1 /* 2 * ioport.c: Simple io mapping allocator. 3 * 4 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) 5 * Copyright (C) 1995 Miguel de Icaza (miguel@nuclecu.unam.mx) 6 * 7 * 1996: sparc_free_io, 1999: ioremap()/iounmap() by Pete Zaitcev. 8 * 9 * 2000/01/29 10 * <rth> zait: as long as pci_alloc_consistent produces something addressable, 11 * things are ok. 12 * <zaitcev> rth: no, it is relevant, because get_free_pages returns you a 13 * pointer into the big page mapping 14 * <rth> zait: so what? 15 * <rth> zait: remap_it_my_way(virt_to_phys(get_free_page())) 16 * <zaitcev> Hmm 17 * <zaitcev> Suppose I did this remap_it_my_way(virt_to_phys(get_free_page())). 18 * So far so good. 19 * <zaitcev> Now, driver calls pci_free_consistent(with result of 20 * remap_it_my_way()). 21 * <zaitcev> How do you find the address to pass to free_pages()? 22 * <rth> zait: walk the page tables? It's only two or three level after all. 23 * <rth> zait: you have to walk them anyway to remove the mapping. 24 * <zaitcev> Hmm 25 * <zaitcev> Sounds reasonable 26 */ 27 28 #include <linux/module.h> 29 #include <linux/sched.h> 30 #include <linux/kernel.h> 31 #include <linux/errno.h> 32 #include <linux/types.h> 33 #include <linux/ioport.h> 34 #include <linux/mm.h> 35 #include <linux/slab.h> 36 #include <linux/pci.h> /* struct pci_dev */ 37 #include <linux/proc_fs.h> 38 #include <linux/seq_file.h> 39 #include <linux/scatterlist.h> 40 #include <linux/of_device.h> 41 42 #include <asm/io.h> 43 #include <asm/vaddrs.h> 44 #include <asm/oplib.h> 45 #include <asm/prom.h> 46 #include <asm/page.h> 47 #include <asm/pgalloc.h> 48 #include <asm/dma.h> 49 #include <asm/iommu.h> 50 #include <asm/io-unit.h> 51 #include <asm/leon.h> 52 53 /* This function must make sure that caches and memory are coherent after DMA 54 * On LEON systems without cache snooping it flushes the entire D-CACHE. 55 */ 56 #ifndef CONFIG_SPARC_LEON 57 static inline void dma_make_coherent(unsigned long pa, unsigned long len) 58 { 59 } 60 #else 61 static inline void dma_make_coherent(unsigned long pa, unsigned long len) 62 { 63 if (!sparc_leon3_snooping_enabled()) 64 leon_flush_dcache_all(); 65 } 66 #endif 67 68 static struct resource *_sparc_find_resource(struct resource *r, 69 unsigned long); 70 71 static void __iomem *_sparc_ioremap(struct resource *res, u32 bus, u32 pa, int sz); 72 static void __iomem *_sparc_alloc_io(unsigned int busno, unsigned long phys, 73 unsigned long size, char *name); 74 static void _sparc_free_io(struct resource *res); 75 76 static void register_proc_sparc_ioport(void); 77 78 /* This points to the next to use virtual memory for DVMA mappings */ 79 static struct resource _sparc_dvma = { 80 .name = "sparc_dvma", .start = DVMA_VADDR, .end = DVMA_END - 1 81 }; 82 /* This points to the start of I/O mappings, cluable from outside. */ 83 /*ext*/ struct resource sparc_iomap = { 84 .name = "sparc_iomap", .start = IOBASE_VADDR, .end = IOBASE_END - 1 85 }; 86 87 /* 88 * Our mini-allocator... 89 * Boy this is gross! We need it because we must map I/O for 90 * timers and interrupt controller before the kmalloc is available. 91 */ 92 93 #define XNMLN 15 94 #define XNRES 10 /* SS-10 uses 8 */ 95 96 struct xresource { 97 struct resource xres; /* Must be first */ 98 int xflag; /* 1 == used */ 99 char xname[XNMLN+1]; 100 }; 101 102 static struct xresource xresv[XNRES]; 103 104 static struct xresource *xres_alloc(void) { 105 struct xresource *xrp; 106 int n; 107 108 xrp = xresv; 109 for (n = 0; n < XNRES; n++) { 110 if (xrp->xflag == 0) { 111 xrp->xflag = 1; 112 return xrp; 113 } 114 xrp++; 115 } 116 return NULL; 117 } 118 119 static void xres_free(struct xresource *xrp) { 120 xrp->xflag = 0; 121 } 122 123 /* 124 * These are typically used in PCI drivers 125 * which are trying to be cross-platform. 