xref: /openbmc/linux/arch/sparc/kernel/ioport.c (revision addee42a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * ioport.c:  Simple io mapping allocator.
4  *
5  * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
6  * Copyright (C) 1995 Miguel de Icaza (miguel@nuclecu.unam.mx)
7  *
8  * 1996: sparc_free_io, 1999: ioremap()/iounmap() by Pete Zaitcev.
9  *
10  * 2000/01/29
11  * <rth> zait: as long as pci_alloc_consistent produces something addressable,
12  *	things are ok.
13  * <zaitcev> rth: no, it is relevant, because get_free_pages returns you a
14  *	pointer into the big page mapping
15  * <rth> zait: so what?
16  * <rth> zait: remap_it_my_way(virt_to_phys(get_free_page()))
17  * <zaitcev> Hmm
18  * <zaitcev> Suppose I did this remap_it_my_way(virt_to_phys(get_free_page())).
19  *	So far so good.
20  * <zaitcev> Now, driver calls pci_free_consistent(with result of
21  *	remap_it_my_way()).
22  * <zaitcev> How do you find the address to pass to free_pages()?
23  * <rth> zait: walk the page tables?  It's only two or three level after all.
24  * <rth> zait: you have to walk them anyway to remove the mapping.
25  * <zaitcev> Hmm
26  * <zaitcev> Sounds reasonable
27  */
28 
29 #include <linux/module.h>
30 #include <linux/sched.h>
31 #include <linux/kernel.h>
32 #include <linux/errno.h>
33 #include <linux/types.h>
34 #include <linux/ioport.h>
35 #include <linux/mm.h>
36 #include <linux/slab.h>
37 #include <linux/pci.h>		/* struct pci_dev */
38 #include <linux/proc_fs.h>
39 #include <linux/seq_file.h>
40 #include <linux/scatterlist.h>
41 #include <linux/of_device.h>
42 
43 #include <asm/io.h>
44 #include <asm/vaddrs.h>
45 #include <asm/oplib.h>
46 #include <asm/prom.h>
47 #include <asm/page.h>
48 #include <asm/pgalloc.h>
49 #include <asm/dma.h>
50 #include <asm/iommu.h>
51 #include <asm/io-unit.h>
52 #include <asm/leon.h>
53 
54 const struct sparc32_dma_ops *sparc32_dma_ops;
55 
56 /* This function must make sure that caches and memory are coherent after DMA
57  * On LEON systems without cache snooping it flushes the entire D-CACHE.
58  */
59 static inline void dma_make_coherent(unsigned long pa, unsigned long len)
60 {
61 	if (sparc_cpu_model == sparc_leon) {
62 		if (!sparc_leon3_snooping_enabled())
63 			leon_flush_dcache_all();
64 	}
65 }
66 
67 static void __iomem *_sparc_ioremap(struct resource *res, u32 bus, u32 pa, int sz);
68 static void __iomem *_sparc_alloc_io(unsigned int busno, unsigned long phys,
69     unsigned long size, char *name);
70 static void _sparc_free_io(struct resource *res);
71 
72 static void register_proc_sparc_ioport(void);
73 
74 /* This points to the next to use virtual memory for DVMA mappings */
75 static struct resource _sparc_dvma = {
76 	.name = "sparc_dvma", .start = DVMA_VADDR, .end = DVMA_END - 1
77 };
78 /* This points to the start of I/O mappings, cluable from outside. */
79 /*ext*/ struct resource sparc_iomap = {
80 	.name = "sparc_iomap", .start = IOBASE_VADDR, .end = IOBASE_END - 1
81 };
82 
83 /*
84  * Our mini-allocator...
85  * Boy this is gross! We need it because we must map I/O for
86  * timers and interrupt controller before the kmalloc is available.
87  */
88 
89 #define XNMLN  15
90 #define XNRES  10	/* SS-10 uses 8 */
91 
92 struct xresource {
93 	struct resource xres;	/* Must be first */
94 	int xflag;		/* 1 == used */
95 	char xname[XNMLN+1];
96 };
97 
98 static struct xresource xresv[XNRES];
99 
100 static struct xresource *xres_alloc(void) {
101 	struct xresource *xrp;
102 	int n;
103 
104 	xrp = xresv;
105 	for (n = 0; n < XNRES; n++) {
106 		if (xrp->xflag == 0) {
107 			xrp->xflag = 1;
108 			return xrp;
109 		}
110 		xrp++;
111 	}
112 	return NULL;
113 }
114 
115 static void xres_free(struct xresource *xrp) {
116 	xrp->xflag = 0;
117 }
118 
119 /*
120  * These are typically used in PCI drivers
121  * which are trying to be cross-platform.
