADDR, .end = IOBASE_END - 1 81 }; 82 83 /* 84 * Our mini-allocator... 85 * Boy this is gross! We need it because we must map I/O for 86 * timers and interrupt controller before the kmalloc is available. 87 */ 88 89 #define XNMLN 15 90 #define XNRES 10 /* SS-10 uses 8 */ 91 92 struct xresource { 93 struct resource xres; /* Must be first */ 94 int xflag; /* 1 == used */ 95 char xname[XNMLN+1]; 96 }; 97 98 static struct xresource xresv[XNRES]; 99 100 static struct xresource *xres_alloc(void) { 101 struct xresource *xrp; 102 int n; 103 104 xrp = xresv; 105 for (n = 0; n < XNRES; n++) { 106 if (xrp->xflag == 0) { 107 xrp->xflag = 1; 108 return xrp; 109 } 110 xrp++; 111 } 112 return NULL; 113 } 114 115 static void xres_free(struct xresource *xrp) { 116 xrp->xflag = 0; 117 } 118 119 /* 120 * These are typically used in PCI drivers 121 * which are trying to be cross-platform. 122 * 123 * Bus type is always zero on IIep. 124 */ 125 void __iomem *ioremap(phys_addr_t offset, size_t size) 126 { 127 char name[14]; 128 129 sprintf(name, "phys_%08x", (u32)offset); 130 return _sparc_alloc_io(0, (unsigned long)offset, size, name); 131 } 132 EXPORT_SYMBOL(ioremap); 133 134 /* 135 * Complementary to ioremap(). 136 */ 137 void iounmap(volatile void __iomem *virtual) 138 { 139 unsigned long vaddr = (unsigned long) virtual & PAGE_MASK; 140 struct resource *res; 141 142 /* 143 * XXX Too slow. Can have 8192 DVMA pages on sun4m in the worst case. 144 * This probably warrants some sort of hashing. 145 */ 146 if ((res = lookup_resource(&sparc_iomap, vaddr)) == NULL) { 147 printk("free_io/iounmap: cannot free %lx\n", vaddr); 148 return; 149 } 150 _sparc_free_io(res); 151 152 if ((char *)res >= (char*)xresv && (char *)res < (char *)&xresv[XNRES]) { 153 xres_free((struct xresource *)res); 154 } else { 155 kfree(res); 156 } 157 } 158 EXPORT_SYMBOL(iounmap); 159 160 void __iomem *of_ioremap(struct resource *res, unsigned long offset, 161 unsigned long size, char *name) 162 { 163 return _sparc_alloc_io(res->flags & 0xF, 164 res->start + offset, 165 size, name); 166 } 167 EXPORT_SYMBOL(of_ioremap); 168 169 void of_iounmap(struct resource *res, void __iomem *base, unsigned long size) 170 { 171 iounmap(base); 172 } 173 EXPORT_SYMBOL(of_iounmap); 174 175 /* 176 * Meat of mapping 177 */ 178 static void __iomem *_sparc_alloc_io(unsigned int busno, unsigned long phys, 179 unsigned long size, char *name) 180 { 181 static int printed_full; 182 struct xresource *xres; 183 struct resource *res; 184 char *tack; 185 int tlen; 186 void __iomem *va; /* P3 diag */ 187 188 if (name == NULL) name = "???"; 189 190 if ((xres = xres_alloc()) != NULL) { 191 tack = xres->xname; 192 res = &xres->xres; 193 } else { 194 if (!printed_full) { 195 printk("ioremap: done with statics, switching to malloc\n"); 196 printed_full = 1; 197 } 198 tlen = strlen(name); 199 tack = kmalloc(sizeof (struct resource) + tlen + 1, GFP_KERNEL); 200 if (tack == NULL) return NULL; 201 memset(tack, 0, sizeof(struct resource)); 202 res = (struct resource *) tack; 203 tack += sizeof (struct resource); 204 } 205 206 strlcpy(tack, name, XNMLN+1); 207 res->name = tack; 208 209 va = _sparc_ioremap(res, busno, phys, size); 210 /* printk("ioremap(0x%x:%08lx[0x%lx])=%p\n", busno, phys, size, va); */ /* P3 diag */ 211 return va; 212 } 213 214 /* 215 */ 216 static void __iomem * 217 _sparc_ioremap(struct resource *res, u32 bus, u32 pa, int sz) 218 { 219 unsigned long offset = ((unsigned long) pa) & (~PAGE_MASK); 