xref: /openbmc/linux/arch/sparc/kernel/adi_64.c (revision cfdfc14e)
1 /* adi_64.c: support for ADI (Application Data Integrity) feature on
2  * sparc m7 and newer processors. This feature is also known as
3  * SSM (Silicon Secured Memory).
4  *
5  * Copyright (C) 2016 Oracle and/or its affiliates. All rights reserved.
6  * Author: Khalid Aziz (khalid.aziz@oracle.com)
7  *
8  * This work is licensed under the terms of the GNU GPL, version 2.
9  */
10 #include <linux/init.h>
11 #include <linux/slab.h>
12 #include <linux/mm_types.h>
13 #include <asm/mdesc.h>
14 #include <asm/adi_64.h>
15 #include <asm/mmu_64.h>
16 #include <asm/pgtable_64.h>
17 
18 /* Each page of storage for ADI tags can accommodate tags for 128
19  * pages. When ADI enabled pages are being swapped out, it would be
20  * prudent to allocate at least enough tag storage space to accommodate
21  * SWAPFILE_CLUSTER number of pages. Allocate enough tag storage to
22  * store tags for four SWAPFILE_CLUSTER pages to reduce need for
23  * further allocations for same vma.
24  */
25 #define TAG_STORAGE_PAGES	8
26 
27 struct adi_config adi_state;
28 EXPORT_SYMBOL(adi_state);
29 
30 /* mdesc_adi_init() : Parse machine description provided by the
31  *	hypervisor to detect ADI capabilities
32  *
33  * Hypervisor reports ADI capabilities of platform in "hwcap-list" property
34  * for "cpu" node. If the platform supports ADI, "hwcap-list" property
35  * contains the keyword "adp". If the platform supports ADI, "platform"
36  * node will contain "adp-blksz", "adp-nbits" and "ue-on-adp" properties
37  * to describe the ADI capabilities.
38  */
39 void __init mdesc_adi_init(void)
40 {
41 	struct mdesc_handle *hp = mdesc_grab();
42 	const char *prop;
43 	u64 pn, *val;
44 	int len;
45 
46 	if (!hp)
47 		goto adi_not_found;
48 
49 	pn = mdesc_node_by_name(hp, MDESC_NODE_NULL, "cpu");
50 	if (pn == MDESC_NODE_NULL)
51 		goto adi_not_found;
52 
53 	prop = mdesc_get_property(hp, pn, "hwcap-list", &len);
54 	if (!prop)
55 		goto adi_not_found;
56 
57 	/*
58 	 * Look for "adp" keyword in hwcap-list which would indicate
59 	 * ADI support
60 	 */
61 	adi_state.enabled = false;
62 	while (len) {
63 		int plen;
64 
65 		if (!strcmp(prop, "adp")) {
66 			adi_state.enabled = true;
67 			break;
68 		}
69 
70 		plen = strlen(prop) + 1;
71 		prop += plen;
72 		len -= plen;
73 	}
74 
75 	if (!adi_state.enabled)
76 		goto adi_not_found;
77 
78 	/* Find the ADI properties in "platform" node. If all ADI
79 	 * properties are not found, ADI support is incomplete and
80 	 * do not enable ADI in the kernel.
