1 /* 2 * ioport.c: Simple io mapping allocator. 3 * 4 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) 5 * Copyright (C) 1995 Miguel de Icaza (miguel@nuclecu.unam.mx) 6 * 7 * 1996: sparc_free_io, 1999: ioremap()/iounmap() by Pete Zaitcev. 8 * 9 * 2000/01/29 10 * <rth> zait: as long as pci_alloc_consistent produces something addressable, 11 * things are ok. 12 * <zaitcev> rth: no, it is relevant, because get_free_pages returns you a 13 * pointer into the big page mapping 14 * <rth> zait: so what? 15 * <rth> zait: remap_it_my_way(virt_to_phys(get_free_page())) 16 * <zaitcev> Hmm 17 * <zaitcev> Suppose I did this remap_it_my_way(virt_to_phys(get_free_page())). 18 * So far so good. 19 * <zaitcev> Now, driver calls pci_free_consistent(with result of 20 * remap_it_my_way()). 21 * <zaitcev> How do you find the address to pass to free_pages()? 22 * <rth> zait: walk the page tables? It's only two or three level after all. 23 * <rth> zait: you have to walk them anyway to remove the mapping. 24 * <zaitcev> Hmm 25 * <zaitcev> Sounds reasonable 26 */ 27 28 #include <linux/module.h> 29 #include <linux/sched.h> 30 #include <linux/kernel.h> 31 #include <linux/errno.h> 32 #include <linux/types.h> 33 #include <linux/ioport.h> 34 #include <linux/mm.h> 35 #include <linux/slab.h> 36 #include <linux/pci.h> /* struct pci_dev */ 37 #include <linux/proc_fs.h> 38 #include <linux/seq_file.h> 39 #include <linux/scatterlist.h> 40 #include <linux/of_device.h> 41 42 #include <asm/io.h> 43 #include <asm/vaddrs.h> 44 #include <asm/oplib.h> 45 #include <asm/prom.h> 46 #include <asm/page.h> 47 #include <asm/pgalloc.h> 48 #include <asm/dma.h> 49 #include <asm/iommu.h> 50 #include <asm/io-unit.h> 51 #include <asm/leon.h> 52 53 /* This function must make sure that caches and memory are coherent after DMA 54 * On LEON systems without cache snooping it flushes the entire D-CACHE. 55 */ 56 #ifndef CONFIG_SPARC_LEON 57 static inline void dma_make_coherent(unsigned long pa, unsigned long len) 58 { 59 } 60 #else 61 static inline void dma_make_coherent(unsigned long pa, unsigned long len) 62 { 63 if (!sparc_leon3_snooping_enabled()) 64 leon_flush_dcache_all(); 65 } 66 #endif 67 68 static void __iomem *_sparc_ioremap(struct resource *res, u32 bus, u32 pa, int sz); 69 static void __iomem *_sparc_alloc_io(unsigned int busno, unsigned long phys, 70 unsigned long size, char *name); 71 static void _sparc_free_io(struct resource *res); 72 73 static void register_proc_sparc_ioport(void); 74 75 /* This points to the next to use virtual memory for DVMA mappings */ 76 static struct resource _sparc_dvma = { 77 .name = "sparc_dvma", .start = DVMA_VADDR, .end = DVMA_END - 1 78 }; 79 /* This points to the start of I/O mappings, cluable from outside. */ 80 /*ext*/ struct resource sparc_iomap = { 81 .name = "sparc_iomap", .start = IOBASE_VADDR, .end = IOBASE_END - 1 82 }; 83 84 /* 85 * Our mini-allocator... 86 * Boy this is gross! We need it because we must map I/O for 87 * timers and interrupt controller before the kmalloc is available. 88 */ 89 90 #define XNMLN 15 91 #define XNRES 10 /* SS-10 uses 8 */ 92 93 struct xresource { 94 struct resource xres; /* Must be first */ 95 int xflag; /* 1 == used */ 96 char xname[XNMLN+1]; 97 }; 98 99 static struct xresource xresv[XNRES]; 100 101 static struct xresource *xres_alloc(void) { 102 struct xresource *xrp; 103 int n; 104 105 xrp = xresv; 106 for (n = 0; n < XNRES; n++) { 107 if (xrp->xflag == 0) { 108 xrp->xflag = 1; 109 return xrp; 110 } 111 xrp++; 112 } 113 return NULL; 114 } 115 116 static void xres_free(struct xresource *xrp) { 117 xrp->xflag = 0; 118 } 119 120 /* 121 * These are typically used in PCI drivers 122 * which are trying to be cross-platform. 