1 /* cpumap.c: used for optimizing CPU assignment 2 * 3 * Copyright (C) 2009 Hong H. Pham <hong.pham@windriver.com> 4 */ 5 6 #include <linux/module.h> 7 #include <linux/slab.h> 8 #include <linux/kernel.h> 9 #include <linux/init.h> 10 #include <linux/cpumask.h> 11 #include <linux/spinlock.h> 12 #include <asm/cpudata.h> 13 #include "cpumap.h" 14 15 16 enum { 17 CPUINFO_LVL_ROOT = 0, 18 CPUINFO_LVL_NODE, 19 CPUINFO_LVL_CORE, 20 CPUINFO_LVL_PROC, 21 CPUINFO_LVL_MAX, 22 }; 23 24 enum { 25 ROVER_NO_OP = 0, 26 /* Increment rover every time level is visited */ 27 ROVER_INC_ON_VISIT = 1 << 0, 28 /* Increment parent's rover every time rover wraps around */ 29 ROVER_INC_PARENT_ON_LOOP = 1 << 1, 30 }; 31 32 struct cpuinfo_node { 33 int id; 34 int level; 35 int num_cpus; /* Number of CPUs in this hierarchy */ 36 int parent_index; 37 int child_start; /* Array index of the first child node */ 38 int child_end; /* Array index of the last child node */ 39 int rover; /* Child node iterator */ 40 }; 41 42 struct cpuinfo_level { 43 int start_index; /* Index of first node of a level in a cpuinfo tree */ 44 int end_index; /* Index of last node of a level in a cpuinfo tree */ 45 int num_nodes; /* Number of nodes in a level in a cpuinfo tree */ 46 }; 47 48 struct cpuinfo_tree { 49 int total_nodes; 50 51 /* Offsets into nodes[] for each level of the tree */ 52 struct cpuinfo_level level[CPUINFO_LVL_MAX]; 53 struct cpuinfo_node nodes[0]; 54 }; 55 56 57 static struct cpuinfo_tree *cpuinfo_tree; 58 59 static u16 cpu_distribution_map[NR_CPUS]; 60 static DEFINE_SPINLOCK(cpu_map_lock); 61 62 63 /* Niagara optimized cpuinfo tree traversal. */ 64 static const int niagara_iterate_method[] = { 65 [CPUINFO_LVL_ROOT] = ROVER_NO_OP, 66 67 /* Strands (or virtual CPUs) within a core may not run concurrently 68 * on the Niagara, as instruction pipeline(s) are shared. Distribute 69 * work to strands in different cores first for better concurrency. 70 * Go to next NUMA node when all cores are used. 71 */ 72 [CPUINFO_LVL_NODE] = ROVER_INC_ON_VISIT|ROVER_INC_PARENT_ON_LOOP, 73 74 /* Strands are grouped together by proc_id in cpuinfo_sparc, i.e. 75 * a proc_id represents an instruction pipeline. Distribute work to 76 * strands in different proc_id groups if the core has multiple 77 * instruction pipelines (e.g. the Niagara 2/2+ has two). 78 */ 79 [CPUINFO_LVL_CORE] = ROVER_INC_ON_VISIT, 80 81 /* Pick the next strand in the proc_id group. */ 82 [CPUINFO_LVL_PROC] = ROVER_INC_ON_VISIT, 83 }; 84 85 /* Generic cpuinfo tree traversal. Distribute work round robin across NUMA 86 * nodes. 