220 221 if (allocate_resource(&sparc_iomap, res, 222 (offset + sz + PAGE_SIZE-1) & PAGE_MASK, 223 sparc_iomap.start, sparc_iomap.end, PAGE_SIZE, NULL, NULL) != 0) { 224 /* Usually we cannot see printks in this case. */ 225 prom_printf("alloc_io_res(%s): cannot occupy\n", 226 (res->name != NULL)? res->name: "???"); 227 prom_halt(); 228 } 229 230 pa &= PAGE_MASK; 231 srmmu_mapiorange(bus, pa, res->start, resource_size(res)); 232 233 return (void __iomem *)(unsigned long)(res->start + offset); 234 } 235 236 /* 237 * Complementary to _sparc_ioremap(). 238 */ 239 static void _sparc_free_io(struct resource *res) 240 { 241 unsigned long plen; 242 243 plen = resource_size(res); 244 BUG_ON((plen & (PAGE_SIZE-1)) != 0); 245 srmmu_unmapiorange(res->start, plen); 246 release_resource(res); 247 } 248 249 #ifdef CONFIG_SBUS 250 251 void sbus_set_sbus64(struct device *dev, int x) 252 { 253 printk("sbus_set_sbus64: unsupported\n"); 254 } 255 EXPORT_SYMBOL(sbus_set_sbus64); 256 257 /* 258 * Allocate a chunk of memory suitable for DMA. 259 * Typically devices use them for control blocks. 260 * CPU may access them without any explicit flushing. 261 */ 262 static void *sbus_alloc_coherent(struct device *dev, size_t len, 263 dma_addr_t *dma_addrp, gfp_t gfp, 264 unsigned long attrs) 265 { 266 struct platform_device *op = to_platform_device(dev); 267 unsigned long len_total = PAGE_ALIGN(len); 268 unsigned long va; 269 struct resource *res; 270 int order; 271 272 /* XXX why are some lengths signed, others unsigned? */ 273 if (len <= 0) { 274 return NULL; 275 } 276 /* XXX So what is maxphys for us and how do drivers know it? */ 277 if (len > 256*1024) { /* __get_free_pages() limit */ 278 return NULL; 279 } 280 281 order = get_order(len_total); 282 va = __get_free_pages(gfp, order); 283 if (va == 0) 284 goto err_nopages; 285 286 if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL) 287 goto err_nomem; 288 289 if (allocate_resource(&_sparc_dvma, res, len_total, 290 _sparc_dvma.start, _sparc_dvma.end, PAGE_SIZE, NULL, NULL) != 0) { 291 printk("sbus_alloc_consistent: cannot occupy 0x%lx", len_total); 292 goto err_nova; 293 } 294 295 // XXX The sbus_map_dma_area does this for us below, see comments. 296 // srmmu_mapiorange(0, virt_to_phys(va), res->start, len_total); 297 /* 298 * XXX That's where sdev would be used. Currently we load 299 * all iommu tables with the same translations. 300 */ 301 if (sbus_map_dma_area(dev, dma_addrp, va, res->start, len_total) != 0) 302 goto err_noiommu; 303 304 res->name = op->dev.of_node->name; 305 306 return (void *)(unsigned long)res->start; 307 308 err_noiommu: 309 release_resource(res); 310 err_nova: 311 kfree(res); 312 err_nomem: 313 free_pages(va, order); 314 err_nopages: 315 return NULL; 316 } 317 318 static void sbus_free_coherent(struct device *dev, size_t n, void *p, 319 dma_addr_t ba, unsigned long attrs) 320 { 321 struct resource *res; 322 struct page *pgv; 323 324 if ((res = lookup_resource(&_sparc_dvma, 325 (unsigned long)p)) == NULL) { 326 printk("sbus_free_consistent: cannot free %p\n", p); 327 return; 328 } 329 330 if (((unsigned long)p & (PAGE_SIZE-1)) != 0) { 331 printk("sbus_free_consistent: unaligned va %p\n", p); 332 return; 333 } 334 335 n = PAGE_ALIGN(n); 336 if (resource_size(res) != n) { 337 printk("sbus_free_consistent: region 0x%lx asked 0x%zx\n", 338 (long)resource_size(res), n); 339 return; 340 } 341 342 release_resource(res); 343 kfree(res); 344 345 pgv = virt_to_page(p); 346 sbus_unmap_dma_area(dev, ba, n); 347 348 __free_pages(pgv, get_order(n)); 349 } 350 351 /* 352 * Map a chunk of memory so that devices can see it. 353 * CPU view of this memory may be inconsistent with 354 * a device view and explicit flushing is necessary. 