122  *
123  * Bus type is always zero on IIep.
124  */
125 void __iomem *ioremap(phys_addr_t offset, size_t size)
126 {
127 	char name[14];
128 
129 	sprintf(name, "phys_%08x", (u32)offset);
130 	return _sparc_alloc_io(0, (unsigned long)offset, size, name);
131 }
132 EXPORT_SYMBOL(ioremap);
133 
134 /*
135  * Complementary to ioremap().
136  */
137 void iounmap(volatile void __iomem *virtual)
138 {
139 	unsigned long vaddr = (unsigned long) virtual & PAGE_MASK;
140 	struct resource *res;
141 
142 	/*
143 	 * XXX Too slow. Can have 8192 DVMA pages on sun4m in the worst case.
144 	 * This probably warrants some sort of hashing.
145 	*/
146 	if ((res = lookup_resource(&sparc_iomap, vaddr)) == NULL) {
147 		printk("free_io/iounmap: cannot free %lx\n", vaddr);
148 		return;
149 	}
150 	_sparc_free_io(res);
151 
152 	if ((char *)res >= (char*)xresv && (char *)res < (char *)&xresv[XNRES]) {
153 		xres_free((struct xresource *)res);
154 	} else {
155 		kfree(res);
156 	}
157 }
158 EXPORT_SYMBOL(iounmap);
159 
160 void __iomem *of_ioremap(struct resource *res, unsigned long offset,
161 			 unsigned long size, char *name)
162 {
163 	return _sparc_alloc_io(res->flags & 0xF,
164 			       res->start + offset,
165 			       size, name);
166 }
167 EXPORT_SYMBOL(of_ioremap);
168 
169 void of_iounmap(struct resource *res, void __iomem *base, unsigned long size)
170 {
171 	iounmap(base);
172 }
173 EXPORT_SYMBOL(of_iounmap);
174 
175 /*
176  * Meat of mapping
177  */
178 static void __iomem *_sparc_alloc_io(unsigned int busno, unsigned long phys,
179     unsigned long size, char *name)
180 {
181 	static int printed_full;
182 	struct xresource *xres;
183 	struct resource *res;
184 	char *tack;
185 	int tlen;
186 	void __iomem *va;	/* P3 diag */
187 
188 	if (name == NULL) name = "???";
189 
190 	if ((xres = xres_alloc()) != NULL) {
191 		tack = xres->xname;
192 		res = &xres->xres;
193 	} else {
194 		if (!printed_full) {
195 			printk("ioremap: done with statics, switching to malloc\n");
196 			printed_full = 1;
197 		}
198 		tlen = strlen(name);
199 		tack = kmalloc(sizeof (struct resource) + tlen + 1, GFP_KERNEL);
200 		if (tack == NULL) return NULL;
201 		memset(tack, 0, sizeof(struct resource));
202 		res = (struct resource *) tack;
203 		tack += sizeof (struct resource);
204 	}
205 
206 	strlcpy(tack, name, XNMLN+1);
207 	res->name = tack;
208 
209 	va = _sparc_ioremap(res, busno, phys, size);
210 	/* printk("ioremap(0x%x:%08lx[0x%lx])=%p\n", busno, phys, size, va); */ /* P3 diag */
211 	return va;
212 }
213 
214 /*
215  */
216 static void __iomem *
217 _sparc_ioremap(struct resource *res, u32 bus, u32 pa, int sz)
218 {
219 	unsigned long offset = ((unsigned long) pa) & (~PAGE_MASK);
220 
221 	if (allocate_resource(&sparc_iomap, res,
222 	    (offset + sz + PAGE_SIZE-1) & PAGE_MASK,
223 	    sparc_iomap.start, sparc_iomap.end, PAGE_SIZE, NULL, NULL) != 0) {
224 		/* Usually we cannot see printks in this case. */
225 		prom_printf("alloc_io_res(%s): cannot occupy\n",
226 		    (res->name != NULL)? res->name: "???");
227 		prom_halt();
228 	}
229 
230 	pa &= PAGE_MASK;
231 	srmmu_mapiorange(bus, pa, res->start, resource_size(res));
232 
233 	return (void __iomem *)(unsigned long)(res->start + offset);
234 }
235 
236 /*
237  * Complementary to _sparc_ioremap().
