xref: /openbmc/linux/arch/sparc/include/asm/tsb.h (revision 981ab3f1)
1 #ifndef _SPARC64_TSB_H
2 #define _SPARC64_TSB_H
3 
4 /* The sparc64 TSB is similar to the powerpc hashtables.  It's a
5  * power-of-2 sized table of TAG/PTE pairs.  The cpu precomputes
6  * pointers into this table for 8K and 64K page sizes, and also a
7  * comparison TAG based upon the virtual address and context which
8  * faults.
9  *
10  * TLB miss trap handler software does the actual lookup via something
11  * of the form:
12  *
13  * 	ldxa		[%g0] ASI_{D,I}MMU_TSB_8KB_PTR, %g1
14  * 	ldxa		[%g0] ASI_{D,I}MMU, %g6
15  *	sllx		%g6, 22, %g6
16  *	srlx		%g6, 22, %g6
17  * 	ldda		[%g1] ASI_NUCLEUS_QUAD_LDD, %g4
18  * 	cmp		%g4, %g6
19  * 	bne,pn	%xcc, tsb_miss_{d,i}tlb
20  * 	 mov		FAULT_CODE_{D,I}TLB, %g3
21  * 	stxa		%g5, [%g0] ASI_{D,I}TLB_DATA_IN
22  * 	retry
23  *
24  *
25  * Each 16-byte slot of the TSB is the 8-byte tag and then the 8-byte
26  * PTE.  The TAG is of the same layout as the TLB TAG TARGET mmu
27  * register which is:
28  *
29  * -------------------------------------------------
30  * |  -  |  CONTEXT |  -  |    VADDR bits 63:22    |
31  * -------------------------------------------------
32  *  63 61 60      48 47 42 41                     0
33  *
34  * But actually, since we use per-mm TSB's, we zero out the CONTEXT
35  * field.
36  *
37  * Like the powerpc hashtables we need to use locking in order to
38  * synchronize while we update the entries.  PTE updates need locking
39  * as well.
40  *
41  * We need to carefully choose a lock bits for the TSB entry.  We
42  * choose to use bit 47 in the tag.  Also, since we never map anything
43  * at page zero in context zero, we use zero as an invalid tag entry.
44  * When the lock bit is set, this forces a tag comparison failure.
45  */
46 
47 #define TSB_TAG_LOCK_BIT	47
48 #define TSB_TAG_LOCK_HIGH	(1 << (TSB_TAG_LOCK_BIT - 32))
49 
50 #define TSB_TAG_INVALID_BIT	46
51 #define TSB_TAG_INVALID_HIGH	(1 << (TSB_TAG_INVALID_BIT - 32))
52 
53 /* Some cpus support physical address quad loads.  We want to use
54  * those if possible so we don't need to hard-lock the TSB mapping
55  * into the TLB.  We encode some instruction patching in order to
56  * support this.
57  *
58  * The kernel TSB is locked into the TLB by virtue of being in the
59  * kernel image, so we don't play these games for swapper_tsb access.
60  */
61 #ifndef __ASSEMBLY__
62 struct tsb_ldquad_phys_patch_entry {
63 	unsigned int	addr;
64 	unsigned int	sun4u_insn;
65 	unsigned int	sun4v_insn;
66 };
67 extern struct tsb_ldquad_phys_patch_entry __tsb_ldquad_phys_patch,
68 	__tsb_ldquad_phys_patch_end;
69 
70 struct tsb_phys_patch_entry {
71 	unsigned int	addr;
72 	unsigned int	insn;
73 };