355 */ 356 static dma_addr_t sbus_map_page(struct device *dev, struct page *page, 357 unsigned long offset, size_t len, 358 enum dma_data_direction dir, 359 unsigned long attrs) 360 { 361 void *va = page_address(page) + offset; 362 363 /* XXX why are some lengths signed, others unsigned? */ 364 if (len <= 0) { 365 return 0; 366 } 367 /* XXX So what is maxphys for us and how do drivers know it? */ 368 if (len > 256*1024) { /* __get_free_pages() limit */ 369 return 0; 370 } 371 return mmu_get_scsi_one(dev, va, len); 372 } 373 374 static void sbus_unmap_page(struct device *dev, dma_addr_t ba, size_t n, 375 enum dma_data_direction dir, unsigned long attrs) 376 { 377 mmu_release_scsi_one(dev, ba, n); 378 } 379 380 static int sbus_map_sg(struct device *dev, struct scatterlist *sg, int n, 381 enum dma_data_direction dir, unsigned long attrs) 382 { 383 mmu_get_scsi_sgl(dev, sg, n); 384 return n; 385 } 386 387 static void sbus_unmap_sg(struct device *dev, struct scatterlist *sg, int n, 388 enum dma_data_direction dir, unsigned long attrs) 389 { 390 mmu_release_scsi_sgl(dev, sg, n); 391 } 392 393 static void sbus_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 394 int n, enum dma_data_direction dir) 395 { 396 BUG(); 397 } 398 399 static void sbus_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 400 int n, enum dma_data_direction dir) 401 { 402 BUG(); 403 } 404 405 static int sbus_dma_supported(struct device *dev, u64 mask) 406 { 407 return 0; 408 } 409 410 static const struct dma_map_ops sbus_dma_ops = { 411 .alloc = sbus_alloc_coherent, 412 .free = sbus_free_coherent, 413 .map_page = sbus_map_page, 414 .unmap_page = sbus_unmap_page, 415 .map_sg = sbus_map_sg, 416 .unmap_sg = sbus_unmap_sg, 417 .sync_sg_for_cpu = sbus_sync_sg_for_cpu, 418 .sync_sg_for_device = sbus_sync_sg_for_device, 419 .dma_supported = sbus_dma_supported, 420 }; 421 422 static int __init sparc_register_ioport(void) 423 { 424 register_proc_sparc_ioport(); 425 426 return 0; 427 } 428 429 arch_initcall(sparc_register_ioport); 430 431 #endif /* CONFIG_SBUS */ 432 433 434 /* Allocate and map kernel buffer using consistent mode DMA for a device. 435 * hwdev should be valid struct pci_dev pointer for PCI devices. 436 */ 437 static void *pci32_alloc_coherent(struct device *dev, size_t len, 438 dma_addr_t *pba, gfp_t gfp, 439 unsigned long attrs) 440 { 441 unsigned long len_total = PAGE_ALIGN(len); 442 void *va; 443 struct resource *res; 444 int order; 445 446 if (len == 0) { 447 return NULL; 448 } 449 if (len > 256*1024) { /* __get_free_pages() limit */ 450 return NULL; 451 } 452 453 order = get_order(len_total); 454 va = (void *) __get_free_pages(gfp, order); 455 if (va == NULL) { 456 printk("pci_alloc_consistent: no %ld pages\n", len_total>>PAGE_SHIFT); 457 goto err_nopages; 458 } 459 460 if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL) { 461 printk("pci_alloc_consistent: no core\n"); 462 goto err_nomem; 463 } 464 465 if (allocate_resource(&_sparc_dvma, res, len_total, 466 _sparc_dvma.start, _sparc_dvma.end, PAGE_SIZE, NULL, NULL) != 0) { 467 printk("pci_alloc_consistent: cannot occupy 0x%lx", len_total); 468 goto err_nova; 469 } 470 srmmu_mapiorange(0, virt_to_phys(va), res->start, len_total); 471 472 *pba = virt_to_phys(va); /* equals virt_to_bus (R.I.P.) for us. */ 473 return (void *) res->start; 474 475 err_nova: 476 kfree(res); 477 err_nomem: 478 free_pages((unsigned long)va, order); 479 err_nopages: 480 return NULL; 481 } 482 483 /* Free and unmap a consistent DMA buffer. 