1 /* 2 * ioport.c: Simple io mapping allocator. 3 * 4 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) 5 * Copyright (C) 1995 Miguel de Icaza (miguel@nuclecu.unam.mx) 6 * 7 * 1996: sparc_free_io, 1999: ioremap()/iounmap() by Pete Zaitcev. 8 * 9 * 2000/01/29 10 * <rth> zait: as long as pci_alloc_consistent produces something addressable, 11 * things are ok. 12 * <zaitcev> rth: no, it is relevant, because get_free_pages returns you a 13 * pointer into the big page mapping 14 * <rth> zait: so what? 15 * <rth> zait: remap_it_my_way(virt_to_phys(get_free_page())) 16 * <zaitcev> Hmm 17 * <zaitcev> Suppose I did this remap_it_my_way(virt_to_phys(get_free_page())). 18 * So far so good. 19 * <zaitcev> Now, driver calls pci_free_consistent(with result of 20 * remap_it_my_way()). 21 * <zaitcev> How do you find the address to pass to free_pages()? 22 * <rth> zait: walk the page tables? It's only two or three level after all. 23 * <rth> zait: you have to walk them anyway to remove the mapping. 24 * <zaitcev> Hmm 25 * <zaitcev> Sounds reasonable 26 */ 27 28 #include <linux/module.h> 29 #include <linux/sched.h> 30 #include <linux/kernel.h> 31 #include <linux/errno.h> 32 #include <linux/types.h> 33 #include <linux/ioport.h> 34 #include <linux/mm.h> 35 #include <linux/slab.h> 36 #include <linux/pci.h> /* struct pci_dev */ 37 #include <linux/proc_fs.h> 38 #include <linux/seq_file.h> 39 #include <linux/scatterlist.h> 40 #include <linux/of_device.h> 41 42 #include <asm/io.h> 43 #include <asm/vaddrs.h> 44 #include <asm/oplib.h> 45 #include <asm/prom.h> 46 #include <asm/page.h> 47 #include <asm/pgalloc.h> 48 #include <asm/dma.h> 49 #include <asm/iommu.h> 50 #include <asm/io-unit.h> 51 #include <asm/leon.h> 52 53 const struct sparc32_dma_ops *sparc32_dma_ops; 54 55 /* This function must make sure that caches and memory are coherent after DMA 56 * On LEON systems without cache snooping it flushes the entire D-CACHE. 57 */ 58 static inline void dma_make_coherent(unsigned long pa, unsigned long len) 59 { 60 if (sparc_cpu_model == sparc_leon) { 61 if (!sparc_leon3_snooping_enabled()) 62 leon_flush_dcache_all(); 63 } 64 } 65 66 static void __iomem *_sparc_ioremap(struct resource *res, u32 bus, u32 pa, int sz); 67 static void __iomem *_sparc_alloc_io(unsigned int busno, unsigned long phys, 68 unsigned long size, char *name); 69 static void _sparc_free_io(struct resource *res); 70 71 static void register_proc_sparc_ioport(void); 72 73 /* This points to the next to use virtual memory for DVMA mappings */ 74 static struct resource _sparc_dvma = { 75 .name = "sparc_dvma", .start = DVMA_VADDR, .end = DVMA_END - 1 76 }; 77 /* This points to the start of I/O mappings, cluable from outside. */ 78 /*ext*/ struct resource sparc_iomap = { 79 .name = "sparc_iomap", .start = IOBASE_VADDR, .end = IOBASE_END - 1 80 }; 81 82 /* 83 * Our mini-allocator... 84 * Boy this is gross! We need it because we must map I/O for 85 * timers and interrupt controller before the kmalloc is available. 86 */ 87 88 #define XNMLN 15 89 #define XNRES 10 /* SS-10 uses 8 */ 90 91 struct xresource { 92 struct resource xres; /* Must be first */ 93 int xflag; /* 1 == used */ 94 char xname[XNMLN+1]; 95 }; 96 97 static struct xresource xresv[XNRES]; 98 99 static struct xresource *xres_alloc(void) { 100 struct xresource *xrp; 101 int n; 102 103 xrp = xresv; 104 for (n = 0; n < XNRES; n++) { 105 if (xrp->xflag == 0) { 106 xrp->xflag = 1; 107 return xrp; 108 } 109 xrp++; 110 } 111 return NULL; 112 } 113 114 static void xres_free(struct xresource *xrp) { 115 xrp->xflag = 0; 116 } 117 118 /* 119 * These are typically used in PCI drivers 120 * which are trying to be cross-platform. 