238  */
239 static void _sparc_free_io(struct resource *res)
240 {
241 	unsigned long plen;
242 
243 	plen = resource_size(res);
244 	BUG_ON((plen & (PAGE_SIZE-1)) != 0);
245 	srmmu_unmapiorange(res->start, plen);
246 	release_resource(res);
247 }
248 
249 #ifdef CONFIG_SBUS
250 
251 void sbus_set_sbus64(struct device *dev, int x)
252 {
253 	printk("sbus_set_sbus64: unsupported\n");
254 }
255 EXPORT_SYMBOL(sbus_set_sbus64);
256 
257 /*
258  * Allocate a chunk of memory suitable for DMA.
259  * Typically devices use them for control blocks.
260  * CPU may access them without any explicit flushing.
261  */
262 static void *sbus_alloc_coherent(struct device *dev, size_t len,
263 				 dma_addr_t *dma_addrp, gfp_t gfp,
264 				 unsigned long attrs)
265 {
266 	struct platform_device *op = to_platform_device(dev);
267 	unsigned long len_total = PAGE_ALIGN(len);
268 	unsigned long va;
269 	struct resource *res;
270 	int order;
271 
272 	/* XXX why are some lengths signed, others unsigned? */
273 	if (len <= 0) {
274 		return NULL;
275 	}
276 	/* XXX So what is maxphys for us and how do drivers know it? */
277 	if (len > 256*1024) {			/* __get_free_pages() limit */
278 		return NULL;
279 	}
280 
281 	order = get_order(len_total);
282 	va = __get_free_pages(gfp, order);
283 	if (va == 0)
284 		goto err_nopages;
285 
286 	if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL)
287 		goto err_nomem;
288 
289 	if (allocate_resource(&_sparc_dvma, res, len_total,
290 	    _sparc_dvma.start, _sparc_dvma.end, PAGE_SIZE, NULL, NULL) != 0) {
291 		printk("sbus_alloc_consistent: cannot occupy 0x%lx", len_total);
292 		goto err_nova;
293 	}
294 
295 	// XXX The sbus_map_dma_area does this for us below, see comments.
296 	// srmmu_mapiorange(0, virt_to_phys(va), res->start, len_total);
297 	/*
298 	 * XXX That's where sdev would be used. Currently we load
299 	 * all iommu tables with the same translations.
300 	 */
301 	if (sbus_map_dma_area(dev, dma_addrp, va, res->start, len_total) != 0)
302 		goto err_noiommu;
303 
304 	res->name = op->dev.of_node->name;
305 
306 	return (void *)(unsigned long)res->start;
307 
308 err_noiommu:
309 	release_resource(res);
310 err_nova:
311 	kfree(res);
312 err_nomem:
313 	free_pages(va, order);
314 err_nopages:
315 	return NULL;
316 }
317 
318 static void sbus_free_coherent(struct device *dev, size_t n, void *p,
319 			       dma_addr_t ba, unsigned long attrs)
320 {
321 	struct resource *res;
322 	struct page *pgv;
323 
324 	if ((res = lookup_resource(&_sparc_dvma,
325 	    (unsigned long)p)) == NULL) {
326 		printk("sbus_free_consistent: cannot free %p\n", p);
327 		return;
328 	}
329 
330 	if (((unsigned long)p & (PAGE_SIZE-1)) != 0) {
331 		printk("sbus_free_consistent: unaligned va %p\n", p);
332 		return;
333 	}
334 
335 	n = PAGE_ALIGN(n);
336 	if (resource_size(res) != n) {
337 		printk("sbus_free_consistent: region 0x%lx asked 0x%zx\n",
338 		    (long)resource_size(res), n);
339 		return;
340 	}
341 
342 	release_resource(res);
343 	kfree(res);
344 
345 	pgv = virt_to_page(p);
346 	sbus_unmap_dma_area(dev, ba, n);
347 
348 	__free_pages(pgv, get_order(n));
349 }
350 
351 /*
352  * Map a chunk of memory so that devices can see it.
353  * CPU view of this memory may be inconsistent with
354  * a device view and explicit flushing is necessary.