81 	 */
82 	pn = mdesc_node_by_name(hp, MDESC_NODE_NULL, "platform");
83 	if (pn == MDESC_NODE_NULL)
84 		goto adi_not_found;
85 
86 	val = (u64 *) mdesc_get_property(hp, pn, "adp-blksz", &len);
87 	if (!val)
88 		goto adi_not_found;
89 	adi_state.caps.blksz = *val;
90 
91 	val = (u64 *) mdesc_get_property(hp, pn, "adp-nbits", &len);
92 	if (!val)
93 		goto adi_not_found;
94 	adi_state.caps.nbits = *val;
95 
96 	val = (u64 *) mdesc_get_property(hp, pn, "ue-on-adp", &len);
97 	if (!val)
98 		goto adi_not_found;
99 	adi_state.caps.ue_on_adi = *val;
100 
101 	/* Some of the code to support swapping ADI tags is written
102 	 * assumption that two ADI tags can fit inside one byte. If
103 	 * this assumption is broken by a future architecture change,
104 	 * that code will have to be revisited. If that were to happen,
105 	 * disable ADI support so we do not get unpredictable results
106 	 * with programs trying to use ADI and their pages getting
107 	 * swapped out
108 	 */
109 	if (adi_state.caps.nbits > 4) {
110 		pr_warn("WARNING: ADI tag size >4 on this platform. Disabling AADI support\n");
111 		adi_state.enabled = false;
112 	}
113 
114 	mdesc_release(hp);
115 	return;
116 
117 adi_not_found:
118 	adi_state.enabled = false;
119 	adi_state.caps.blksz = 0;
120 	adi_state.caps.nbits = 0;
121 	if (hp)
122 		mdesc_release(hp);
123 }
124 
125 tag_storage_desc_t *find_tag_store(struct mm_struct *mm,
126 				   struct vm_area_struct *vma,
127 				   unsigned long addr)
128 {
129 	tag_storage_desc_t *tag_desc = NULL;
130 	unsigned long i, max_desc, flags;
131 
132 	/* Check if this vma already has tag storage descriptor
133 	 * allocated for it.
134 	 */
135 	max_desc = PAGE_SIZE/sizeof(tag_storage_desc_t);
136 	if (mm->context.tag_store) {
137 		tag_desc = mm->context.tag_store;
138 		spin_lock_irqsave(&mm->context.tag_lock, flags);
139 		for (i = 0; i < max_desc; i++) {
140 			if ((addr >= tag_desc->start) &&
141 			    ((addr + PAGE_SIZE - 1) <= tag_desc->end))
142 				break;
143 			tag_desc++;
144 		}
145 		spin_unlock_irqrestore(&mm->context.tag_lock, flags);
146 
147 		/* If no matching entries were found, this must be a
148 		 * freshly allocated page
149 		 */
150 		if (i >= max_desc)
151 			tag_desc = NULL;
152 	}
153 
154 	return tag_desc;
155 }
156 
157 tag_storage_desc_t *alloc_tag_store(struct mm_struct *mm,
158 				    struct vm_area_struct *vma,
159 				    unsigned long addr)
160 {
161 	unsigned char *tags;
162 	unsigned long i, size, max_desc, flags;
163 	tag_storage_desc_t *tag_desc, *open_desc;
164 	unsigned long end_addr, hole_start, hole_end;
165 
166 	max_desc = PAGE_SIZE/sizeof(tag_storage_desc_t);
167 	open_desc = NULL;
168 	hole_start = 0;
169 	hole_end = ULONG_MAX;
170 	end_addr = addr + PAGE_SIZE - 1;
171 
172 	/* Check if this vma already has tag storage descriptor
173 	 * allocated for it.
174 	 */
175 	spin_lock_irqsave(&mm->context.tag_lock, flags);
176 	if (mm->context.tag_store) {
177 		tag_desc = mm->context.tag_store;
178 
179 		/* Look for a matching entry for this address. While doing
180 		 * that, look for the first open slot as well and find
181 		 * the hole in already allocated range where this request
182 		 * will fit in.