74 extern struct tsb_phys_patch_entry __tsb_phys_patch, __tsb_phys_patch_end;
75 #endif
76 #define TSB_LOAD_QUAD(TSB, REG)	\
77 661:	ldda		[TSB] ASI_NUCLEUS_QUAD_LDD, REG; \
78 	.section	.tsb_ldquad_phys_patch, "ax"; \
79 	.word		661b; \
80 	ldda		[TSB] ASI_QUAD_LDD_PHYS, REG; \
81 	ldda		[TSB] ASI_QUAD_LDD_PHYS_4V, REG; \
82 	.previous
83 
84 #define TSB_LOAD_TAG_HIGH(TSB, REG) \
85 661:	lduwa		[TSB] ASI_N, REG; \
86 	.section	.tsb_phys_patch, "ax"; \
87 	.word		661b; \
88 	lduwa		[TSB] ASI_PHYS_USE_EC, REG; \
89 	.previous
90 
91 #define TSB_LOAD_TAG(TSB, REG) \
92 661:	ldxa		[TSB] ASI_N, REG; \
93 	.section	.tsb_phys_patch, "ax"; \
94 	.word		661b; \
95 	ldxa		[TSB] ASI_PHYS_USE_EC, REG; \
96 	.previous
97 
98 #define TSB_CAS_TAG_HIGH(TSB, REG1, REG2) \
99 661:	casa		[TSB] ASI_N, REG1, REG2; \
100 	.section	.tsb_phys_patch, "ax"; \
101 	.word		661b; \
102 	casa		[TSB] ASI_PHYS_USE_EC, REG1, REG2; \
103 	.previous
104 
105 #define TSB_CAS_TAG(TSB, REG1, REG2) \
106 661:	casxa		[TSB] ASI_N, REG1, REG2; \
107 	.section	.tsb_phys_patch, "ax"; \
108 	.word		661b; \
109 	casxa		[TSB] ASI_PHYS_USE_EC, REG1, REG2; \
110 	.previous
111 
112 #define TSB_STORE(ADDR, VAL) \
113 661:	stxa		VAL, [ADDR] ASI_N; \
114 	.section	.tsb_phys_patch, "ax"; \
115 	.word		661b; \
116 	stxa		VAL, [ADDR] ASI_PHYS_USE_EC; \
117 	.previous
118 
119 #define TSB_LOCK_TAG(TSB, REG1, REG2)	\
120 99:	TSB_LOAD_TAG_HIGH(TSB, REG1);	\
121 	sethi	%hi(TSB_TAG_LOCK_HIGH), REG2;\
122 	andcc	REG1, REG2, %g0;	\
123 	bne,pn	%icc, 99b;		\
124 	 nop;				\
125 	TSB_CAS_TAG_HIGH(TSB, REG1, REG2);	\
126 	cmp	REG1, REG2;		\
127 	bne,pn	%icc, 99b;		\
128 	 nop;				\
129 
130 #define TSB_WRITE(TSB, TTE, TAG) \
131 	add	TSB, 0x8, TSB;   \
132 	TSB_STORE(TSB, TTE);     \
133 	sub	TSB, 0x8, TSB;   \
134 	TSB_STORE(TSB, TAG);
135 
136 	/* Do a kernel page table walk.  Leaves valid PTE value in
137 	 * REG1.  Jumps to FAIL_LABEL on early page table walk
138 	 * termination.  VADDR will not be clobbered, but REG2 will.
139 	 *
140 	 * There are two masks we must apply to propagate bits from
141 	 * the virtual address into the PTE physical address field
142 	 * when dealing with huge pages.  This is because the page
143 	 * table boundaries do not match the huge page size(s) the
144 	 * hardware supports.
145 	 *
146 	 * In these cases we propagate the bits that are below the
147 	 * page table level where we saw the huge page mapping, but
148 	 * are still within the relevant physical bits for the huge
149 	 * page size in question.  So for PMD mappings (which fall on
150 	 * bit 23, for 8MB per PMD) we must propagate bit 22 for a
151 	 * 4MB huge page.  For huge PUDs (which fall on bit 33, for
152 	 * 8GB per PUD), we have to accommodate 256MB and 2GB huge
153 	 * pages.  So for those we propagate bits 32 to 28.