87 */ 88 static const int generic_iterate_method[] = { 89 [CPUINFO_LVL_ROOT] = ROVER_INC_ON_VISIT, 90 [CPUINFO_LVL_NODE] = ROVER_NO_OP, 91 [CPUINFO_LVL_CORE] = ROVER_INC_PARENT_ON_LOOP, 92 [CPUINFO_LVL_PROC] = ROVER_INC_ON_VISIT|ROVER_INC_PARENT_ON_LOOP, 93 }; 94 95 96 static int cpuinfo_id(int cpu, int level) 97 { 98 int id; 99 100 switch (level) { 101 case CPUINFO_LVL_ROOT: 102 id = 0; 103 break; 104 case CPUINFO_LVL_NODE: 105 id = cpu_to_node(cpu); 106 break; 107 case CPUINFO_LVL_CORE: 108 id = cpu_data(cpu).core_id; 109 break; 110 case CPUINFO_LVL_PROC: 111 id = cpu_data(cpu).proc_id; 112 break; 113 default: 114 id = -EINVAL; 115 } 116 return id; 117 } 118 119 /* 120 * Enumerate the CPU information in __cpu_data to determine the start index, 121 * end index, and number of nodes for each level in the cpuinfo tree. The 122 * total number of cpuinfo nodes required to build the tree is returned. 123 */ 124 static int enumerate_cpuinfo_nodes(struct cpuinfo_level *tree_level) 125 { 126 int prev_id[CPUINFO_LVL_MAX]; 127 int i, n, num_nodes; 128 129 for (i = CPUINFO_LVL_ROOT; i < CPUINFO_LVL_MAX; i++) { 130 struct cpuinfo_level *lv = &tree_level[i]; 131 132 prev_id[i] = -1; 133 lv->start_index = lv->end_index = lv->num_nodes = 0; 134 } 135 136 num_nodes = 1; /* Include the root node */ 137 138 for (i = 0; i < num_possible_cpus(); i++) { 139 if (!cpu_online(i)) 140 continue; 141 142 n = cpuinfo_id(i, CPUINFO_LVL_NODE); 143 if (n > prev_id[CPUINFO_LVL_NODE]) { 144 tree_level[CPUINFO_LVL_NODE].num_nodes++; 145 prev_id[CPUINFO_LVL_NODE] = n; 146 num_nodes++; 147 } 148 n = cpuinfo_id(i, CPUINFO_LVL_CORE); 149 if (n > prev_id[CPUINFO_LVL_CORE]) { 150 tree_level[CPUINFO_LVL_CORE].num_nodes++; 151 prev_id[CPUINFO_LVL_CORE] = n; 152 num_nodes++; 153 } 154 n = cpuinfo_id(i, CPUINFO_LVL_PROC); 155 if (n > prev_id[CPUINFO_LVL_PROC]) { 156 tree_level[CPUINFO_LVL_PROC].num_nodes++; 157 prev_id[CPUINFO_LVL_PROC] = n; 158 num_nodes++; 159 } 160 } 161 162 tree_level[CPUINFO_LVL_ROOT].num_nodes = 1; 163 164 n = tree_level[CPUINFO_LVL_NODE].num_nodes; 165 tree_level[CPUINFO_LVL_NODE].start_index = 1; 166 tree_level[CPUINFO_LVL_NODE].end_index = n; 167 168 n++; 169 tree_level[CPUINFO_LVL_CORE].start_index = n; 170 n += tree_level[CPUINFO_LVL_CORE].num_nodes; 171 tree_level[CPUINFO_LVL_CORE].end_index = n - 1; 172 173 tree_level[CPUINFO_LVL_PROC].start_index = n; 174 n += tree_level[CPUINFO_LVL_PROC].num_nodes; 175 tree_level[CPUINFO_LVL_PROC].end_index = n - 1; 176 177 return num_nodes; 178 } 179 180 /* Build a tree representation of the CPU hierarchy using the per CPU 181 * information in __cpu_data. Entries in __cpu_data[0..NR_CPUS] are 182 * assumed to be sorted in ascending order based on node, core_id, and 183 * proc_id (in order of significance). 184 */ 185 static struct cpuinfo_tree *build_cpuinfo_tree(void) 186 { 187 struct cpuinfo_tree *new_tree; 188 struct cpuinfo_node *node; 189 struct cpuinfo_level tmp_level[CPUINFO_LVL_MAX]; 190 int num_cpus[CPUINFO_LVL_MAX]; 191 int level_rover[CPUINFO_LVL_MAX]; 192 int prev_id[CPUINFO_LVL_MAX]; 193 int n, id, cpu, prev_cpu, last_cpu, level; 194 195 n = enumerate_cpuinfo_nodes(tmp_level); 196 197 new_tree = kzalloc(sizeof(struct cpuinfo_tree) + 198 (sizeof(struct cpuinfo_node) * n), GFP_ATOMIC); 199 if (!new_tree) 200 return