121 * 122 * Bus type is always zero on IIep. 123 */ 124 void __iomem *ioremap(unsigned long offset, unsigned long size) 125 { 126 char name[14]; 127 128 sprintf(name, "phys_%08x", (u32)offset); 129 return _sparc_alloc_io(0, offset, size, name); 130 } 131 EXPORT_SYMBOL(ioremap); 132 133 /* 134 * Complementary to ioremap(). 135 */ 136 void iounmap(volatile void __iomem *virtual) 137 { 138 unsigned long vaddr = (unsigned long) virtual & PAGE_MASK; 139 struct resource *res; 140 141 /* 142 * XXX Too slow. Can have 8192 DVMA pages on sun4m in the worst case. 143 * This probably warrants some sort of hashing. 144 */ 145 if ((res = lookup_resource(&sparc_iomap, vaddr)) == NULL) { 146 printk("free_io/iounmap: cannot free %lx\n", vaddr); 147 return; 148 } 149 _sparc_free_io(res); 150 151 if ((char *)res >= (char*)xresv && (char *)res < (char *)&xresv[XNRES]) { 152 xres_free((struct xresource *)res); 153 } else { 154 kfree(res); 155 } 156 } 157 EXPORT_SYMBOL(iounmap); 158 159 void __iomem *of_ioremap(struct resource *res, unsigned long offset, 160 unsigned long size, char *name) 161 { 162 return _sparc_alloc_io(res->flags & 0xF, 163 res->start + offset, 164 size, name); 165 } 166 EXPORT_SYMBOL(of_ioremap); 167 168 void of_iounmap(struct resource *res, void __iomem *base, unsigned long size) 169 { 170 iounmap(base); 171 } 172 EXPORT_SYMBOL(of_iounmap); 173 174 /* 175 * Meat of mapping 176 */ 177 static void __iomem *_sparc_alloc_io(unsigned int busno, unsigned long phys, 178 unsigned long size, char *name) 179 { 180 static int printed_full; 181 struct xresource *xres; 182 struct resource *res; 183 char *tack; 184 int tlen; 185 void __iomem *va; /* P3 diag */ 186 187 if (name == NULL) name = "???"; 188 189 if ((xres = xres_alloc()) != NULL) { 190 tack = xres->xname; 191 res = &xres->xres; 192 } else { 193 if (!printed_full) { 194 printk("ioremap: done with statics, switching to malloc\n"); 195 printed_full = 1; 196 } 197 tlen = strlen(name); 198 tack = kmalloc(sizeof (struct resource) + tlen + 1, GFP_KERNEL); 199 if (tack == NULL) return NULL; 200 memset(tack, 0, sizeof(struct resource)); 201 res = (struct resource *) tack; 202 tack += sizeof (struct resource); 203 } 204 205 strlcpy(tack, name, XNMLN+1); 206 res->name = tack; 207 208 va = _sparc_ioremap(res, busno, phys, size); 209 /* printk("ioremap(0x%x:%08lx[0x%lx])=%p\n", busno, phys, size, va); */ /* P3 diag */ 210 return va; 211 } 212 213 /* 214 */ 215 static void __iomem * 216 _sparc_ioremap(struct resource *res, u32 bus, u32 pa, int sz) 217 { 218 unsigned long offset = ((unsigned long) pa) & (~PAGE_MASK); 219 220 if (allocate_resource(&sparc_iomap, res, 221 (offset + sz + PAGE_SIZE-1) & PAGE_MASK, 222 sparc_iomap.start, sparc_iomap.end, PAGE_SIZE, NULL, NULL) != 0) { 223 /* Usually we cannot see printks in this case. */ 224 prom_printf("alloc_io_res(%s): cannot occupy\n", 225 (res->name != NULL)? res->name: "???"); 226 prom_halt(); 227 } 228 229 pa &= PAGE_MASK; 230 srmmu_mapiorange(bus, pa, res->start, resource_size(res)); 231 232 return (void __iomem *)(unsigned long)(res->start + offset); 233 } 234 235 /* 236 * Complementary to _sparc_ioremap(). 