154 	 */
155 #define KERN_PGTABLE_WALK(VADDR, REG1, REG2, FAIL_LABEL)	\
156 	sethi		%hi(swapper_pg_dir), REG1; \
157 	or		REG1, %lo(swapper_pg_dir), REG1; \
158 	sllx		VADDR, 64 - (PGDIR_SHIFT + PGDIR_BITS), REG2; \
159 	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
160 	andn		REG2, 0x7, REG2; \
161 	ldx		[REG1 + REG2], REG1; \
162 	brz,pn		REG1, FAIL_LABEL; \
163 	 sllx		VADDR, 64 - (PUD_SHIFT + PUD_BITS), REG2; \
164 	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
165 	andn		REG2, 0x7, REG2; \
166 	ldxa		[REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
167 	brz,pn		REG1, FAIL_LABEL; \
168 	sethi		%uhi(_PAGE_PUD_HUGE), REG2; \
169 	brz,pn		REG1, FAIL_LABEL; \
170 	 sllx		REG2, 32, REG2; \
171 	andcc		REG1, REG2, %g0; \
172 	sethi		%hi(0xf8000000), REG2; \
173 	bne,pt		%xcc, 697f; \
174 	 sllx		REG2, 1, REG2; \
175 	sllx		VADDR, 64 - (PMD_SHIFT + PMD_BITS), REG2; \
176 	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
177 	andn		REG2, 0x7, REG2; \
178 	ldxa		[REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
179 	sethi		%uhi(_PAGE_PMD_HUGE), REG2; \
180 	brz,pn		REG1, FAIL_LABEL; \
181 	 sllx		REG2, 32, REG2; \
182 	andcc		REG1, REG2, %g0; \
183 	be,pn		%xcc, 698f; \
184 	 sethi		%hi(0x400000), REG2; \
185 697:	brgez,pn	REG1, FAIL_LABEL; \
186 	 andn		REG1, REG2, REG1; \
187 	and		VADDR, REG2, REG2; \
188 	ba,pt		%xcc, 699f; \
189 	 or		REG1, REG2, REG1; \
190 698:	sllx		VADDR, 64 - PMD_SHIFT, REG2; \
191 	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
192 	andn		REG2, 0x7, REG2; \
193 	ldxa		[REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
194 	brgez,pn	REG1, FAIL_LABEL; \
195 	 nop; \
196 699:
197 
198 	/* PMD has been loaded into REG1, interpret the value, seeing
199 	 * if it is a HUGE PMD or a normal one.  If it is not valid
200 	 * then jump to FAIL_LABEL.  If it is a HUGE PMD, and it
201 	 * translates to a valid PTE, branch to PTE_LABEL.
202 	 *
203 	 * We have to propagate the 4MB bit of the virtual address
204 	 * because we are fabricating 8MB pages using 4MB hw pages.
205 	 */
206 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
207 #define USER_PGTABLE_CHECK_PMD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, PTE_LABEL) \
208 	brz,pn		REG1, FAIL_LABEL;		\
209 	 sethi		%uhi(_PAGE_PMD_HUGE), REG2;	\
210 	sllx		REG2, 32, REG2;			\
211 	andcc		REG1, REG2, %g0;		\
212 	be,pt		%xcc, 700f;			\
213 	 sethi		%hi(4 * 1024 * 1024), REG2;	\
214 	brgez,pn	REG1, FAIL_LABEL;		\
215 	 andn		REG1, REG2, REG1;		\
216 	and		VADDR, REG2, REG2;		\
217 	brlz,pt		REG1, PTE_LABEL;		\
218 	 or		REG1, REG2, REG1;		\
219 700:
220 #else
221 #define USER_PGTABLE_CHECK_PMD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, PTE_LABEL) \
222 	brz,pn		REG1, FAIL_LABEL; \
223 	 nop;
224 #endif
225 
226 	/* Do a user page table walk in MMU globals.  Leaves final,
227 	 * valid, PTE value in REG1.  Jumps to FAIL_LABEL on early
228 	 * page table walk termination or if the PTE is not valid.
229 	 *
230 	 * Physical base of page tables is in PHYS_PGD which will not
231 	 * be modified.
232 	 *
233 	 * VADDR will not be clobbered, but REG1 and REG2 will.
234 	 */
235 #define USER_PGTABLE_WALK_TL1(VADDR, PHYS_PGD, REG1, REG2, FAIL_LABEL)	\
236 	sllx		VADDR, 64 - (PGDIR_SHIFT + PGDIR_BITS), REG2; \
237 	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
238 	andn		REG2, 0x7, REG2; \
239 	ldxa		[PHYS_PGD + REG2] ASI_PHYS_USE_EC, REG1; \
240 	brz,pn		REG1, FAIL_LABEL; \
241 	 sllx		VADDR, 64 - (PUD_SHIFT + PUD_BITS), REG2; \
242 	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
243 	andn		REG2, 0x7, REG2; \
244 	ldxa		[REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
245 	brz,pn		REG1, FAIL_LABEL; \
246 	 sllx		VADDR, 64 - (PMD_SHIFT + PMD_BITS), REG2; \
247 	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
248 	andn		REG2, 0x7, REG2; \
249 	ldxa		[REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
250 	USER_PGTABLE_CHECK_PMD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, 800f) \
251 	sllx		VADDR, 64 - PMD_SHIFT, REG2; \
252 	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
253 	andn		REG2, 0x7, REG2; \
254 	add		REG1, REG2, REG1; \
255 	ldxa		[REG1] ASI_PHYS_USE_EC, REG1; \
256 	brgez,pn	REG1, FAIL_LABEL; \
257 	 nop; \
258 800:
259 
260 /* Lookup a OBP mapping on VADDR in the prom_trans[] table at TL>0.
