xref: /openbmc/linux/arch/sparc/include/asm/tsb.h (revision 8fa5723aa7e053d498336b48448b292fc2e0458b)
1 #ifndef _SPARC64_TSB_H
2 #define _SPARC64_TSB_H
3 
4 /* The sparc64 TSB is similar to the powerpc hashtables.  It's a
5  * power-of-2 sized table of TAG/PTE pairs.  The cpu precomputes
6  * pointers into this table for 8K and 64K page sizes, and also a
7  * comparison TAG based upon the virtual address and context which
8  * faults.
9  *
10  * TLB miss trap handler software does the actual lookup via something
11  * of the form:
12  *
13  * 	ldxa		[%g0] ASI_{D,I}MMU_TSB_8KB_PTR, %g1
14  * 	ldxa		[%g0] ASI_{D,I}MMU, %g6
15  *	sllx		%g6, 22, %g6
16  *	srlx		%g6, 22, %g6
17  * 	ldda		[%g1] ASI_NUCLEUS_QUAD_LDD, %g4
18  * 	cmp		%g4, %g6
19  * 	bne,pn	%xcc, tsb_miss_{d,i}tlb
20  * 	 mov		FAULT_CODE_{D,I}TLB, %g3
21  * 	stxa		%g5, [%g0] ASI_{D,I}TLB_DATA_IN
22  * 	retry
23  *
24  *
25  * Each 16-byte slot of the TSB is the 8-byte tag and then the 8-byte
26  * PTE.  The TAG is of the same layout as the TLB TAG TARGET mmu
27  * register which is:
28  *
29  * -------------------------------------------------
30  * |  -  |  CONTEXT |  -  |    VADDR bits 63:22    |
31  * -------------------------------------------------
32  *  63 61 60      48 47 42 41                     0
33  *
34  * But actually, since we use per-mm TSB's, we zero out the CONTEXT
35  * field.
36  *
37  * Like the powerpc hashtables we need to use locking in order to
38  * synchronize while we update the entries.  PTE updates need locking
39  * as well.
40  *
41  * We need to carefully choose a lock bits for the TSB entry.  We
42  * choose to use bit 47 in the tag.  Also, since we never map anything
43  * at page zero in context zero, we use zero as an invalid tag entry.
44  * When the lock bit is set, this forces a tag comparison failure.
45  */
46 
47 #define TSB_TAG_LOCK_BIT	47
48 #define TSB_TAG_LOCK_HIGH	(1 << (TSB_TAG_LOCK_BIT - 32))
49 
50 #define TSB_TAG_INVALID_BIT	46
51 #define TSB_TAG_INVALID_HIGH	(1 << (TSB_TAG_INVALID_BIT - 32))
52 
53 #define TSB_MEMBAR	membar	#StoreStore
54 
55 /* Some cpus support physical address quad loads.  We want to use
56  * those if possible so we don't need to hard-lock the TSB mapping
57  * into the TLB.  We encode some instruction patching in order to
58  * support this.
59  *
60  * The kernel TSB is locked into the TLB by virtue of being in the
61  * kernel image, so we don't play these games for swapper_tsb access.