237 */ 238 static void _sparc_free_io(struct resource *res) 239 { 240 unsigned long plen; 241 242 plen = resource_size(res); 243 BUG_ON((plen & (PAGE_SIZE-1)) != 0); 244 srmmu_unmapiorange(res->start, plen); 245 release_resource(res); 246 } 247 248 #ifdef CONFIG_SBUS 249 250 void sbus_set_sbus64(struct device *dev, int x) 251 { 252 printk("sbus_set_sbus64: unsupported\n"); 253 } 254 EXPORT_SYMBOL(sbus_set_sbus64); 255 256 /* 257 * Allocate a chunk of memory suitable for DMA. 258 * Typically devices use them for control blocks. 259 * CPU may access them without any explicit flushing. 260 */ 261 static void *sbus_alloc_coherent(struct device *dev, size_t len, 262 dma_addr_t *dma_addrp, gfp_t gfp, 263 unsigned long attrs) 264 { 265 struct platform_device *op = to_platform_device(dev); 266 unsigned long len_total = PAGE_ALIGN(len); 267 unsigned long va; 268 struct resource *res; 269 int order; 270 271 /* XXX why are some lengths signed, others unsigned? */ 272 if (len <= 0) { 273 return NULL; 274 } 275 /* XXX So what is maxphys for us and how do drivers know it? */ 276 if (len > 256*1024) { /* __get_free_pages() limit */ 277 return NULL; 278 } 279 280 order = get_order(len_total); 281 va = __get_free_pages(gfp, order); 282 if (va == 0) 283 goto err_nopages; 284 285 if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL) 286 goto err_nomem; 287 288 if (allocate_resource(&_sparc_dvma, res, len_total, 289 _sparc_dvma.start, _sparc_dvma.end, PAGE_SIZE, NULL, NULL) != 0) { 290 printk("sbus_alloc_consistent: cannot occupy 0x%lx", len_total); 291 goto err_nova; 292 } 293 294 // XXX The sbus_map_dma_area does this for us below, see comments. 295 // srmmu_mapiorange(0, virt_to_phys(va), res->start, len_total); 296 /* 297 * XXX That's where sdev would be used. Currently we load 298 * all iommu tables with the same translations. 299 */ 300 if (sbus_map_dma_area(dev, dma_addrp, va, res->start, len_total) != 0) 301 goto err_noiommu; 302 303 res->name = op->dev.of_node->name; 304 305 return (void *)(unsigned long)res->start; 306 307 err_noiommu: 308 release_resource(res); 309 err_nova: 310 kfree(res); 311 err_nomem: 312 free_pages(va, order); 313 err_nopages: 314 return NULL; 315 } 316 317 static void sbus_free_coherent(struct device *dev, size_t n, void *p, 318 dma_addr_t ba, unsigned long attrs) 319 { 320 struct resource *res; 321 struct page *pgv; 322 323 if ((res = lookup_resource(&_sparc_dvma, 324 (unsigned long)p)) == NULL) { 325 printk("sbus_free_consistent: cannot free %p\n", p); 326 return; 327 } 328 329 if (((unsigned long)p & (PAGE_SIZE-1)) != 0) { 330 printk("sbus_free_consistent: unaligned va %p\n", p); 331 return; 332 } 333 334 n = PAGE_ALIGN(n); 335 if (resource_size(res) != n) { 336 printk("sbus_free_consistent: region 0x%lx asked 0x%zx\n", 337 (long)resource_size(res), n); 338 return; 339 } 340 341 release_resource(res); 342 kfree(res); 343 344 pgv = virt_to_page(p); 345 sbus_unmap_dma_area(dev, ba, n); 346 347 __free_pages(pgv, get_order(n)); 348 } 349 350 /* 351 * Map a chunk of memory so that devices can see it. 352 * CPU view of this memory may be inconsistent with 353 * a device view and explicit flushing is necessary. 