126 * 127 * Bus type is always zero on IIep. 128 */ 129 void __iomem *ioremap(unsigned long offset, unsigned long size) 130 { 131 char name[14]; 132 133 sprintf(name, "phys_%08x", (u32)offset); 134 return _sparc_alloc_io(0, offset, size, name); 135 } 136 EXPORT_SYMBOL(ioremap); 137 138 /* 139 * Comlimentary to ioremap(). 140 */ 141 void iounmap(volatile void __iomem *virtual) 142 { 143 unsigned long vaddr = (unsigned long) virtual & PAGE_MASK; 144 struct resource *res; 145 146 if ((res = _sparc_find_resource(&sparc_iomap, vaddr)) == NULL) { 147 printk("free_io/iounmap: cannot free %lx\n", vaddr); 148 return; 149 } 150 _sparc_free_io(res); 151 152 if ((char *)res >= (char*)xresv && (char *)res < (char *)&xresv[XNRES]) { 153 xres_free((struct xresource *)res); 154 } else { 155 kfree(res); 156 } 157 } 158 EXPORT_SYMBOL(iounmap); 159 160 void __iomem *of_ioremap(struct resource *res, unsigned long offset, 161 unsigned long size, char *name) 162 { 163 return _sparc_alloc_io(res->flags & 0xF, 164 res->start + offset, 165 size, name); 166 } 167 EXPORT_SYMBOL(of_ioremap); 168 169 void of_iounmap(struct resource *res, void __iomem *base, unsigned long size) 170 { 171 iounmap(base); 172 } 173 EXPORT_SYMBOL(of_iounmap); 174 175 /* 176 * Meat of mapping 177 */ 178 static void __iomem *_sparc_alloc_io(unsigned int busno, unsigned long phys, 179 unsigned long size, char *name) 180 { 181 static int printed_full; 182 struct xresource *xres; 183 struct resource *res; 184 char *tack; 185 int tlen; 186 void __iomem *va; /* P3 diag */ 187 188 if (name == NULL) name = "???"; 189 190 if ((xres = xres_alloc()) != 0) { 191 tack = xres->xname; 192 res = &xres->xres; 193 } else { 194 if (!printed_full) { 195 printk("ioremap: done with statics, switching to malloc\n"); 196 printed_full = 1; 197 } 198 tlen = strlen(name); 199 tack = kmalloc(sizeof (struct resource) + tlen + 1, GFP_KERNEL); 200 if (tack == NULL) return NULL; 201 memset(tack, 0, sizeof(struct resource)); 202 res = (struct resource *) tack; 203 tack += sizeof (struct resource); 204 } 205 206 strlcpy(tack, name, XNMLN+1); 207 res->name = tack; 208 209 va = _sparc_ioremap(res, busno, phys, size); 210 /* printk("ioremap(0x%x:%08lx[0x%lx])=%p\n", busno, phys, size, va); */ /* P3 diag */ 211 return va; 212 } 213 214 /* 215 */ 216 static void __iomem * 217 _sparc_ioremap(struct resource *res, u32 bus, u32 pa, int sz) 218 { 219 unsigned long offset = ((unsigned long) pa) & (~PAGE_MASK); 220 221 if (allocate_resource(&sparc_iomap, res, 222 (offset + sz + PAGE_SIZE-1) & PAGE_MASK, 223 sparc_iomap.start, sparc_iomap.end, PAGE_SIZE, NULL, NULL) != 0) { 224 /* Usually we cannot see printks in this case. */ 225 prom_printf("alloc_io_res(%s): cannot occupy\n", 226 (res->name != NULL)? res->name: "???"); 227 prom_halt(); 228 } 229 230 pa &= PAGE_MASK; 231 sparc_mapiorange(bus, pa, res->start, res->end - res->start + 1); 232 233 return (void __iomem *)(unsigned long)(res->start + offset); 234 } 235 236 /* 237 * Comlimentary to _sparc_ioremap(). 238 */ 239 static void _sparc_free_io(struct resource *res) 240 { 241 unsigned long plen; 242 243 plen = res->end - res->start + 1; 244 BUG_ON((plen & (PAGE_SIZE-1)) != 0); 245 sparc_unmapiorange(res->start, plen); 246 release_resource(res); 247 } 248 249 #ifdef CONFIG_SBUS 250 251 void sbus_set_sbus64(struct device *dev, int x) 252 { 253 printk("sbus_set_sbus64: unsupported\n"); 254 } 255 EXPORT_SYMBOL(sbus_set_sbus64); 256 257 /* 258 * Allocate a chunk of memory suitable for DMA. 259 * Typically devices use them for control blocks. 