NULL; 201 202 new_tree->total_nodes = n; 203 memcpy(&new_tree->level, tmp_level, sizeof(tmp_level)); 204 205 prev_cpu = cpu = first_cpu(cpu_online_map); 206 207 /* Initialize all levels in the tree with the first CPU */ 208 for (level = CPUINFO_LVL_PROC; level >= CPUINFO_LVL_ROOT; level--) { 209 n = new_tree->level[level].start_index; 210 211 level_rover[level] = n; 212 node = &new_tree->nodes[n]; 213 214 id = cpuinfo_id(cpu, level); 215 if (unlikely(id < 0)) { 216 kfree(new_tree); 217 return NULL; 218 } 219 node->id = id; 220 node->level = level; 221 node->num_cpus = 1; 222 223 node->parent_index = (level > CPUINFO_LVL_ROOT) 224 ? new_tree->level[level - 1].start_index : -1; 225 226 node->child_start = node->child_end = node->rover = 227 (level == CPUINFO_LVL_PROC) 228 ? cpu : new_tree->level[level + 1].start_index; 229 230 prev_id[level] = node->id; 231 num_cpus[level] = 1; 232 } 233 234 for (last_cpu = (num_possible_cpus() - 1); last_cpu >= 0; last_cpu--) { 235 if (cpu_online(last_cpu)) 236 break; 237 } 238 239 while (++cpu <= last_cpu) { 240 if (!cpu_online(cpu)) 241 continue; 242 243 for (level = CPUINFO_LVL_PROC; level >= CPUINFO_LVL_ROOT; 244 level--) { 245 id = cpuinfo_id(cpu, level); 246 if (unlikely(id < 0)) { 247 kfree(new_tree); 248 return NULL; 249 } 250 251 if ((id != prev_id[level]) || (cpu == last_cpu)) { 252 prev_id[level] = id; 253 node = &new_tree->nodes[level_rover[level]]; 254 node->num_cpus = num_cpus[level]; 255 num_cpus[level] = 1; 256 257 if (cpu == last_cpu) 258 node->num_cpus++; 259 260 /* Connect tree node to parent */ 261 if (level == CPUINFO_LVL_ROOT) 262 node->parent_index = -1; 263 else 264 node->parent_index = 265 level_rover[level - 1]; 266 267 if (level == CPUINFO_LVL_PROC) { 268 node->child_end = 269 (cpu == last_cpu) ? cpu : prev_cpu; 270 } else { 271 node->child_end = 272 level_rover[level + 1] - 1; 273 } 274 275 /* Initialize the next node in the same level */ 276 n = ++level_rover[level]; 277 if (n <= new_tree->level[level].end_index) { 278 node = &new_tree->nodes[n]; 279 node->id = id; 280 node->level = level; 281 282 /* Connect node to child */ 283 node->child_start = node->child_end = 284 node->rover = 285 (level == CPUINFO_LVL_PROC) 286 ? cpu : level_rover[level + 1]; 287 } 288 } else 289 num_cpus[level]++; 290 } 291 prev_cpu = cpu; 292 } 293 294 return new_tree; 295 } 296 297 static void increment_rover(struct cpuinfo_tree *t, int node_index, 298 int root_index, const int *rover_inc_table) 299 { 300 struct cpuinfo_node *node = &t->nodes[node_index]; 301 int top_level, level; 302 303 top_level = t->nodes[root_index].level; 304 for (level = node->level; level >= top_level; level--) { 305 node->rover++; 306 if (node->rover <= node->child_end) 307 return; 308 309 node->rover = node->child_start; 310 /* If parent's rover does not need to be adjusted, stop here. */ 311 if ((level == top_level) || 312 !