354 */ 355 static dma_addr_t sbus_map_page(struct device *dev, struct page *page, 356 unsigned long offset, size_t len, 357 enum dma_data_direction dir, 358 unsigned long attrs) 359 { 360 void *va = page_address(page) + offset; 361 362 /* XXX why are some lengths signed, others unsigned? */ 363 if (len <= 0) { 364 return 0; 365 } 366 /* XXX So what is maxphys for us and how do drivers know it? */ 367 if (len > 256*1024) { /* __get_free_pages() limit */ 368 return 0; 369 } 370 return mmu_get_scsi_one(dev, va, len); 371 } 372 373 static void sbus_unmap_page(struct device *dev, dma_addr_t ba, size_t n, 374 enum dma_data_direction dir, unsigned long attrs) 375 { 376 mmu_release_scsi_one(dev, ba, n); 377 } 378 379 static int sbus_map_sg(struct device *dev, struct scatterlist *sg, int n, 380 enum dma_data_direction dir, unsigned long attrs) 381 { 382 mmu_get_scsi_sgl(dev, sg, n); 383 return n; 384 } 385 386 static void sbus_unmap_sg(struct device *dev, struct scatterlist *sg, int n, 387 enum dma_data_direction dir, unsigned long attrs) 388 { 389 mmu_release_scsi_sgl(dev, sg, n); 390 } 391 392 static void sbus_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 393 int n, enum dma_data_direction dir) 394 { 395 BUG(); 396 } 397 398 static void sbus_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 399 int n, enum dma_data_direction dir) 400 { 401 BUG(); 402 } 403 404 static struct dma_map_ops sbus_dma_ops = { 405 .alloc = sbus_alloc_coherent, 406 .free = sbus_free_coherent, 407 .map_page = sbus_map_page, 408 .unmap_page = sbus_unmap_page, 409 .map_sg = sbus_map_sg, 410 .unmap_sg = sbus_unmap_sg, 411 .sync_sg_for_cpu = sbus_sync_sg_for_cpu, 412 .sync_sg_for_device = sbus_sync_sg_for_device, 413 }; 414 415 static int __init sparc_register_ioport(void) 416 { 417 register_proc_sparc_ioport(); 418 419 return 0; 420 } 421 422 arch_initcall(sparc_register_ioport); 423 424 #endif /* CONFIG_SBUS */ 425 426 427 /* Allocate and map kernel buffer using consistent mode DMA for a device. 428 * hwdev should be valid struct pci_dev pointer for PCI devices. 429 */ 430 static void *pci32_alloc_coherent(struct device *dev, size_t len, 431 dma_addr_t *pba, gfp_t gfp, 432 unsigned long attrs) 433 { 434 unsigned long len_total = PAGE_ALIGN(len); 435 void *va; 436 struct resource *res; 437 int order; 438 439 if (len == 0) { 440 return NULL; 441 } 442 if (len > 256*1024) { /* __get_free_pages() limit */ 443 return NULL; 444 } 445 446 order = get_order(len_total); 447 va = (void *) __get_free_pages(gfp, order); 448 if (va == NULL) { 449 printk("pci_alloc_consistent: no %ld pages\n", len_total>>PAGE_SHIFT); 450 goto err_nopages; 451 } 452 453 if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL) { 454 printk("pci_alloc_consistent: no core\n"); 455 goto err_nomem; 456 } 457 458 if (allocate_resource(&_sparc_dvma, res, len_total, 459 _sparc_dvma.start, _sparc_dvma.end, PAGE_SIZE, NULL, NULL) != 0) { 460 printk("pci_alloc_consistent: cannot occupy 0x%lx", len_total); 461 goto err_nova; 462 } 463 srmmu_mapiorange(0, virt_to_phys(va), res->start, len_total); 464 465 *pba = virt_to_phys(va); /* equals virt_to_bus (R.I.P.) for us. */ 466 return (void *) res->start; 467 468 err_nova: 469 kfree(res); 470 err_nomem: 471 free_pages((unsigned long)va, order); 472 err_nopages: 473 return NULL; 474 } 475 476 /* Free and unmap a consistent DMA buffer. 477 * cpu_addr is what was returned from pci_alloc_consistent, 478 * size must be the same as what as passed into pci_alloc_consistent, 479 * and likewise dma_addr must be the same as what *dma_addrp was set to. 480 * 481 * References to the memory and mappings associated with cpu_addr/dma_addr 482 * past this call are illegal. 