260 * CPU may access them without any explicit flushing. 261 */ 262 static void *sbus_alloc_coherent(struct device *dev, size_t len, 263 dma_addr_t *dma_addrp, gfp_t gfp) 264 { 265 struct platform_device *op = to_platform_device(dev); 266 unsigned long len_total = PAGE_ALIGN(len); 267 unsigned long va; 268 struct resource *res; 269 int order; 270 271 /* XXX why are some lengths signed, others unsigned? */ 272 if (len <= 0) { 273 return NULL; 274 } 275 /* XXX So what is maxphys for us and how do drivers know it? */ 276 if (len > 256*1024) { /* __get_free_pages() limit */ 277 return NULL; 278 } 279 280 order = get_order(len_total); 281 if ((va = __get_free_pages(GFP_KERNEL|__GFP_COMP, order)) == 0) 282 goto err_nopages; 283 284 if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL) 285 goto err_nomem; 286 287 if (allocate_resource(&_sparc_dvma, res, len_total, 288 _sparc_dvma.start, _sparc_dvma.end, PAGE_SIZE, NULL, NULL) != 0) { 289 printk("sbus_alloc_consistent: cannot occupy 0x%lx", len_total); 290 goto err_nova; 291 } 292 293 // XXX The mmu_map_dma_area does this for us below, see comments. 294 // sparc_mapiorange(0, virt_to_phys(va), res->start, len_total); 295 /* 296 * XXX That's where sdev would be used. Currently we load 297 * all iommu tables with the same translations. 298 */ 299 if (mmu_map_dma_area(dev, dma_addrp, va, res->start, len_total) != 0) 300 goto err_noiommu; 301 302 res->name = op->dev.of_node->name; 303 304 return (void *)(unsigned long)res->start; 305 306 err_noiommu: 307 release_resource(res); 308 err_nova: 309 kfree(res); 310 err_nomem: 311 free_pages(va, order); 312 err_nopages: 313 return NULL; 314 } 315 316 static void sbus_free_coherent(struct device *dev, size_t n, void *p, 317 dma_addr_t ba) 318 { 319 struct resource *res; 320 struct page *pgv; 321 322 if ((res = _sparc_find_resource(&_sparc_dvma, 323 (unsigned long)p)) == NULL) { 324 printk("sbus_free_consistent: cannot free %p\n", p); 325 return; 326 } 327 328 if (((unsigned long)p & (PAGE_SIZE-1)) != 0) { 329 printk("sbus_free_consistent: unaligned va %p\n", p); 330 return; 331 } 332 333 n = PAGE_ALIGN(n); 334 if ((res->end-res->start)+1 != n) { 335 printk("sbus_free_consistent: region 0x%lx asked 0x%zx\n", 336 (long)((res->end-res->start)+1), n); 337 return; 338 } 339 340 release_resource(res); 341 kfree(res); 342 343 pgv = virt_to_page(p); 344 mmu_unmap_dma_area(dev, ba, n); 345 346 __free_pages(pgv, get_order(n)); 347 } 348 349 /* 350 * Map a chunk of memory so that devices can see it. 351 * CPU view of this memory may be inconsistent with 352 * a device view and explicit flushing is necessary. 353 */ 354 static dma_addr_t sbus_map_page(struct device *dev, struct page *page, 355 unsigned long offset, size_t len, 356 enum dma_data_direction dir, 357 struct dma_attrs *attrs) 358 { 359 void *va = page_address(page) + offset; 360 361 /* XXX why are some lengths signed, others unsigned? */ 362 if (len <= 0) { 363 return 0; 364 } 365 /* XXX So what is maxphys for us and how do drivers know it? */ 366 if (len > 256*1024) { /* __get_free_pages() limit */ 367 return 0; 368 } 369 return mmu_get_scsi_one(dev, va, len); 370 } 371 372 static void sbus_unmap_page(struct device *dev, dma_addr_t ba, size_t n, 373 enum dma_data_direction dir, struct dma_attrs *attrs) 374 { 375 mmu_release_scsi_one(dev, ba, n); 376 } 377 378 static int sbus_map_sg(struct device *dev, struct scatterlist *sg, int n, 379 enum dma_data_direction dir, struct dma_attrs *attrs) 380 { 381 mmu_get_scsi_sgl(dev, sg, n); 382 383 /* 384 * XXX sparc64 can return a partial length here. sun4c should do this 385 * but it currently panics if it can't fulfill the request - Anton 386 */ 387 return n; 388 } 389 390 static void sbus_unmap_sg(struct device *dev, struct scatterlist *sg, int n, 391 enum dma_data_direction dir, struct dma_attrs *attrs) 392 { 393 mmu_release_scsi_sgl(dev, sg, n); 394 } 395 396 static void sbus_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 397 int n, enum dma_data_direction dir) 398 { 399 BUG(); 400 } 401 402 static void sbus_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 403 int n, enum dma_data_direction dir) 404 { 405 BUG(); 406 } 407 408 struct dma_map_ops sbus_dma_ops = { 409 .alloc_coherent = sbus_alloc_coherent, 410 .free_coherent = sbus_free_coherent, 411 .map_page = sbus_map_page, 412 .unmap_page = sbus_unmap_page, 413 .map_sg = sbus_map_sg, 414 .unmap_sg = sbus_unmap_sg, 415 .sync_sg_for_cpu = sbus_sync_sg_for_cpu, 416 .sync_sg_for_device = sbus_sync_sg_for_device, 417 }; 418 419 static int __init sparc_register_ioport(void) 420 { 421 register_proc_sparc_ioport(); 422 423 return 0; 424 } 425 426 arch_initcall(sparc_register_ioport); 427 428 #endif /* CONFIG_SBUS */ 429 430 431 /* LEON reuses PCI DMA ops */ 432 #if defined(CONFIG_PCI) || defined(CONFIG_SPARC_LEON) 433 434 /* Allocate and map kernel buffer using consistent mode DMA for a device. 435 * hwdev should be valid struct pci_dev pointer for PCI devices. 436 */ 437 static void *pci32_alloc_coherent(struct device *dev, size_t len, 438 dma_addr_t *pba, gfp_t gfp) 439 { 440 unsigned long len_total = PAGE_ALIGN(len); 441 void *va; 442 struct resource *res; 443 int order; 444 445 if (len == 0) { 446 return NULL; 447 } 448 if (len > 256*1024) { /* __get_free_pages() limit */ 449 return NULL; 450 } 451 452 order = get_order(len_total); 453 va = (void *) __get_free_pages(GFP_KERNEL, order); 454 if (va == NULL) { 455 printk("pci_alloc_consistent: no %ld pages\n", len_total>>PAGE_SHIFT); 456 goto err_nopages; 457 } 458 459 if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL) { 460 printk("pci_alloc_consistent: no core\n"); 461 goto err_nomem; 462 } 463 464 if (allocate_resource(&_sparc_dvma, res, len_total, 465 _sparc_dvma.start, _sparc_dvma.end, PAGE_SIZE, NULL, NULL) != 0) { 466 printk("pci_alloc_consistent: cannot occupy 0x%lx", len_total); 467 goto err_nova; 468 } 469 sparc_mapiorange(0, virt_to_phys(va), res->start, len_total); 470 471 *pba = virt_to_phys(va); /* equals virt_to_bus (R.I.P.) for us. */ 472 return (void *) res->start; 473 474 err_nova: 475 kfree(res); 476 err_nomem: 477 free_pages((unsigned long)va, order); 478 err_nopages: 479 return NULL; 480 } 481 482 /* Free and unmap a consistent DMA buffer. 483 * cpu_addr is what was returned from pci_alloc_consistent, 484 * size must be the same as what as passed into pci_alloc_consistent, 485 * and likewise dma_addr must be the same as what *dma_addrp was set to. 486 * 487 * References to the memory and mappings associated with cpu_addr/dma_addr 488 * past this call are illegal. 489 */ 490 static void pci32_free_coherent(struct device *dev, size_t n, void *p, 491 dma_addr_t ba) 492 { 493 struct resource *res; 494 495 if ((res = _sparc_find_resource(&_sparc_dvma, 496 (unsigned long)p)) == NULL) { 497 printk("pci_free_consistent: cannot free %p\n", p); 498 return; 499 } 500 501 if (((unsigned long)p & (PAGE_SIZE-1)) != 0) { 502 printk("pci_free_consistent: unaligned va %p\n", p); 503 return; 504 } 505 506 n = PAGE_ALIGN(n); 507 if ((res->end-res->start)+1 != n) { 508 printk("pci_free_consistent: region 0x%lx asked 0x%lx\n", 509 (long)((res->end-res->start)+1), (long)n); 510 return; 511 } 512 513 dma_make_coherent(ba, n); 514 sparc_unmapiorange((unsigned long)p, n); 515 516 release_resource(res); 517 kfree(res); 518 free_pages((unsigned long)phys_to_virt(ba), get_order(n)); 519 } 520 521 /* 522 * Same as pci_map_single, but with pages. 