261  * If no entry is found, FAIL_LABEL will be branched to.  On success
262  * the resulting PTE value will be left in REG1.  VADDR is preserved
263  * by this routine.
264  */
265 #define OBP_TRANS_LOOKUP(VADDR, REG1, REG2, REG3, FAIL_LABEL) \
266 	sethi		%hi(prom_trans), REG1; \
267 	or		REG1, %lo(prom_trans), REG1; \
268 97:	ldx		[REG1 + 0x00], REG2; \
269 	brz,pn		REG2, FAIL_LABEL; \
270 	 nop; \
271 	ldx		[REG1 + 0x08], REG3; \
272 	add		REG2, REG3, REG3; \
273 	cmp		REG2, VADDR; \
274 	bgu,pt		%xcc, 98f; \
275 	 cmp		VADDR, REG3; \
276 	bgeu,pt		%xcc, 98f; \
277 	 ldx		[REG1 + 0x10], REG3; \
278 	sub		VADDR, REG2, REG2; \
279 	ba,pt		%xcc, 99f; \
280 	 add		REG3, REG2, REG1; \
281 98:	ba,pt		%xcc, 97b; \
282 	 add		REG1, (3 * 8), REG1; \
283 99:
284 
285 	/* We use a 32K TSB for the whole kernel, this allows to
286 	 * handle about 16MB of modules and vmalloc mappings without
287 	 * incurring many hash conflicts.
288 	 */
289 #define KERNEL_TSB_SIZE_BYTES	(32 * 1024)
290 #define KERNEL_TSB_NENTRIES	\
291 	(KERNEL_TSB_SIZE_BYTES / 16)
292 #define KERNEL_TSB4M_NENTRIES	4096
293 
294 	/* Do a kernel TSB lookup at tl>0 on VADDR+TAG, branch to OK_LABEL
295 	 * on TSB hit.  REG1, REG2, REG3, and REG4 are used as temporaries
296 	 * and the found TTE will be left in REG1.  REG3 and REG4 must
297 	 * be an even/odd pair of registers.
298 	 *
299 	 * VADDR and TAG will be preserved and not clobbered by this macro.
300 	 */
301 #define KERN_TSB_LOOKUP_TL1(VADDR, TAG, REG1, REG2, REG3, REG4, OK_LABEL) \
302 661:	sethi		%uhi(swapper_tsb), REG1; \
303 	sethi		%hi(swapper_tsb), REG2; \
304 	or		REG1, %ulo(swapper_tsb), REG1; \
305 	or		REG2, %lo(swapper_tsb), REG2; \
306 	.section	.swapper_tsb_phys_patch, "ax"; \
307 	.word		661b; \
308 	.previous; \
309 	sllx		REG1, 32, REG1; \
310 	or		REG1, REG2, REG1; \
311 	srlx		VADDR, PAGE_SHIFT, REG2; \
312 	and		REG2, (KERNEL_TSB_NENTRIES - 1), REG2; \
313 	sllx		REG2, 4, REG2; \
314 	add		REG1, REG2, REG2; \
315 	TSB_LOAD_QUAD(REG2, REG3); \
316 	cmp		REG3, TAG; \
317 	be,a,pt		%xcc, OK_LABEL; \
318 	 mov		REG4, REG1;
319 
320 #ifndef CONFIG_DEBUG_PAGEALLOC
321 	/* This version uses a trick, the TAG is already (VADDR >> 22) so
322 	 * we can make use of that for the index computation.
323 	 */
324 #define KERN_TSB4M_LOOKUP_TL1(TAG, REG1, REG2, REG3, REG4, OK_LABEL) \
325 661:	sethi		%uhi(swapper_4m_tsb), REG1; \
326 	sethi		%hi(swapper_4m_tsb), REG2; \
327 	or		REG1, %ulo(swapper_4m_tsb), REG1; \
328 	or		REG2, %lo(swapper_4m_tsb), REG2; \
329 	.section	.swapper_4m_tsb_phys_patch, "ax"; \
330 	.word		661b; \
331 	.previous; \
332 	sllx		REG1, 32, REG1; \
333 	or		REG1, REG2, REG1; \
334 	and		TAG, (KERNEL_TSB4M_NENTRIES - 1), REG2; \
335 	sllx		REG2, 4, REG2; \
336 	add		REG1, REG2, REG2; \
337 	TSB_LOAD_QUAD(REG2, REG3); \
338 	cmp		REG3, TAG; \
339 	be,a,pt		%xcc, OK_LABEL; \
340 	 mov		REG4, REG1;
341 #endif
342 
343 #endif /* !(_SPARC64_TSB_H) */
344