123 * 124 * Bus type is always zero on IIep. 125 */ 126 void __iomem *ioremap(unsigned long offset, unsigned long size) 127 { 128 char name[14]; 129 130 sprintf(name, "phys_%08x", (u32)offset); 131 return _sparc_alloc_io(0, offset, size, name); 132 } 133 EXPORT_SYMBOL(ioremap); 134 135 /* 136 * Comlimentary to ioremap(). 137 */ 138 void iounmap(volatile void __iomem *virtual) 139 { 140 unsigned long vaddr = (unsigned long) virtual & PAGE_MASK; 141 struct resource *res; 142 143 /* 144 * XXX Too slow. Can have 8192 DVMA pages on sun4m in the worst case. 145 * This probably warrants some sort of hashing. 146 */ 147 if ((res = lookup_resource(&sparc_iomap, vaddr)) == NULL) { 148 printk("free_io/iounmap: cannot free %lx\n", vaddr); 149 return; 150 } 151 _sparc_free_io(res); 152 153 if ((char *)res >= (char*)xresv && (char *)res < (char *)&xresv[XNRES]) { 154 xres_free((struct xresource *)res); 155 } else { 156 kfree(res); 157 } 158 } 159 EXPORT_SYMBOL(iounmap); 160 161 void __iomem *of_ioremap(struct resource *res, unsigned long offset, 162 unsigned long size, char *name) 163 { 164 return _sparc_alloc_io(res->flags & 0xF, 165 res->start + offset, 166 size, name); 167 } 168 EXPORT_SYMBOL(of_ioremap); 169 170 void of_iounmap(struct resource *res, void __iomem *base, unsigned long size) 171 { 172 iounmap(base); 173 } 174 EXPORT_SYMBOL(of_iounmap); 175 176 /* 177 * Meat of mapping 178 */ 179 static void __iomem *_sparc_alloc_io(unsigned int busno, unsigned long phys, 180 unsigned long size, char *name) 181 { 182 static int printed_full; 183 struct xresource *xres; 184 struct resource *res; 185 char *tack; 186 int tlen; 187 void __iomem *va; /* P3 diag */ 188 189 if (name == NULL) name = "???"; 190 191 if ((xres = xres_alloc()) != 0) { 192 tack = xres->xname; 193 res = &xres->xres; 194 } else { 195 if (!printed_full) { 196 printk("ioremap: done with statics, switching to malloc\n"); 197 printed_full = 1; 198 } 199 tlen = strlen(name); 200 tack = kmalloc(sizeof (struct resource) + tlen + 1, GFP_KERNEL); 201 if (tack == NULL) return NULL; 202 memset(tack, 0, sizeof(struct resource)); 203 res = (struct resource *) tack; 204 tack += sizeof (struct resource); 205 } 206 207 strlcpy(tack, name, XNMLN+1); 208 res->name = tack; 209 210 va = _sparc_ioremap(res, busno, phys, size); 211 /* printk("ioremap(0x%x:%08lx[0x%lx])=%p\n", busno, phys, size, va); */ /* P3 diag */ 212 return va; 213 } 214 215 /* 216 */ 217 static void __iomem * 218 _sparc_ioremap(struct resource *res, u32 bus, u32 pa, int sz) 219 { 220 unsigned long offset = ((unsigned long) pa) & (~PAGE_MASK); 221 222 if (allocate_resource(&sparc_iomap, res, 223 (offset + sz + PAGE_SIZE-1) & PAGE_MASK, 224 sparc_iomap.start, sparc_iomap.end, PAGE_SIZE, NULL, NULL) != 0) { 225 /* Usually we cannot see printks in this case. */ 226 prom_printf("alloc_io_res(%s): cannot occupy\n", 227 (res->name != NULL)? res->name: "???"); 228 prom_halt(); 229 } 230 231 pa &= PAGE_MASK; 232 sparc_mapiorange(bus, pa, res->start, resource_size(res)); 233 234 return (void __iomem *)(unsigned long)(res->start + offset); 235 } 236 237 /* 238 * Comlimentary to _sparc_ioremap(). 