523 */ 524 static dma_addr_t pci32_map_page(struct device *dev, struct page *page, 525 unsigned long offset, size_t size, 526 enum dma_data_direction dir, 527 struct dma_attrs *attrs) 528 { 529 /* IIep is write-through, not flushing. */ 530 return page_to_phys(page) + offset; 531 } 532 533 static void pci32_unmap_page(struct device *dev, dma_addr_t ba, size_t size, 534 enum dma_data_direction dir, struct dma_attrs *attrs) 535 { 536 if (dir != PCI_DMA_TODEVICE) 537 dma_make_coherent(ba, PAGE_ALIGN(size)); 538 } 539 540 /* Map a set of buffers described by scatterlist in streaming 541 * mode for DMA. This is the scather-gather version of the 542 * above pci_map_single interface. Here the scatter gather list 543 * elements are each tagged with the appropriate dma address 544 * and length. They are obtained via sg_dma_{address,length}(SG). 545 * 546 * NOTE: An implementation may be able to use a smaller number of 547 * DMA address/length pairs than there are SG table elements. 548 * (for example via virtual mapping capabilities) 549 * The routine returns the number of addr/length pairs actually 550 * used, at most nents. 551 * 552 * Device ownership issues as mentioned above for pci_map_single are 553 * the same here. 554 */ 555 static int pci32_map_sg(struct device *device, struct scatterlist *sgl, 556 int nents, enum dma_data_direction dir, 557 struct dma_attrs *attrs) 558 { 559 struct scatterlist *sg; 560 int n; 561 562 /* IIep is write-through, not flushing. */ 563 for_each_sg(sgl, sg, nents, n) { 564 sg->dma_address = sg_phys(sg); 565 sg->dma_length = sg->length; 566 } 567 return nents; 568 } 569 570 /* Unmap a set of streaming mode DMA translations. 571 * Again, cpu read rules concerning calls here are the same as for 572 * pci_unmap_single() above. 573 */ 574 static void pci32_unmap_sg(struct device *dev, struct scatterlist *sgl, 575 int nents, enum dma_data_direction dir, 576 struct dma_attrs *attrs) 577 { 578 struct scatterlist *sg; 579 int n; 580 581 if (dir != PCI_DMA_TODEVICE) { 582 for_each_sg(sgl, sg, nents, n) { 583 dma_make_coherent(sg_phys(sg), PAGE_ALIGN(sg->length)); 584 } 585 } 586 } 587 588 /* Make physical memory consistent for a single 589 * streaming mode DMA translation before or after a transfer. 590 * 591 * If you perform a pci_map_single() but wish to interrogate the 592 * buffer using the cpu, yet do not wish to teardown the PCI dma 593 * mapping, you must call this function before doing so. At the 594 * next point you give the PCI dma address back to the card, you 595 * must first perform a pci_dma_sync_for_device, and then the 596 * device again owns the buffer. 597 */ 598 static void pci32_sync_single_for_cpu(struct device *dev, dma_addr_t ba, 599 size_t size, enum dma_data_direction dir) 600 { 601 if (dir != PCI_DMA_TODEVICE) { 602 dma_make_coherent(ba, PAGE_ALIGN(size)); 603 } 604 } 605 606 static void pci32_sync_single_for_device(struct device *dev, dma_addr_t ba, 607 size_t size, enum dma_data_direction dir) 608 { 609 if (dir != PCI_DMA_TODEVICE) { 610 dma_make_coherent(ba, PAGE_ALIGN(size)); 611 } 612 } 613 614 /* Make physical memory consistent for a set of streaming 615 * mode DMA translations after a transfer. 