(rover_inc_table[level] & ROVER_INC_PARENT_ON_LOOP)) 313 return; 314 315 node = &t->nodes[node->parent_index]; 316 } 317 } 318 319 static int iterate_cpu(struct cpuinfo_tree *t, unsigned int root_index) 320 { 321 const int *rover_inc_table; 322 int level, new_index, index = root_index; 323 324 switch (sun4v_chip_type) { 325 case SUN4V_CHIP_NIAGARA1: 326 case SUN4V_CHIP_NIAGARA2: 327 rover_inc_table = niagara_iterate_method; 328 break; 329 default: 330 rover_inc_table = generic_iterate_method; 331 } 332 333 for (level = t->nodes[root_index].level; level < CPUINFO_LVL_MAX; 334 level++) { 335 new_index = t->nodes[index].rover; 336 if (rover_inc_table[level] & ROVER_INC_ON_VISIT) 337 increment_rover(t, index, root_index, rover_inc_table); 338 339 index = new_index; 340 } 341 return index; 342 } 343 344 static void _cpu_map_rebuild(void) 345 { 346 int i; 347 348 if (cpuinfo_tree) { 349 kfree(cpuinfo_tree); 350 cpuinfo_tree = NULL; 351 } 352 353 cpuinfo_tree = build_cpuinfo_tree(); 354 if (!cpuinfo_tree) 355 return; 356 357 /* Build CPU distribution map that spans all online CPUs. No need 358 * to check if the CPU is online, as that is done when the cpuinfo 359 * tree is being built. 360 */ 361 for (i = 0; i < cpuinfo_tree->nodes[0].num_cpus; i++) 362 cpu_distribution_map[i] = iterate_cpu(cpuinfo_tree, 0); 363 } 364 365 /* Fallback if the cpuinfo tree could not be built. CPU mapping is linear 366 * round robin. 367 */ 368 static int simple_map_to_cpu(unsigned int index) 369 { 370 int i, end, cpu_rover; 371 372 cpu_rover = 0; 373 end = index % num_online_cpus(); 374 for (i = 0; i < num_possible_cpus(); i++) { 375 if (cpu_online(cpu_rover)) { 376 if (cpu_rover >= end) 377 return cpu_rover; 378 379 cpu_rover++; 380 } 381 } 382 383 /* Impossible, since num_online_cpus() <= num_possible_cpus() */ 384 return first_cpu(cpu_online_map); 385 } 386 387 static int _map_to_cpu(unsigned int index) 388 { 389 struct cpuinfo_node *root_node; 390 391 if (unlikely(!cpuinfo_tree)) { 392 _cpu_map_rebuild(); 393 if (!cpuinfo_tree) 394 return simple_map_to_cpu(index); 395 } 396 397 root_node = &cpuinfo_tree->nodes[0]; 398 #ifdef CONFIG_HOTPLUG_CPU 399 if (unlikely(root_node->num_cpus != num_online_cpus())) { 400 _cpu_map_rebuild(); 401 if (!cpuinfo_tree) 402 return simple_map_to_cpu(index); 403 } 404 #endif 405 return cpu_distribution_map[index % root_node->num_cpus]; 406 } 407 408 int map_to_cpu(unsigned int index) 409 { 410 int mapped_cpu; 411 unsigned long flag; 412 413 spin_lock_irqsave(&cpu_map_lock, flag); 414 mapped_cpu = _map_to_cpu(index); 415 416 #ifdef CONFIG_HOTPLUG_CPU 417 while (unlikely(!cpu_online(mapped_cpu))) 418 mapped_cpu = _map_to_cpu(index); 419 #endif 420 spin_unlock_irqrestore(&cpu_map_lock, flag); 421 return mapped_cpu; 422 } 423 EXPORT_SYMBOL(map_to_cpu); 424 425 void cpu_map_rebuild(void) 426 { 427 unsigned long flag; 428 429 spin_lock_irqsave(&cpu_map_lock, flag); 430 _cpu_map_rebuild(); 431 spin_unlock_irqrestore(&cpu_map_lock, flag); 432 } 433