239 */ 240 static void _sparc_free_io(struct resource *res) 241 { 242 unsigned long plen; 243 244 plen = resource_size(res); 245 BUG_ON((plen & (PAGE_SIZE-1)) != 0); 246 sparc_unmapiorange(res->start, plen); 247 release_resource(res); 248 } 249 250 #ifdef CONFIG_SBUS 251 252 void sbus_set_sbus64(struct device *dev, int x) 253 { 254 printk("sbus_set_sbus64: unsupported\n"); 255 } 256 EXPORT_SYMBOL(sbus_set_sbus64); 257 258 /* 259 * Allocate a chunk of memory suitable for DMA. 260 * Typically devices use them for control blocks. 261 * CPU may access them without any explicit flushing. 262 */ 263 static void *sbus_alloc_coherent(struct device *dev, size_t len, 264 dma_addr_t *dma_addrp, gfp_t gfp) 265 { 266 struct platform_device *op = to_platform_device(dev); 267 unsigned long len_total = PAGE_ALIGN(len); 268 unsigned long va; 269 struct resource *res; 270 int order; 271 272 /* XXX why are some lengths signed, others unsigned? */ 273 if (len <= 0) { 274 return NULL; 275 } 276 /* XXX So what is maxphys for us and how do drivers know it? */ 277 if (len > 256*1024) { /* __get_free_pages() limit */ 278 return NULL; 279 } 280 281 order = get_order(len_total); 282 if ((va = __get_free_pages(GFP_KERNEL|__GFP_COMP, order)) == 0) 283 goto err_nopages; 284 285 if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL) 286 goto err_nomem; 287 288 if (allocate_resource(&_sparc_dvma, res, len_total, 289 _sparc_dvma.start, _sparc_dvma.end, PAGE_SIZE, NULL, NULL) != 0) { 290 printk("sbus_alloc_consistent: cannot occupy 0x%lx", len_total); 291 goto err_nova; 292 } 293 294 // XXX The mmu_map_dma_area does this for us below, see comments. 295 // sparc_mapiorange(0, virt_to_phys(va), res->start, len_total); 296 /* 297 * XXX That's where sdev would be used. Currently we load 298 * all iommu tables with the same translations. 299 */ 300 if (mmu_map_dma_area(dev, dma_addrp, va, res->start, len_total) != 0) 301 goto err_noiommu; 302 303 res->name = op->dev.of_node->name; 304 305 return (void *)(unsigned long)res->start; 306 307 err_noiommu: 308 release_resource(res); 309 err_nova: 310 kfree(res); 311 err_nomem: 312 free_pages(va, order); 313 err_nopages: 314 return NULL; 315 } 316 317 static void sbus_free_coherent(struct device *dev, size_t n, void *p, 318 dma_addr_t ba) 319 { 320 struct resource *res; 321 struct page *pgv; 322 323 if ((res = lookup_resource(&_sparc_dvma, 324 (unsigned long)p)) == NULL) { 325 printk("sbus_free_consistent: cannot free %p\n", p); 326 return; 327 } 328 329 if (((unsigned long)p & (PAGE_SIZE-1)) != 0) { 330 printk("sbus_free_consistent: unaligned va %p\n", p); 331 return; 332 } 333 334 n = PAGE_ALIGN(n); 335 if (resource_size(res) != n) { 336 printk("sbus_free_consistent: region 0x%lx asked 0x%zx\n", 337 (long)resource_size(res), n); 338 return; 339 } 340 341 release_resource(res); 342 kfree(res); 343 344 pgv = virt_to_page(p); 345 mmu_unmap_dma_area(dev, ba, n); 346 347 __free_pages(pgv, get_order(n)); 348 } 349 350 /* 351 * Map a chunk of memory so that devices can see it. 352 * CPU view of this memory may be inconsistent with 353 * a device view and explicit flushing is necessary. 354 */ 355 static dma_addr_t sbus_map_page(struct device *dev, struct page *page, 356 unsigned long offset, size_t len, 357 enum dma_data_direction dir, 358 struct dma_attrs *attrs) 359 { 360 void *va = page_address(page) + offset; 361 362 /* XXX why are some lengths signed, others unsigned? */ 363 if (len <= 0) { 364 return 0; 365 } 366 /* XXX So what is maxphys for us and how do drivers know it? */ 367 if (len > 256*1024) { /* __get_free_pages() limit */ 368 return 0; 369 } 370 return mmu_get_scsi_one(dev, va, len); 371 } 372 373 static void