355  */
356 static dma_addr_t sbus_map_page(struct device *dev, struct page *page,
357 				unsigned long offset, size_t len,
358 				enum dma_data_direction dir,
359 				unsigned long attrs)
360 {
361 	void *va = page_address(page) + offset;
362 
363 	/* XXX why are some lengths signed, others unsigned? */
364 	if (len <= 0) {
365 		return 0;
366 	}
367 	/* XXX So what is maxphys for us and how do drivers know it? */
368 	if (len > 256*1024) {			/* __get_free_pages() limit */
369 		return 0;
370 	}
371 	return mmu_get_scsi_one(dev, va, len);
372 }
373 
374 static void sbus_unmap_page(struct device *dev, dma_addr_t ba, size_t n,
375 			    enum dma_data_direction dir, unsigned long attrs)
376 {
377 	mmu_release_scsi_one(dev, ba, n);
378 }
379 
380 static int sbus_map_sg(struct device *dev, struct scatterlist *sg, int n,
381 		       enum dma_data_direction dir, unsigned long attrs)
382 {
383 	mmu_get_scsi_sgl(dev, sg, n);
384 	return n;
385 }
386 
387 static void sbus_unmap_sg(struct device *dev, struct scatterlist *sg, int n,
388 			  enum dma_data_direction dir, unsigned long attrs)
389 {
390 	mmu_release_scsi_sgl(dev, sg, n);
391 }
392 
393 static void sbus_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
394 				 int n,	enum dma_data_direction dir)
395 {
396 	BUG();
397 }
398 
399 static void sbus_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
400 				    int n, enum dma_data_direction dir)
401 {
402 	BUG();
403 }
404 
405 static int sbus_dma_supported(struct device *dev, u64 mask)
406 {
407 	return 0;
408 }
409 
410 static const struct dma_map_ops sbus_dma_ops = {
411 	.alloc			= sbus_alloc_coherent,
412 	.free			= sbus_free_coherent,
413 	.map_page		= sbus_map_page,
414 	.unmap_page		= sbus_unmap_page,
415 	.map_sg			= sbus_map_sg,
416 	.unmap_sg		= sbus_unmap_sg,
417 	.sync_sg_for_cpu	= sbus_sync_sg_for_cpu,
418 	.sync_sg_for_device	= sbus_sync_sg_for_device,
419 	.dma_supported		= sbus_dma_supported,
420 };
421 
422 static int __init sparc_register_ioport(void)
423 {
424 	register_proc_sparc_ioport();
425 
426 	return 0;
427 }
428 
429 arch_initcall(sparc_register_ioport);
430 
431 #endif /* CONFIG_SBUS */
432 
433 
434 /* Allocate and map kernel buffer using consistent mode DMA for a device.
435  * hwdev should be valid struct pci_dev pointer for PCI devices.
436  */
437 static void *pci32_alloc_coherent(struct device *dev, size_t len,
438 				  dma_addr_t *pba, gfp_t gfp,
439 				  unsigned long attrs)
440 {
441 	unsigned long len_total = PAGE_ALIGN(len);
442 	void *va;
443 	struct resource *res;
444 	int order;
445 
446 	if (len == 0) {
447 		return NULL;
448 	}
449 	if (len > 256*1024) {			/* __get_free_pages() limit */
450 		return NULL;
451 	}
452 
453 	order = get_order(len_total);
454 	va = (void *) __get_free_pages(gfp, order);
455 	if (va == NULL) {
456 		printk("pci_alloc_consistent: no %ld pages\n", len_total>>PAGE_SHIFT);
457 		goto err_nopages;
458 	}
459 
460 	if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL) {
461 		printk("pci_alloc_consistent: no core\n");
462 		goto err_nomem;
463 	}
464 
465 	if (allocate_resource(&_sparc_dvma, res, len_total,
466 	    _sparc_dvma.start, _sparc_dvma.end, PAGE_SIZE, NULL, NULL) != 0) {
467 		printk("pci_alloc_consistent: cannot occupy 0x%lx", len_total);
468 		goto err_nova;
469 	}
470 	srmmu_mapiorange(0, virt_to_phys(va), res->start, len_total);
471 
472 	*pba = virt_to_phys(va); /* equals virt_to_bus (R.I.P.) for us. */
473 	return (void *) res->start;
474 
475 err_nova:
476 	kfree(res);
477 err_nomem:
478 	free_pages((unsigned long)va, order);
479 err_nopages:
480 	return NULL;
481 }
482 
483 /* Free and unmap a consistent DMA buffer.