484 * cpu_addr is what was returned from pci_alloc_consistent, 485 * size must be the same as what as passed into pci_alloc_consistent, 486 * and likewise dma_addr must be the same as what *dma_addrp was set to. 487 * 488 * References to the memory and mappings associated with cpu_addr/dma_addr 489 * past this call are illegal. 490 */ 491 static void pci32_free_coherent(struct device *dev, size_t n, void *p, 492 dma_addr_t ba, unsigned long attrs) 493 { 494 struct resource *res; 495 496 if ((res = lookup_resource(&_sparc_dvma, 497 (unsigned long)p)) == NULL) { 498 printk("pci_free_consistent: cannot free %p\n", p); 499 return; 500 } 501 502 if (((unsigned long)p & (PAGE_SIZE-1)) != 0) { 503 printk("pci_free_consistent: unaligned va %p\n", p); 504 return; 505 } 506 507 n = PAGE_ALIGN(n); 508 if (resource_size(res) != n) { 509 printk("pci_free_consistent: region 0x%lx asked 0x%lx\n", 510 (long)resource_size(res), (long)n); 511 return; 512 } 513 514 dma_make_coherent(ba, n); 515 srmmu_unmapiorange((unsigned long)p, n); 516 517 release_resource(res); 518 kfree(res); 519 free_pages((unsigned long)phys_to_virt(ba), get_order(n)); 520 } 521 522 /* 523 * Same as pci_map_single, but with pages. 524 */ 525 static dma_addr_t pci32_map_page(struct device *dev, struct page *page, 526 unsigned long offset, size_t size, 527 enum dma_data_direction dir, 528 unsigned long attrs) 529 { 530 /* IIep is write-through, not flushing. */ 531 return page_to_phys(page) + offset; 532 } 533 534 static void pci32_unmap_page(struct device *dev, dma_addr_t ba, size_t size, 535 enum dma_data_direction dir, unsigned long attrs) 536 { 537 if (dir != PCI_DMA_TODEVICE && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 538 dma_make_coherent(ba, PAGE_ALIGN(size)); 539 } 540 541 /* Map a set of buffers described by scatterlist in streaming 542 * mode for DMA. This is the scatter-gather version of the 543 * above pci_map_single interface. Here the scatter gather list 544 * elements are each tagged with the appropriate dma address 545 * and length. They are obtained via sg_dma_{address,length}(SG). 546 * 547 * NOTE: An implementation may be able to use a smaller number of 548 * DMA address/length pairs than there are SG table elements. 549 * (for example via virtual mapping capabilities) 550 * The routine returns the number of addr/length pairs actually 551 * used, at most nents. 552 * 553 * Device ownership issues as mentioned above for pci_map_single are 554 * the same here. 555 */ 556 static int pci32_map_sg(struct device *device, struct scatterlist *sgl, 557 int nents, enum dma_data_direction dir, 558 unsigned long attrs) 559 { 560 struct scatterlist *sg; 561 int n; 562 563 /* IIep is write-through, not flushing. */ 564 for_each_sg(sgl, sg, nents, n) { 565 sg->dma_address = sg_phys(sg); 566 sg->dma_length = sg->length; 567 } 568 return nents; 569 } 570 571 /* Unmap a set of streaming mode DMA translations. 572 * Again, cpu read rules concerning calls here are the same as for 573 * pci_unmap_single() above. 