sbus_unmap_page(struct device *dev, dma_addr_t ba, size_t n, 374 enum dma_data_direction dir, struct dma_attrs *attrs) 375 { 376 mmu_release_scsi_one(dev, ba, n); 377 } 378 379 static int sbus_map_sg(struct device *dev, struct scatterlist *sg, int n, 380 enum dma_data_direction dir, struct dma_attrs *attrs) 381 { 382 mmu_get_scsi_sgl(dev, sg, n); 383 384 /* 385 * XXX sparc64 can return a partial length here. sun4c should do this 386 * but it currently panics if it can't fulfill the request - Anton 387 */ 388 return n; 389 } 390 391 static void sbus_unmap_sg(struct device *dev, struct scatterlist *sg, int n, 392 enum dma_data_direction dir, struct dma_attrs *attrs) 393 { 394 mmu_release_scsi_sgl(dev, sg, n); 395 } 396 397 static void sbus_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 398 int n, enum dma_data_direction dir) 399 { 400 BUG(); 401 } 402 403 static void sbus_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 404 int n, enum dma_data_direction dir) 405 { 406 BUG(); 407 } 408 409 struct dma_map_ops sbus_dma_ops = { 410 .alloc_coherent = sbus_alloc_coherent, 411 .free_coherent = sbus_free_coherent, 412 .map_page = sbus_map_page, 413 .unmap_page = sbus_unmap_page, 414 .map_sg = sbus_map_sg, 415 .unmap_sg = sbus_unmap_sg, 416 .sync_sg_for_cpu = sbus_sync_sg_for_cpu, 417 .sync_sg_for_device = sbus_sync_sg_for_device, 418 }; 419 420 static int __init sparc_register_ioport(void) 421 { 422 register_proc_sparc_ioport(); 423 424 return 0; 425 } 426 427 arch_initcall(sparc_register_ioport); 428 429 #endif /* CONFIG_SBUS */ 430 431 432 /* LEON reuses PCI DMA ops */ 433 #if defined(CONFIG_PCI) || defined(CONFIG_SPARC_LEON) 434 435 /* Allocate and map kernel buffer using consistent mode DMA for a device. 436 * hwdev should be valid struct pci_dev pointer for PCI devices. 437 */ 438 static void *pci32_alloc_coherent(struct device *dev, size_t len, 439 dma_addr_t *pba, gfp_t gfp) 440 { 441 unsigned long len_total = PAGE_ALIGN(len); 442 void *va; 443 struct resource *res; 444 int order; 445 446 if (len == 0) { 447 return NULL; 448 } 449 if (len > 256*1024) { /* __get_free_pages() limit */ 450 return NULL; 451 } 452 453 order = get_order(len_total); 454 va = (void *) __get_free_pages(GFP_KERNEL, order); 455 if (va == NULL) { 456 printk("pci_alloc_consistent: no %ld pages\n", len_total>>PAGE_SHIFT); 457 goto err_nopages; 458 } 459 460 if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL) { 461 printk("pci_alloc_consistent: no core\n"); 462 goto err_nomem; 463 } 464 465 if (allocate_resource(&_sparc_dvma, res, len_total, 466 _sparc_dvma.start, _sparc_dvma.end, PAGE_SIZE, NULL, NULL) != 0) { 467 printk("pci_alloc_consistent: cannot occupy 0x%lx", len_total); 468 goto err_nova; 469 } 470 sparc_mapiorange(0, virt_to_phys(va), res->start, len_total); 471 472 *pba = virt_to_phys(va); /* equals virt_to_bus (R.I.P.) for us. */ 473 return (void *) res->start; 474 475 err_nova: 476 kfree(res); 477 err_nomem: 478 free_pages((unsigned long)va, order); 479 err_nopages: 480 return NULL; 481 } 482 483 /* Free and unmap a consistent DMA buffer. 484 * cpu_addr is what was returned from pci_alloc_consistent, 485 * size must be the same as what as passed into pci_alloc_consistent, 486 * and likewise dma_addr must be the same as what *dma_addrp was set to. 487 * 488 * References to the memory and mappings associated with cpu_addr/dma_addr 489 * past this call are illegal. 