483 */ 484 static void pci32_free_coherent(struct device *dev, size_t n, void *p, 485 dma_addr_t ba, unsigned long attrs) 486 { 487 struct resource *res; 488 489 if ((res = lookup_resource(&_sparc_dvma, 490 (unsigned long)p)) == NULL) { 491 printk("pci_free_consistent: cannot free %p\n", p); 492 return; 493 } 494 495 if (((unsigned long)p & (PAGE_SIZE-1)) != 0) { 496 printk("pci_free_consistent: unaligned va %p\n", p); 497 return; 498 } 499 500 n = PAGE_ALIGN(n); 501 if (resource_size(res) != n) { 502 printk("pci_free_consistent: region 0x%lx asked 0x%lx\n", 503 (long)resource_size(res), (long)n); 504 return; 505 } 506 507 dma_make_coherent(ba, n); 508 srmmu_unmapiorange((unsigned long)p, n); 509 510 release_resource(res); 511 kfree(res); 512 free_pages((unsigned long)phys_to_virt(ba), get_order(n)); 513 } 514 515 /* 516 * Same as pci_map_single, but with pages. 517 */ 518 static dma_addr_t pci32_map_page(struct device *dev, struct page *page, 519 unsigned long offset, size_t size, 520 enum dma_data_direction dir, 521 unsigned long attrs) 522 { 523 /* IIep is write-through, not flushing. */ 524 return page_to_phys(page) + offset; 525 } 526 527 static void pci32_unmap_page(struct device *dev, dma_addr_t ba, size_t size, 528 enum dma_data_direction dir, unsigned long attrs) 529 { 530 if (dir != PCI_DMA_TODEVICE) 531 dma_make_coherent(ba, PAGE_ALIGN(size)); 532 } 533 534 /* Map a set of buffers described by scatterlist in streaming 535 * mode for DMA. This is the scatter-gather version of the 536 * above pci_map_single interface. Here the scatter gather list 537 * elements are each tagged with the appropriate dma address 538 * and length. They are obtained via sg_dma_{address,length}(SG). 539 * 540 * NOTE: An implementation may be able to use a smaller number of 541 * DMA address/length pairs than there are SG table elements. 542 * (for example via virtual mapping capabilities) 543 * The routine returns the number of addr/length pairs actually 544 * used, at most nents. 545 * 546 * Device ownership issues as mentioned above for pci_map_single are 547 * the same here. 548 */ 549 static int pci32_map_sg(struct device *device, struct scatterlist *sgl, 550 int nents, enum dma_data_direction dir, 551 unsigned long attrs) 552 { 553 struct scatterlist *sg; 554 int n; 555 556 /* IIep is write-through, not flushing. */ 557 for_each_sg(sgl, sg, nents, n) { 558 sg->dma_address = sg_phys(sg); 559 sg->dma_length = sg->length; 560 } 561 return nents; 562 } 563 564 /* Unmap a set of streaming mode DMA translations. 565 * Again, cpu read rules concerning calls here are the same as for 566 * pci_unmap_single() above. 567 */ 568 static void pci32_unmap_sg(struct device *dev, struct scatterlist *sgl, 569 int nents, enum dma_data_direction dir, 570 unsigned long attrs) 571 { 572 struct scatterlist *sg; 573 int n; 574 575 if (dir != PCI_DMA_TODEVICE) { 576 for_each_sg(sgl, sg, nents, n) { 577 dma_make_coherent(sg_phys(sg), PAGE_ALIGN(sg->length)); 578 } 579 } 580 } 581 582 /* Make physical memory consistent for a single 583 * streaming mode DMA translation before or after a transfer. 584 * 585 * If you perform a pci_map_single() but wish to interrogate the 586 * buffer using the cpu, yet do not wish to teardown the PCI dma 587 * mapping, you must call this function before doing so. At the 588 * next point you give the PCI dma address back to the card, you 589 * must first perform a pci_dma_sync_for_device, and then the 590 * device again owns the buffer. 