1 #ifndef _SPARC64_TSB_H 2 #define _SPARC64_TSB_H 3 4 /* The sparc64 TSB is similar to the powerpc hashtables. It's a 5 * power-of-2 sized table of TAG/PTE pairs. The cpu precomputes 6 * pointers into this table for 8K and 64K page sizes, and also a 7 * comparison TAG based upon the virtual address and context which 8 * faults. 9 * 10 * TLB miss trap handler software does the actual lookup via something 11 * of the form: 12 * 13 * ldxa [%g0] ASI_{D,I}MMU_TSB_8KB_PTR, %g1 14 * ldxa [%g0] ASI_{D,I}MMU, %g6 15 * sllx %g6, 22, %g6 16 * srlx %g6, 22, %g6 17 * ldda [%g1] ASI_NUCLEUS_QUAD_LDD, %g4 18 * cmp %g4, %g6 19 * bne,pn %xcc, tsb_miss_{d,i}tlb 20 * mov FAULT_CODE_{D,I}TLB, %g3 21 * stxa %g5, [%g0] ASI_{D,I}TLB_DATA_IN 22 * retry 23 * 24 * 25 * Each 16-byte slot of the TSB is the 8-byte tag and then the 8-byte 26 * PTE. The TAG is of the same layout as the TLB TAG TARGET mmu 27 * register which is: 28 * 29 * ------------------------------------------------- 30 * | - | CONTEXT | - | VADDR bits 63:22 | 31 * ------------------------------------------------- 32 * 63 61 60 48 47 42 41 0 33 * 34 * But actually, since we use per-mm TSB's, we zero out the CONTEXT 35 * field. 36 * 37 * Like the powerpc hashtables we need to use locking in order to 38 * synchronize while we update the entries. PTE updates need locking 39 * as well. 40 * 41 * We need to carefully choose a lock bits for the TSB entry. We 42 * choose to use bit 47 in the tag. Also, since we never map anything 43 * at page zero in context zero, we use zero as an invalid tag entry. 44 * When the lock bit is set, this forces a tag comparison failure. 45 */ 46 47 #define TSB_TAG_LOCK_BIT 47 48 #define TSB_TAG_LOCK_HIGH (1 << (TSB_TAG_LOCK_BIT - 32)) 49 50 #define TSB_TAG_INVALID_BIT 46 51 #define TSB_TAG_INVALID_HIGH (1 << (TSB_TAG_INVALID_BIT - 32)) 52 53 #define TSB_MEMBAR membar #StoreStore 54 55 /* Some cpus support physical address quad loads. We want to use 56 * those if possible so we don't need to hard-lock the TSB mapping 57 * into the TLB. We encode some instruction patching in order to 58 * support this. 59 * 60 * The kernel TSB is locked into the TLB by virtue of being in the 61 * kernel image, so we don't play these games for swapper_tsb access. 62 */ 63 #ifndef __ASSEMBLY__ 64 struct tsb_ldquad_phys_patch_entry { 65 unsigned int addr; 66 unsigned int sun4u_insn; 67 unsigned int sun4v_insn; 68 }; 69 extern struct tsb_ldquad_phys_patch_entry __tsb_ldquad_phys_patch, 70 __tsb_ldquad_phys_patch_end; 71 72 struct tsb_phys_patch_entry { 73 unsigned int addr; 74 unsigned int insn; 75 }; 76 extern struct tsb_phys_patch_entry __tsb_phys_patch, __tsb_phys_patch_end; 77 #endif 78 #define TSB_LOAD_QUAD(TSB, REG) \ 79 661: ldda [TSB] ASI_NUCLEUS_QUAD_LDD, REG; \ 80 .section .tsb_ldquad_phys_patch, "ax"; \ 81 .word 661b; \ 82 ldda [TSB] ASI_QUAD_LDD_PHYS, REG; \ 83 ldda [TSB] ASI_QUAD_LDD_PHYS_4V, REG; \ 84 .previous 85 86 #define TSB_LOAD_TAG_HIGH(TSB, REG) \ 87 661: lduwa [TSB] ASI_N, REG; \ 88 .section .tsb_phys_patch, "ax"; \ 89 .word 661b; \ 90 lduwa [TSB] ASI_PHYS_USE_EC, REG; \ 91 .previous 