616 * 617 * The same as pci_dma_sync_single_* but for a scatter-gather list, 618 * same rules and usage. 619 */ 620 static void pci32_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl, 621 int nents, enum dma_data_direction dir) 622 { 623 struct scatterlist *sg; 624 int n; 625 626 if (dir != PCI_DMA_TODEVICE) { 627 for_each_sg(sgl, sg, nents, n) { 628 dma_make_coherent(sg_phys(sg), PAGE_ALIGN(sg->length)); 629 } 630 } 631 } 632 633 static void pci32_sync_sg_for_device(struct device *device, struct scatterlist *sgl, 634 int nents, enum dma_data_direction dir) 635 { 636 struct scatterlist *sg; 637 int n; 638 639 if (dir != PCI_DMA_TODEVICE) { 640 for_each_sg(sgl, sg, nents, n) { 641 dma_make_coherent(sg_phys(sg), PAGE_ALIGN(sg->length)); 642 } 643 } 644 } 645 646 struct dma_map_ops pci32_dma_ops = { 647 .alloc_coherent = pci32_alloc_coherent, 648 .free_coherent = pci32_free_coherent, 649 .map_page = pci32_map_page, 650 .unmap_page = pci32_unmap_page, 651 .map_sg = pci32_map_sg, 652 .unmap_sg = pci32_unmap_sg, 653 .sync_single_for_cpu = pci32_sync_single_for_cpu, 654 .sync_single_for_device = pci32_sync_single_for_device, 655 .sync_sg_for_cpu = pci32_sync_sg_for_cpu, 656 .sync_sg_for_device = pci32_sync_sg_for_device, 657 }; 658 EXPORT_SYMBOL(pci32_dma_ops); 659 660 #endif /* CONFIG_PCI || CONFIG_SPARC_LEON */ 661 662 #ifdef CONFIG_SPARC_LEON 663 struct dma_map_ops *dma_ops = &pci32_dma_ops; 664 #elif defined(CONFIG_SBUS) 665 struct dma_map_ops *dma_ops = &sbus_dma_ops; 666 #endif 667 668 EXPORT_SYMBOL(dma_ops); 669 670 671 /* 672 * Return whether the given PCI device DMA address mask can be 673 * supported properly. For example, if your device can only drive the 674 * low 24-bits during PCI bus mastering, then you would pass 675 * 0x00ffffff as the mask to this function. 676 */ 677 int dma_supported(struct device *dev, u64 mask) 678 { 679 #ifdef CONFIG_PCI 680 if (dev->bus == &pci_bus_type) 681 return 1; 682 #endif 683 return 0; 684 } 685 EXPORT_SYMBOL(dma_supported); 686 687 #ifdef CONFIG_PROC_FS 688 689 static int sparc_io_proc_show(struct seq_file *m, void *v) 690 { 691 struct resource *root = m->private, *r; 692 const char *nm; 693 694 for (r = root->child; r != NULL; r = r->sibling) { 695 if ((nm = r->name) == 0) nm = "???"; 696 seq_printf(m, "%016llx-%016llx: %s\n", 697 (unsigned long long)r->start, 698 (unsigned long long)r->end, nm); 699 } 700 701 return 0; 702 } 703 704 static int sparc_io_proc_open(struct inode *inode, struct file *file) 705 { 706 return single_open(file, sparc_io_proc_show, PDE(inode)->data); 707 } 708 709 static const struct file_operations sparc_io_proc_fops = { 710 .owner = THIS_MODULE, 711 .open = sparc_io_proc_open, 712 .read = seq_read, 713 .llseek = seq_lseek, 714 .release = single_release, 715 }; 716 #endif /* CONFIG_PROC_FS */ 717 718 /* 719 * This is a version of find_resource and it belongs to kernel/resource.c. 720 * Until we have agreement with Linus and Martin, it lingers here. 721 * 722 * XXX Too slow. Can have 8192 DVMA pages on sun4m in the worst case. 723 * This probably warrants some sort of hashing. 724 */ 725 static struct resource *_sparc_find_resource(struct resource *root, 726 unsigned long hit) 727 { 728 struct resource *tmp; 729 730 for (tmp = root->child; tmp != 0; tmp = tmp->sibling) { 731 if (tmp->start <= hit && tmp->end >= hit) 732 return tmp; 733 } 734 return NULL; 735 } 736 737 static void register_proc_sparc_ioport(void) 738 { 739 #ifdef CONFIG_PROC_FS 740 proc_create_data("io_map", 0, NULL, &sparc_io_proc_fops, &sparc_iomap); 741 proc_create_data("dvma_map", 0, NULL, &sparc_io_proc_fops, &_sparc_dvma); 742 #endif 743 } 744