183 		 */
184 		for (i = 0; i < max_desc; i++) {
185 			if (tag_desc->tag_users == 0) {
186 				if (open_desc == NULL)
187 					open_desc = tag_desc;
188 			} else {
189 				if ((addr >= tag_desc->start) &&
190 				    (tag_desc->end >= (addr + PAGE_SIZE - 1))) {
191 					tag_desc->tag_users++;
192 					goto out;
193 				}
194 			}
195 			if ((tag_desc->start > end_addr) &&
196 			    (tag_desc->start < hole_end))
197 				hole_end = tag_desc->start;
198 			if ((tag_desc->end < addr) &&
199 			    (tag_desc->end > hole_start))
200 				hole_start = tag_desc->end;
201 			tag_desc++;
202 		}
203 
204 	} else {
205 		size = sizeof(tag_storage_desc_t)*max_desc;
206 		mm->context.tag_store = kzalloc(size, GFP_NOWAIT|__GFP_NOWARN);
207 		if (mm->context.tag_store == NULL) {
208 			tag_desc = NULL;
209 			goto out;
210 		}
211 		tag_desc = mm->context.tag_store;
212 		for (i = 0; i < max_desc; i++, tag_desc++)
213 			tag_desc->tag_users = 0;
214 		open_desc = mm->context.tag_store;
215 		i = 0;
216 	}
217 
218 	/* Check if we ran out of tag storage descriptors */
219 	if (open_desc == NULL) {
220 		tag_desc = NULL;
221 		goto out;
222 	}
223 
224 	/* Mark this tag descriptor slot in use and then initialize it */
225 	tag_desc = open_desc;
226 	tag_desc->tag_users = 1;
227 
228 	/* Tag storage has not been allocated for this vma and space
229 	 * is available in tag storage descriptor. Since this page is
230 	 * being swapped out, there is high probability subsequent pages
231 	 * in the VMA will be swapped out as well. Allocate pages to
232 	 * store tags for as many pages in this vma as possible but not
233 	 * more than TAG_STORAGE_PAGES. Each byte in tag space holds
234 	 * two ADI tags since each ADI tag is 4 bits. Each ADI tag
235 	 * covers adi_blksize() worth of addresses. Check if the hole is
236 	 * big enough to accommodate full address range for using
237 	 * TAG_STORAGE_PAGES number of tag pages.
238 	 */
239 	size = TAG_STORAGE_PAGES * PAGE_SIZE;
240 	end_addr = addr + (size*2*adi_blksize()) - 1;
241 	/* Check for overflow. If overflow occurs, allocate only one page */
242 	if (end_addr < addr) {
243 		size = PAGE_SIZE;
244 		end_addr = addr + (size*2*adi_blksize()) - 1;
245 		/* If overflow happens with the minimum tag storage
246 		 * allocation as well, adjust ending address for this
247 		 * tag storage.
248 		 */
249 		if (end_addr < addr)
250 			end_addr = ULONG_MAX;
251 	}
252 	if (hole_end < end_addr) {
253 		/* Available hole is too small on the upper end of
254 		 * address. Can we expand the range towards the lower
255 		 * address and maximize use of this slot?
256 		 */
257 		unsigned long tmp_addr;
258 
259 		end_addr = hole_end - 1;
260 		tmp_addr = end_addr - (size*2*adi_blksize()) + 1;
261 		/* Check for underflow. If underflow occurs, allocate
262 		 * only one page for storing ADI tags
263 		 */
264 		if (tmp_addr > addr) {
265 			size = PAGE_SIZE;
266 			tmp_addr = end_addr - (size*2*adi_blksize()) - 1;
267 			/* If underflow happens with the minimum tag storage
268 			 * allocation as well, adjust starting address for
269 			 * this tag storage.
270 			 */
271 			if (tmp_addr > addr)
272 				tmp_addr = 0;
273 		}
274 		if (tmp_addr < hole_start) {
275 			/* Available hole is restricted on lower address
276 			 * end as well
277 			 */
278 			tmp_addr = hole_start + 1;
279 		}
280 		addr = tmp_addr;
281 		size = (end_addr + 1 - addr)/(2*adi_blksize());
282 		size = (size + (PAGE_SIZE-adi_blksize()))/PAGE_SIZE;
283 		size = size * PAGE_SIZE;
284 	}
285 	tags = kzalloc(size, GFP_NOWAIT|__GFP_NOWARN);
286 	if (tags == NULL) {
287 		tag_desc->tag_users = 0;
288 		tag_desc = NULL;
289 		goto out;
290 	}
291 	tag_desc->start = addr;
292 	tag_desc->tags = tags;
293 	tag_desc->end = end_addr;
294 
295 out:
296 	spin_unlock_irqrestore(&mm->context.tag_lock, flags);
297 	return tag_desc;
298 }
299 
300 void del_tag_store(tag_storage_desc_t *tag_desc, struct mm_struct *mm)
301 {
302 	unsigned long flags;
303 	unsigned char *tags = NULL;
304 
305 	spin_lock_irqsave(&mm->context.tag_lock, flags);
306 	tag_desc->tag_users--;
307 	if (tag_desc->tag_users == 0) {
308 		tag_desc->start = tag_desc->end = 0;
309 		/* Do not free up the tag storage space allocated
310 		 * by the first descriptor. This is persistent
311 		 * emergency tag storage space for the task.