484  * cpu_addr is what was returned from pci_alloc_consistent,
485  * size must be the same as what as passed into pci_alloc_consistent,
486  * and likewise dma_addr must be the same as what *dma_addrp was set to.
487  *
488  * References to the memory and mappings associated with cpu_addr/dma_addr
489  * past this call are illegal.
490  */
491 static void pci32_free_coherent(struct device *dev, size_t n, void *p,
492 				dma_addr_t ba, unsigned long attrs)
493 {
494 	struct resource *res;
495 
496 	if ((res = lookup_resource(&_sparc_dvma,
497 	    (unsigned long)p)) == NULL) {
498 		printk("pci_free_consistent: cannot free %p\n", p);
499 		return;
500 	}
501 
502 	if (((unsigned long)p & (PAGE_SIZE-1)) != 0) {
503 		printk("pci_free_consistent: unaligned va %p\n", p);
504 		return;
505 	}
506 
507 	n = PAGE_ALIGN(n);
508 	if (resource_size(res) != n) {
509 		printk("pci_free_consistent: region 0x%lx asked 0x%lx\n",
510 		    (long)resource_size(res), (long)n);
511 		return;
512 	}
513 
514 	dma_make_coherent(ba, n);
515 	srmmu_unmapiorange((unsigned long)p, n);
516 
517 	release_resource(res);
518 	kfree(res);
519 	free_pages((unsigned long)phys_to_virt(ba), get_order(n));
520 }
521 
522 /*
523  * Same as pci_map_single, but with pages.
524  */
525 static dma_addr_t pci32_map_page(struct device *dev, struct page *page,
526 				 unsigned long offset, size_t size,
527 				 enum dma_data_direction dir,
528 				 unsigned long attrs)
529 {
530 	/* IIep is write-through, not flushing. */
531 	return page_to_phys(page) + offset;
532 }
533 
534 static void pci32_unmap_page(struct device *dev, dma_addr_t ba, size_t size,
535 			     enum dma_data_direction dir, unsigned long attrs)
536 {
537 	if (dir != PCI_DMA_TODEVICE && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
538 		dma_make_coherent(ba, PAGE_ALIGN(size));
539 }
540 
541 /* Map a set of buffers described by scatterlist in streaming
542  * mode for DMA.  This is the scatter-gather version of the
543  * above pci_map_single interface.  Here the scatter gather list
544  * elements are each tagged with the appropriate dma address
545  * and length.  They are obtained via sg_dma_{address,length}(SG).
546  *
547  * NOTE: An implementation may be able to use a smaller number of
548  *       DMA address/length pairs than there are SG table elements.
549  *       (for example via virtual mapping capabilities)
550  *       The routine returns the number of addr/length pairs actually
551  *       used, at most nents.
552  *
553  * Device ownership issues as mentioned above for pci_map_single are
554  * the same here.
555  */
556 static int pci32_map_sg(struct device *device, struct scatterlist *sgl,
557 			int nents, enum dma_data_direction dir,
558 			unsigned long attrs)
559 {
560 	struct scatterlist *sg;
561 	int n;
562 
563 	/* IIep is write-through, not flushing. */
564 	for_each_sg(sgl, sg, nents, n) {
565 		sg->dma_address = sg_phys(sg);
566 		sg->dma_length = sg->length;
567 	}
568 	return nents;
569 }
570 
571 /* Unmap a set of streaming mode DMA translations.
572  * Again, cpu read rules concerning calls here are the same as for
573  * pci_unmap_single() above.
574  */
575 static void pci32_unmap_sg(struct device *dev, struct scatterlist *sgl,
576 			   int nents, enum dma_data_direction dir,
577 			   unsigned long attrs)
578 {
579 	struct scatterlist *sg;
580 	int n;
581 
582 	if (dir != PCI_DMA_TODEVICE && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) {
583 		for_each_sg(sgl, sg, nents, n) {
584 			dma_make_coherent(sg_phys(sg), PAGE_ALIGN(sg->length));
585 		}
586 	}
587 }
588 
589 /* Make physical memory consistent for a single
590  * streaming mode DMA translation before or after a transfer.