490 */ 491 static void pci32_free_coherent(struct device *dev, size_t n, void *p, 492 dma_addr_t ba) 493 { 494 struct resource *res; 495 496 if ((res = lookup_resource(&_sparc_dvma, 497 (unsigned long)p)) == NULL) { 498 printk("pci_free_consistent: cannot free %p\n", p); 499 return; 500 } 501 502 if (((unsigned long)p & (PAGE_SIZE-1)) != 0) { 503 printk("pci_free_consistent: unaligned va %p\n", p); 504 return; 505 } 506 507 n = PAGE_ALIGN(n); 508 if (resource_size(res) != n) { 509 printk("pci_free_consistent: region 0x%lx asked 0x%lx\n", 510 (long)resource_size(res), (long)n); 511 return; 512 } 513 514 dma_make_coherent(ba, n); 515 sparc_unmapiorange((unsigned long)p, n); 516 517 release_resource(res); 518 kfree(res); 519 free_pages((unsigned long)phys_to_virt(ba), get_order(n)); 520 } 521 522 /* 523 * Same as pci_map_single, but with pages. 524 */ 525 static dma_addr_t pci32_map_page(struct device *dev, struct page *page, 526 unsigned long offset, size_t size, 527 enum dma_data_direction dir, 528 struct dma_attrs *attrs) 529 { 530 /* IIep is write-through, not flushing. */ 531 return page_to_phys(page) + offset; 532 } 533 534 static void pci32_unmap_page(struct device *dev, dma_addr_t ba, size_t size, 535 enum dma_data_direction dir, struct dma_attrs *attrs) 536 { 537 if (dir != PCI_DMA_TODEVICE) 538 dma_make_coherent(ba, PAGE_ALIGN(size)); 539 } 540 541 /* Map a set of buffers described by scatterlist in streaming 542 * mode for DMA. This is the scather-gather version of the 543 * above pci_map_single interface. Here the scatter gather list 544 * elements are each tagged with the appropriate dma address 545 * and length. They are obtained via sg_dma_{address,length}(SG). 546 * 547 * NOTE: An implementation may be able to use a smaller number of 548 * DMA address/length pairs than there are SG table elements. 549 * (for example via virtual mapping capabilities) 550 * The routine returns the number of addr/length pairs actually 551 * used, at most nents. 552 * 553 * Device ownership issues as mentioned above for pci_map_single are 554 * the same here. 555 */ 556 static int pci32_map_sg(struct device *device, struct scatterlist *sgl, 557 int nents, enum dma_data_direction dir, 558 struct dma_attrs *attrs) 559 { 560 struct scatterlist *sg; 561 int n; 562 563 /* IIep is write-through, not flushing. */ 564 for_each_sg(sgl, sg, nents, n) { 565 sg->dma_address = sg_phys(sg); 566 sg->dma_length = sg->length; 567 } 568 return nents; 569 } 570 571 /* Unmap a set of streaming mode DMA translations. 572 * Again, cpu read rules concerning calls here are the same as for 573 * pci_unmap_single() above. 574 */ 575 static void pci32_unmap_sg(struct device *dev, struct scatterlist *sgl, 576 int nents, enum dma_data_direction dir, 577 struct dma_attrs *attrs) 578 { 579 struct scatterlist *sg; 580 int n; 581 582 if (dir != PCI_DMA_TODEVICE) { 583 for_each_sg(sgl, sg, nents, n) { 584 dma_make_coherent(sg_phys(sg), PAGE_ALIGN(sg->length)); 585 } 586 } 587 } 588 589 /* Make physical memory consistent for a single 590 * streaming mode DMA translation before or after a transfer. 591 * 592 * If you perform a pci_map_single() but wish to interrogate the 593 * buffer using the cpu, yet do not wish to teardown the PCI dma 594 * mapping, you must call this function before doing so. At the 595 * next point you give the PCI dma address back to the card, you 596 * must first perform a pci_dma_sync_for_device, and then the 597 * device again owns the buffer. 