312 		 */
313 		if (tag_desc != mm->context.tag_store) {
314 			tags = tag_desc->tags;
315 			tag_desc->tags = NULL;
316 		}
317 	}
318 	spin_unlock_irqrestore(&mm->context.tag_lock, flags);
319 	kfree(tags);
320 }
321 
322 #define tag_start(addr, tag_desc)		\
323 	((tag_desc)->tags + ((addr - (tag_desc)->start)/(2*adi_blksize())))
324 
325 /* Retrieve any saved ADI tags for the page being swapped back in and
326  * restore these tags to the newly allocated physical page.
327  */
328 void adi_restore_tags(struct mm_struct *mm, struct vm_area_struct *vma,
329 		      unsigned long addr, pte_t pte)
330 {
331 	unsigned char *tag;
332 	tag_storage_desc_t *tag_desc;
333 	unsigned long paddr, tmp, version1, version2;
334 
335 	/* Check if the swapped out page has an ADI version
336 	 * saved. If yes, restore version tag to the newly
337 	 * allocated page.
338 	 */
339 	tag_desc = find_tag_store(mm, vma, addr);
340 	if (tag_desc == NULL)
341 		return;
342 
343 	tag = tag_start(addr, tag_desc);
344 	paddr = pte_val(pte) & _PAGE_PADDR_4V;
345 	for (tmp = paddr; tmp < (paddr+PAGE_SIZE); tmp += adi_blksize()) {
346 		version1 = (*tag) >> 4;
347 		version2 = (*tag) & 0x0f;
348 		*tag++ = 0;
349 		asm volatile("stxa %0, [%1] %2\n\t"
350 			:
351 			: "r" (version1), "r" (tmp),
352 			  "i" (ASI_MCD_REAL));
353 		tmp += adi_blksize();
354 		asm volatile("stxa %0, [%1] %2\n\t"
355 			:
356 			: "r" (version2), "r" (tmp),
357 			  "i" (ASI_MCD_REAL));
358 	}
359 	asm volatile("membar #Sync\n\t");
360 
361 	/* Check and mark this tag space for release later if
362 	 * the swapped in page was the last user of tag space
363 	 */
364 	del_tag_store(tag_desc, mm);
365 }
366 
367 /* A page is about to be swapped out. Save any ADI tags associated with
368  * this physical page so they can be restored later when the page is swapped
369  * back in.
370  */
371 int adi_save_tags(struct mm_struct *mm, struct vm_area_struct *vma,
372 		  unsigned long addr, pte_t oldpte)
373 {
374 	unsigned char *tag;
375 	tag_storage_desc_t *tag_desc;
376 	unsigned long version1, version2, paddr, tmp;
377 
378 	tag_desc = alloc_tag_store(mm, vma, addr);
379 	if (tag_desc == NULL)
380 		return -1;
381 
382 	tag = tag_start(addr, tag_desc);
383 	paddr = pte_val(oldpte) & _PAGE_PADDR_4V;
384 	for (tmp = paddr; tmp < (paddr+PAGE_SIZE); tmp += adi_blksize()) {
385 		asm volatile("ldxa [%1] %2, %0\n\t"
386 				: "=r" (version1)
387 				: "r" (tmp), "i" (ASI_MCD_REAL));
388 		tmp += adi_blksize();
389 		asm volatile("ldxa [%1] %2, %0\n\t"
390 				: "=r" (version2)
391 				: "r" (tmp), "i" (ASI_MCD_REAL));
392 		*tag = (version1 << 4) | version2;
393 		tag++;
394 	}
395 
396 	return 0;
397 }
398