591  *
592  * If you perform a pci_map_single() but wish to interrogate the
593  * buffer using the cpu, yet do not wish to teardown the PCI dma
594  * mapping, you must call this function before doing so.  At the
595  * next point you give the PCI dma address back to the card, you
596  * must first perform a pci_dma_sync_for_device, and then the
597  * device again owns the buffer.
598  */
599 static void pci32_sync_single_for_cpu(struct device *dev, dma_addr_t ba,
600 				      size_t size, enum dma_data_direction dir)
601 {
602 	if (dir != PCI_DMA_TODEVICE) {
603 		dma_make_coherent(ba, PAGE_ALIGN(size));
604 	}
605 }
606 
607 static void pci32_sync_single_for_device(struct device *dev, dma_addr_t ba,
608 					 size_t size, enum dma_data_direction dir)
609 {
610 	if (dir != PCI_DMA_TODEVICE) {
611 		dma_make_coherent(ba, PAGE_ALIGN(size));
612 	}
613 }
614 
615 /* Make physical memory consistent for a set of streaming
616  * mode DMA translations after a transfer.
617  *
618  * The same as pci_dma_sync_single_* but for a scatter-gather list,
619  * same rules and usage.
620  */
621 static void pci32_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl,
622 				  int nents, enum dma_data_direction dir)
623 {
624 	struct scatterlist *sg;
625 	int n;
626 
627 	if (dir != PCI_DMA_TODEVICE) {
628 		for_each_sg(sgl, sg, nents, n) {
629 			dma_make_coherent(sg_phys(sg), PAGE_ALIGN(sg->length));
630 		}
631 	}
632 }
633 
634 static void pci32_sync_sg_for_device(struct device *device, struct scatterlist *sgl,
635 				     int nents, enum dma_data_direction dir)
636 {
637 	struct scatterlist *sg;
638 	int n;
639 
640 	if (dir != PCI_DMA_TODEVICE) {
641 		for_each_sg(sgl, sg, nents, n) {
642 			dma_make_coherent(sg_phys(sg), PAGE_ALIGN(sg->length));
643 		}
644 	}
645 }
646 
647 /* note: leon re-uses pci32_dma_ops */
648 const struct dma_map_ops pci32_dma_ops = {
649 	.alloc			= pci32_alloc_coherent,
650 	.free			= pci32_free_coherent,
651 	.map_page		= pci32_map_page,
652 	.unmap_page		= pci32_unmap_page,
653 	.map_sg			= pci32_map_sg,
654 	.unmap_sg		= pci32_unmap_sg,
655 	.sync_single_for_cpu	= pci32_sync_single_for_cpu,
656 	.sync_single_for_device	= pci32_sync_single_for_device,
657 	.sync_sg_for_cpu	= pci32_sync_sg_for_cpu,
658 	.sync_sg_for_device	= pci32_sync_sg_for_device,
659 };
660 EXPORT_SYMBOL(pci32_dma_ops);
661 
662 const struct dma_map_ops *dma_ops = &sbus_dma_ops;
663 EXPORT_SYMBOL(dma_ops);
664 
665 #ifdef CONFIG_PROC_FS
666 
667 static int sparc_io_proc_show(struct seq_file *m, void *v)
668 {
669 	struct resource *root = m->private, *r;
670 	const char *nm;
671 
672 	for (r = root->child; r != NULL; r = r->sibling) {
673 		if ((nm = r->name) == NULL) nm = "???";
674 		seq_printf(m, "%016llx-%016llx: %s\n",
675 				(unsigned long long)r->start,
676 				(unsigned long long)r->end, nm);
677 	}
678 
679 	return 0;
680 }
681 
682 static int sparc_io_proc_open(struct inode *inode, struct file *file)
683 {
684 	return single_open(file, sparc_io_proc_show, PDE_DATA(inode));
685 }
686 
687 static const struct file_operations sparc_io_proc_fops = {
688 	.owner		= THIS_MODULE,
689 	.open		= sparc_io_proc_open,
690 	.read		= seq_read,
691 	.llseek		= seq_lseek,
692 	.release	= single_release,
693 };
694 #endif /* CONFIG_PROC_FS */
695 
696 static void register_proc_sparc_ioport(void)
697 {
698 #ifdef CONFIG_PROC_FS
699 	proc_create_data("io_map", 0, NULL, &sparc_io_proc_fops, &sparc_iomap);
700 	proc_create_data("dvma_map", 0, NULL, &sparc_io_proc_fops, &_sparc_dvma);
701 #endif
702 }
703