598 */ 599 static void pci32_sync_single_for_cpu(struct device *dev, dma_addr_t ba, 600 size_t size, enum dma_data_direction dir) 601 { 602 if (dir != PCI_DMA_TODEVICE) { 603 dma_make_coherent(ba, PAGE_ALIGN(size)); 604 } 605 } 606 607 static void pci32_sync_single_for_device(struct device *dev, dma_addr_t ba, 608 size_t size, enum dma_data_direction dir) 609 { 610 if (dir != PCI_DMA_TODEVICE) { 611 dma_make_coherent(ba, PAGE_ALIGN(size)); 612 } 613 } 614 615 /* Make physical memory consistent for a set of streaming 616 * mode DMA translations after a transfer. 617 * 618 * The same as pci_dma_sync_single_* but for a scatter-gather list, 619 * same rules and usage. 620 */ 621 static void pci32_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl, 622 int nents, enum dma_data_direction dir) 623 { 624 struct scatterlist *sg; 625 int n; 626 627 if (dir != PCI_DMA_TODEVICE) { 628 for_each_sg(sgl, sg, nents, n) { 629 dma_make_coherent(sg_phys(sg), PAGE_ALIGN(sg->length)); 630 } 631 } 632 } 633 634 static void pci32_sync_sg_for_device(struct device *device, struct scatterlist *sgl, 635 int nents, enum dma_data_direction dir) 636 { 637 struct scatterlist *sg; 638 int n; 639 640 if (dir != PCI_DMA_TODEVICE) { 641 for_each_sg(sgl, sg, nents, n) { 642 dma_make_coherent(sg_phys(sg), PAGE_ALIGN(sg->length)); 643 } 644 } 645 } 646 647 struct dma_map_ops pci32_dma_ops = { 648 .alloc_coherent = pci32_alloc_coherent, 649 .free_coherent = pci32_free_coherent, 650 .map_page = pci32_map_page, 651 .unmap_page = pci32_unmap_page, 652 .map_sg = pci32_map_sg, 653 .unmap_sg = pci32_unmap_sg, 654 .sync_single_for_cpu = pci32_sync_single_for_cpu, 655 .sync_single_for_device = pci32_sync_single_for_device, 656 .sync_sg_for_cpu = pci32_sync_sg_for_cpu, 657 .sync_sg_for_device = pci32_sync_sg_for_device, 658 }; 659 EXPORT_SYMBOL(pci32_dma_ops); 660 661 #endif /* CONFIG_PCI || CONFIG_SPARC_LEON */ 662 663 #ifdef CONFIG_SPARC_LEON 664 struct dma_map_ops *dma_ops = &pci32_dma_ops; 665 #elif defined(CONFIG_SBUS) 666 struct dma_map_ops *dma_ops = &sbus_dma_ops; 667 #endif 668 669 EXPORT_SYMBOL(dma_ops); 670 671 672 /* 673 * Return whether the given PCI device DMA address mask can be 674 * supported properly. For example, if your device can only drive the 675 * low 24-bits during PCI bus mastering, then you would pass 676 * 0x00ffffff as the mask to this function. 677 */ 678 int dma_supported(struct device *dev, u64 mask) 679 { 680 #ifdef CONFIG_PCI 681 if (dev->bus == &pci_bus_type) 682 return 1; 683 #endif 684 return 0; 685 } 686 EXPORT_SYMBOL(dma_supported); 687 688 #ifdef CONFIG_PROC_FS 689 690 static int sparc_io_proc_show(struct seq_file *m, void *v) 691 { 692 struct resource *root = m->private, *r; 693 const char *nm; 694 695 for (r = root->child; r != NULL; r = r->sibling) { 696 if ((nm = r->name) == 0) nm = "???"; 697 seq_printf(m, "%016llx-%016llx: %s\n", 698 (unsigned long long)r->start, 699 (unsigned long long)r->end, nm); 700 } 701 702 return 0; 703 } 704 705 static int sparc_io_proc_open(struct inode *inode, struct file *file) 706 { 707 return single_open(file, sparc_io_proc_show, PDE(inode)->data); 708 } 709 710 static const struct file_operations sparc_io_proc_fops = { 711 .owner = THIS_MODULE, 712 .open = sparc_io_proc_open, 713 .read = seq_read, 714 .llseek = seq_lseek, 715 .release = single_release, 716 }; 717 #endif /* CONFIG_PROC_FS */ 718 719 static void register_proc_sparc_ioport(void) 720 { 721 #ifdef CONFIG_PROC_FS 722 proc_create_data("io_map", 0, NULL, &sparc_io_proc_fops, &sparc_iomap); 723 proc_create_data("dvma_map", 0, NULL, &sparc_io_proc_fops, &_sparc_dvma); 724 #endif 725 } 726