574 */ 575 static void pci32_unmap_sg(struct device *dev, struct scatterlist *sgl, 576 int nents, enum dma_data_direction dir, 577 unsigned long attrs) 578 { 579 struct scatterlist *sg; 580 int n; 581 582 if (dir != PCI_DMA_TODEVICE && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) { 583 for_each_sg(sgl, sg, nents, n) { 584 dma_make_coherent(sg_phys(sg), PAGE_ALIGN(sg->length)); 585 } 586 } 587 } 588 589 /* Make physical memory consistent for a single 590 * streaming mode DMA translation before or after a transfer. 591 * 592 * If you perform a pci_map_single() but wish to interrogate the 593 * buffer using the cpu, yet do not wish to teardown the PCI dma 594 * mapping, you must call this function before doing so. At the 595 * next point you give the PCI dma address back to the card, you 596 * must first perform a pci_dma_sync_for_device, and then the 597 * device again owns the buffer. 598 */ 599 static void pci32_sync_single_for_cpu(struct device *dev, dma_addr_t ba, 600 size_t size, enum dma_data_direction dir) 601 { 602 if (dir != PCI_DMA_TODEVICE) { 603 dma_make_coherent(ba, PAGE_ALIGN(size)); 604 } 605 } 606 607 static void pci32_sync_single_for_device(struct device *dev, dma_addr_t ba, 608 size_t size, enum dma_data_direction dir) 609 { 610 if (dir != PCI_DMA_TODEVICE) { 611 dma_make_coherent(ba, PAGE_ALIGN(size)); 612 } 613 } 614 615 /* Make physical memory consistent for a set of streaming 616 * mode DMA translations after a transfer. 617 * 618 * The same as pci_dma_sync_single_* but for a scatter-gather list, 619 * same rules and usage. 620 */ 621 static void pci32_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl, 622 int nents, enum dma_data_direction dir) 623 { 624 struct scatterlist *sg; 625 int n; 626 627 if (dir != PCI_DMA_TODEVICE) { 628 for_each_sg(sgl, sg, nents, n) { 629 dma_make_coherent(sg_phys(sg), PAGE_ALIGN(sg->length)); 630 } 631 } 632 } 633 634 static void pci32_sync_sg_for_device(struct device *device, struct scatterlist *sgl, 635 int nents, enum dma_data_direction dir) 636 { 637 struct scatterlist *sg; 638 int n; 639 640 if (dir != PCI_DMA_TODEVICE) { 641 for_each_sg(sgl, sg, nents, n) { 642 dma_make_coherent(sg_phys(sg), PAGE_ALIGN(sg->length)); 643 } 644 } 645 } 646 647 /* note: leon re-uses pci32_dma_ops */ 648 const struct dma_map_ops pci32_dma_ops = { 649 .alloc = pci32_alloc_coherent, 650 .free = pci32_free_coherent, 651 .map_page = pci32_map_page, 652 .unmap_page = pci32_unmap_page, 653 .map_sg = pci32_map_sg, 654 .unmap_sg = pci32_unmap_sg, 655 .sync_single_for_cpu = pci32_sync_single_for_cpu, 656 .sync_single_for_device = pci32_sync_single_for_device, 657 .sync_sg_for_cpu = pci32_sync_sg_for_cpu, 658 .sync_sg_for_device = pci32_sync_sg_for_device, 659 }; 660 EXPORT_SYMBOL(pci32_dma_ops); 661 662 const struct dma_map_ops *dma_ops = &sbus_dma_ops; 663 EXPORT_SYMBOL(dma_ops); 664 665 #ifdef CONFIG_PROC_FS 666 667 static int sparc_io_proc_show(struct seq_file *m, void *v) 668 { 669 struct resource *root = m->private, *r; 670 const char *nm; 671 672 for (r = root->child; r != NULL; r = r->sibling) { 673 if ((nm = r->name) == NULL) nm = "???"; 674 seq_printf(m, "%016llx-%016llx: %s\n", 675 (unsigned long long)r->start, 676 (unsigned long long)r->end, nm); 677 } 678 679 return 0; 680 } 681 #endif /* CONFIG_PROC_FS */ 682 683 static void register_proc_sparc_ioport(void) 684 { 685 #ifdef CONFIG_PROC_FS 686 proc_create_single_data("io_map", 0, NULL, sparc_io_proc_show, 687 &sparc_iomap); 688 proc_create_single_data("dvma_map", 0, NULL, sparc_io_proc_show, 689 &_sparc_dvma); 690 #endif 691 } 692