92 93 #define TSB_LOAD_TAG(TSB, REG) \ 94 661: ldxa [TSB] ASI_N, REG; \ 95 .section .tsb_phys_patch, "ax"; \ 96 .word 661b; \ 97 ldxa [TSB] ASI_PHYS_USE_EC, REG; \ 98 .previous 99 100 #define TSB_CAS_TAG_HIGH(TSB, REG1, REG2) \ 101 661: casa [TSB] ASI_N, REG1, REG2; \ 102 .section .tsb_phys_patch, "ax"; \ 103 .word 661b; \ 104 casa [TSB] ASI_PHYS_USE_EC, REG1, REG2; \ 105 .previous 106 107 #define TSB_CAS_TAG(TSB, REG1, REG2) \ 108 661: casxa [TSB] ASI_N, REG1, REG2; \ 109 .section .tsb_phys_patch, "ax"; \ 110 .word 661b; \ 111 casxa [TSB] ASI_PHYS_USE_EC, REG1, REG2; \ 112 .previous 113 114 #define TSB_STORE(ADDR, VAL) \ 115 661: stxa VAL, [ADDR] ASI_N; \ 116 .section .tsb_phys_patch, "ax"; \ 117 .word 661b; \ 118 stxa VAL, [ADDR] ASI_PHYS_USE_EC; \ 119 .previous 120 121 #define TSB_LOCK_TAG(TSB, REG1, REG2) \ 122 99: TSB_LOAD_TAG_HIGH(TSB, REG1); \ 123 sethi %hi(TSB_TAG_LOCK_HIGH), REG2;\ 124 andcc REG1, REG2, %g0; \ 125 bne,pn %icc, 99b; \ 126 nop; \ 127 TSB_CAS_TAG_HIGH(TSB, REG1, REG2); \ 128 cmp REG1, REG2; \ 129 bne,pn %icc, 99b; \ 130 nop; \ 131 TSB_MEMBAR 132 133 #define TSB_WRITE(TSB, TTE, TAG) \ 134 add TSB, 0x8, TSB; \ 135 TSB_STORE(TSB, TTE); \ 136 sub TSB, 0x8, TSB; \ 137 TSB_MEMBAR; \ 138 TSB_STORE(TSB, TAG); 139 140 #define KTSB_LOAD_QUAD(TSB, REG) \ 141 ldda [TSB] ASI_NUCLEUS_QUAD_LDD, REG; 142 143 #define KTSB_STORE(ADDR, VAL) \ 144 stxa VAL, [ADDR] ASI_N; 145 146 #define KTSB_LOCK_TAG(TSB, REG1, REG2) \ 147 99: lduwa [TSB] ASI_N, REG1; \ 148 sethi %hi(TSB_TAG_LOCK_HIGH), REG2;\ 149 andcc REG1, REG2, %g0; \ 150 bne,pn %icc, 99b; \ 151 nop; \ 152 casa [TSB] ASI_N, REG1, REG2;\ 153 cmp REG1, REG2; \ 154 bne,pn %icc, 99b; \ 155 nop; \ 156 TSB_MEMBAR 157 158 #define KTSB_WRITE(TSB, TTE, TAG) \ 159 add TSB, 0x8, TSB; \ 160 stxa TTE, [TSB] ASI_N; \ 161 sub TSB, 0x8, TSB; \ 162 TSB_MEMBAR; \ 163 stxa TAG, [TSB] ASI_N; 164 165 /* Do a kernel page table walk. Leaves physical PTE pointer in 166 * REG1. Jumps to FAIL_LABEL on early page table walk termination. 167 * VADDR will not be clobbered, but REG2 will. 168 */ 169 #define KERN_PGTABLE_WALK(VADDR, REG1, REG2, FAIL_LABEL) \ 170 sethi %hi(swapper_pg_dir), REG1; \ 171 or REG1, %lo(swapper_pg_dir), REG1; \ 172 sllx VADDR, 64 - (PGDIR_SHIFT + PGDIR_BITS), REG2; \ 173 srlx REG2, 64 - PAGE_SHIFT, REG2; \ 174 andn REG2, 0x3, REG2; \ 175 lduw [REG1 + REG2], REG1; \ 176 brz,pn REG1, FAIL_LABEL; \ 177 sllx VADDR, 64 - (PMD_SHIFT + PMD_BITS), REG2; \ 178 srlx REG2, 64 - PAGE_SHIFT, REG2; \ 179 sllx REG1, 11, REG1; \ 180 andn REG2, 0x3, REG2; \ 181 lduwa [REG1 + REG2] ASI_PHYS_USE_EC, REG1; \ 182 brz,pn REG1, FAIL_LABEL; \ 183 sllx VADDR, 64 - PMD_SHIFT, REG2; \ 184 srlx REG2, 64 - PAGE_SHIFT, REG2; \ 185 sllx REG1, 11, REG1; \ 186 andn REG2, 0x7, REG2; \ 187 add REG1, REG2, REG1; 188 189 /* Do a user page table walk in MMU globals. Leaves physical PTE 190 * pointer in REG1. Jumps to FAIL_LABEL on early page table walk 191 * termination. Physical base of page tables is in PHYS_PGD which 192 * will not be modified. 