591 */ 592 static void pci32_sync_single_for_cpu(struct device *dev, dma_addr_t ba, 593 size_t size, enum dma_data_direction dir) 594 { 595 if (dir != PCI_DMA_TODEVICE) { 596 dma_make_coherent(ba, PAGE_ALIGN(size)); 597 } 598 } 599 600 static void pci32_sync_single_for_device(struct device *dev, dma_addr_t ba, 601 size_t size, enum dma_data_direction dir) 602 { 603 if (dir != PCI_DMA_TODEVICE) { 604 dma_make_coherent(ba, PAGE_ALIGN(size)); 605 } 606 } 607 608 /* Make physical memory consistent for a set of streaming 609 * mode DMA translations after a transfer. 610 * 611 * The same as pci_dma_sync_single_* but for a scatter-gather list, 612 * same rules and usage. 613 */ 614 static void pci32_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl, 615 int nents, enum dma_data_direction dir) 616 { 617 struct scatterlist *sg; 618 int n; 619 620 if (dir != PCI_DMA_TODEVICE) { 621 for_each_sg(sgl, sg, nents, n) { 622 dma_make_coherent(sg_phys(sg), PAGE_ALIGN(sg->length)); 623 } 624 } 625 } 626 627 static void pci32_sync_sg_for_device(struct device *device, struct scatterlist *sgl, 628 int nents, enum dma_data_direction dir) 629 { 630 struct scatterlist *sg; 631 int n; 632 633 if (dir != PCI_DMA_TODEVICE) { 634 for_each_sg(sgl, sg, nents, n) { 635 dma_make_coherent(sg_phys(sg), PAGE_ALIGN(sg->length)); 636 } 637 } 638 } 639 640 struct dma_map_ops pci32_dma_ops = { 641 .alloc = pci32_alloc_coherent, 642 .free = pci32_free_coherent, 643 .map_page = pci32_map_page, 644 .unmap_page = pci32_unmap_page, 645 .map_sg = pci32_map_sg, 646 .unmap_sg = pci32_unmap_sg, 647 .sync_single_for_cpu = pci32_sync_single_for_cpu, 648 .sync_single_for_device = pci32_sync_single_for_device, 649 .sync_sg_for_cpu = pci32_sync_sg_for_cpu, 650 .sync_sg_for_device = pci32_sync_sg_for_device, 651 }; 652 EXPORT_SYMBOL(pci32_dma_ops); 653 654 /* leon re-uses pci32_dma_ops */ 655 struct dma_map_ops *leon_dma_ops = &pci32_dma_ops; 656 EXPORT_SYMBOL(leon_dma_ops); 657 658 struct dma_map_ops *dma_ops = &sbus_dma_ops; 659 EXPORT_SYMBOL(dma_ops); 660 661 662 /* 663 * Return whether the given PCI device DMA address mask can be 664 * supported properly. For example, if your device can only drive the 665 * low 24-bits during PCI bus mastering, then you would pass 666 * 0x00ffffff as the mask to this function. 667 */ 668 int dma_supported(struct device *dev, u64 mask) 669 { 670 if (dev_is_pci(dev)) 671 return 1; 672 673 return 0; 674 } 675 EXPORT_SYMBOL(dma_supported); 676 677 #ifdef CONFIG_PROC_FS 678 679 static int sparc_io_proc_show(struct seq_file *m, void *v) 680 { 681 struct resource *root = m->private, *r; 682 const char *nm; 683 684 for (r = root->child; r != NULL; r = r->sibling) { 685 if ((nm = r->name) == NULL) nm = "???"; 686 seq_printf(m, "%016llx-%016llx: %s\n", 687 (unsigned long long)r->start, 688 (unsigned long long)r->end, nm); 689 } 690 691 return 0; 692 } 693 694 static int sparc_io_proc_open(struct inode *inode, struct file *file) 695 { 696 return single_open(file, sparc_io_proc_show, PDE_DATA(inode)); 697 } 698 699 static const struct file_operations sparc_io_proc_fops = { 700 .owner = THIS_MODULE, 701 .open = sparc_io_proc_open, 702 .read = seq_read, 703 .llseek = seq_lseek, 704 .release = single_release, 705 }; 706 #endif /* CONFIG_PROC_FS */ 707 708 static void register_proc_sparc_ioport(void) 709 { 710 #ifdef CONFIG_PROC_FS 711 proc_create_data("io_map", 0, NULL, &sparc_io_proc_fops, &sparc_iomap); 712 proc_create_data("dvma_map", 0, NULL, &sparc_io_proc_fops, &_sparc_dvma); 713 #endif 714 } 715