193 * 194 * VADDR will not be clobbered, but REG1 and REG2 will. 195 */ 196 #define USER_PGTABLE_WALK_TL1(VADDR, PHYS_PGD, REG1, REG2, FAIL_LABEL) \ 197 sllx VADDR, 64 - (PGDIR_SHIFT + PGDIR_BITS), REG2; \ 198 srlx REG2, 64 - PAGE_SHIFT, REG2; \ 199 andn REG2, 0x3, REG2; \ 200 lduwa [PHYS_PGD + REG2] ASI_PHYS_USE_EC, REG1; \ 201 brz,pn REG1, FAIL_LABEL; \ 202 sllx VADDR, 64 - (PMD_SHIFT + PMD_BITS), REG2; \ 203 srlx REG2, 64 - PAGE_SHIFT, REG2; \ 204 sllx REG1, 11, REG1; \ 205 andn REG2, 0x3, REG2; \ 206 lduwa [REG1 + REG2] ASI_PHYS_USE_EC, REG1; \ 207 brz,pn REG1, FAIL_LABEL; \ 208 sllx VADDR, 64 - PMD_SHIFT, REG2; \ 209 srlx REG2, 64 - PAGE_SHIFT, REG2; \ 210 sllx REG1, 11, REG1; \ 211 andn REG2, 0x7, REG2; \ 212 add REG1, REG2, REG1; 213 214 /* Lookup a OBP mapping on VADDR in the prom_trans[] table at TL>0. 215 * If no entry is found, FAIL_LABEL will be branched to. On success 216 * the resulting PTE value will be left in REG1. VADDR is preserved 217 * by this routine. 218 */ 219 #define OBP_TRANS_LOOKUP(VADDR, REG1, REG2, REG3, FAIL_LABEL) \ 220 sethi %hi(prom_trans), REG1; \ 221 or REG1, %lo(prom_trans), REG1; \ 222 97: ldx [REG1 + 0x00], REG2; \ 223 brz,pn REG2, FAIL_LABEL; \ 224 nop; \ 225 ldx [REG1 + 0x08], REG3; \ 226 add REG2, REG3, REG3; \ 227 cmp REG2, VADDR; \ 228 bgu,pt %xcc, 98f; \ 229 cmp VADDR, REG3; \ 230 bgeu,pt %xcc, 98f; \ 231 ldx [REG1 + 0x10], REG3; \ 232 sub VADDR, REG2, REG2; \ 233 ba,pt %xcc, 99f; \ 234 add REG3, REG2, REG1; \ 235 98: ba,pt %xcc, 97b; \ 236 add REG1, (3 * 8), REG1; \ 237 99: 238 239 /* We use a 32K TSB for the whole kernel, this allows to 240 * handle about 16MB of modules and vmalloc mappings without 241 * incurring many hash conflicts. 242 */ 243 #define KERNEL_TSB_SIZE_BYTES (32 * 1024) 244 #define KERNEL_TSB_NENTRIES \ 245 (KERNEL_TSB_SIZE_BYTES / 16) 246 #define KERNEL_TSB4M_NENTRIES 4096 247 248 /* Do a kernel TSB lookup at tl>0 on VADDR+TAG, branch to OK_LABEL 249 * on TSB hit. REG1, REG2, REG3, and REG4 are used as temporaries 250 * and the found TTE will be left in REG1. REG3 and REG4 must 251 * be an even/odd pair of registers. 252 * 253 * VADDR and TAG will be preserved and not clobbered by this macro. 254 */ 255 #define KERN_TSB_LOOKUP_TL1(VADDR, TAG, REG1, REG2, REG3, REG4, OK_LABEL) \ 256 sethi %hi(swapper_tsb), REG1; \ 257 or REG1, %lo(swapper_tsb), REG1; \ 258 srlx VADDR, PAGE_SHIFT, REG2; \ 259 and REG2, (KERNEL_TSB_NENTRIES - 1), REG2; \ 260 sllx REG2, 4, REG2; \ 261 add REG1, REG2, REG2; \ 262 KTSB_LOAD_QUAD(REG2, REG3); \ 263 cmp REG3, TAG; \ 264 be,a,pt %xcc, OK_LABEL; \ 265 mov REG4, REG1; 266 267 #ifndef CONFIG_DEBUG_PAGEALLOC 268 /* This version uses a trick, the TAG is already (VADDR >> 22) so 269 * we can make use of that for the index computation. 270 */ 271 #define KERN_TSB4M_LOOKUP_TL1(TAG, REG1, REG2, REG3, REG4, OK_LABEL) \ 272 sethi %hi(swapper_4m_tsb), REG1; \ 273 or REG1, %lo(swapper_4m_tsb), REG1; \ 274 and TAG, (KERNEL_TSB4M_NENTRIES - 1), REG2; \ 275 sllx REG2, 4, REG2; \ 276 add REG1, REG2, REG2; \ 277 KTSB_LOAD_QUAD(REG2, REG3); \ 278 cmp REG3, TAG; \ 279 be,a,pt %xcc, OK_LABEL; \ 280 mov REG4, REG1; 281 #endif 282 283 #endif /* !(_SPARC64_TSB_H) */ 284