62  */
63 #ifndef __ASSEMBLY__
64 struct tsb_ldquad_phys_patch_entry {
65 	unsigned int	addr;
66 	unsigned int	sun4u_insn;
67 	unsigned int	sun4v_insn;
68 };
69 extern struct tsb_ldquad_phys_patch_entry __tsb_ldquad_phys_patch,
70 	__tsb_ldquad_phys_patch_end;
71 
72 struct tsb_phys_patch_entry {
73 	unsigned int	addr;
74 	unsigned int	insn;
75 };
76 extern struct tsb_phys_patch_entry __tsb_phys_patch, __tsb_phys_patch_end;
77 #endif
78 #define TSB_LOAD_QUAD(TSB, REG)	\
79 661:	ldda		[TSB] ASI_NUCLEUS_QUAD_LDD, REG; \
80 	.section	.tsb_ldquad_phys_patch, "ax"; \
81 	.word		661b; \
82 	ldda		[TSB] ASI_QUAD_LDD_PHYS, REG; \
83 	ldda		[TSB] ASI_QUAD_LDD_PHYS_4V, REG; \
84 	.previous
85 
86 #define TSB_LOAD_TAG_HIGH(TSB, REG) \
87 661:	lduwa		[TSB] ASI_N, REG; \
88 	.section	.tsb_phys_patch, "ax"; \
89 	.word		661b; \
90 	lduwa		[TSB] ASI_PHYS_USE_EC, REG; \
91 	.previous
92 
93 #define TSB_LOAD_TAG(TSB, REG) \
94 661:	ldxa		[TSB] ASI_N, REG; \
95 	.section	.tsb_phys_patch, "ax"; \
96 	.word		661b; \
97 	ldxa		[TSB] ASI_PHYS_USE_EC, REG; \
98 	.previous
99 
100 #define TSB_CAS_TAG_HIGH(TSB, REG1, REG2) \
101 661:	casa		[TSB] ASI_N, REG1, REG2; \
102 	.section	.tsb_phys_patch, "ax"; \
103 	.word		661b; \
104 	casa		[TSB] ASI_PHYS_USE_EC, REG1, REG2; \
105 	.previous
106 
107 #define TSB_CAS_TAG(TSB, REG1, REG2) \
108 661:	casxa		[TSB] ASI_N, REG1, REG2; \
109 	.section	.tsb_phys_patch, "ax"; \
110 	.word		661b; \
111 	casxa		[TSB] ASI_PHYS_USE_EC, REG1, REG2; \
112 	.previous
113 
114 #define TSB_STORE(ADDR, VAL) \
115 661:	stxa		VAL, [ADDR] ASI_N; \
116 	.section	.tsb_phys_patch, "ax"; \
117 	.word		661b; \
118 	stxa		VAL, [ADDR] ASI_PHYS_USE_EC; \
119 	.previous
120 
121 #define TSB_LOCK_TAG(TSB, REG1, REG2)	\
122 99:	TSB_LOAD_TAG_HIGH(TSB, REG1);	\
123 	sethi	%hi(TSB_TAG_LOCK_HIGH), REG2;\
124 	andcc	REG1, REG2, %g0;	\
125 	bne,pn	%icc, 99b;		\
126 	 nop;				\
127 	TSB_CAS_TAG_HIGH(TSB, REG1, REG2);	\
128 	cmp	REG1, REG2;		\
129 	bne,pn	%icc, 99b;		\
130 	 nop;				\
131 	TSB_MEMBAR
132 
133 #define TSB_WRITE(TSB, TTE, TAG) \
134 	add	TSB, 0x8, TSB;   \
135 	TSB_STORE(TSB, TTE);     \
136 	sub	TSB, 0x8, TSB;   \
137 	TSB_MEMBAR;              \
138 	TSB_STORE(TSB, TAG);
139 
140 #define KTSB_LOAD_QUAD(TSB, REG) \
141 	ldda		[TSB] ASI_NUCLEUS_QUAD_LDD, REG;
142 
143 #define KTSB_STORE(ADDR, VAL) \
144 	stxa		VAL, [ADDR] ASI_N;
145 
146 #define KTSB_LOCK_TAG(TSB, REG1, REG2)	\
147 99:	lduwa	[TSB] ASI_N, REG1;	\
148 	sethi	%hi(TSB_TAG_LOCK_HIGH), REG2;\
149 	andcc	REG1, REG2, %g0;	\
150 	bne,pn	%icc, 99b;		\
151 	 nop;				\
152 	casa	[TSB] ASI_N, REG1, REG2;\
153 	cmp	REG1, REG2;		\
154 	bne,pn	%icc, 99b;		\
155 	 nop;				\
156 	TSB_MEMBAR
157 
158 #define KTSB_WRITE(TSB, TTE, TAG) \
159 	add	TSB, 0x8, TSB;   \
160 	stxa	TTE, [TSB] ASI_N;     \
161 	sub	TSB, 0x8, TSB;   \
162 	TSB_MEMBAR;              \
163 	stxa	TAG, [TSB] ASI_N;
164 
165 	/* Do a kernel page table walk.  Leaves physical PTE pointer in
166 	 * REG1.  Jumps to FAIL_LABEL on early page table walk termination.
167 	 * VADDR will not be clobbered, but REG2 will.
168 	 */
169 #define KERN_PGTABLE_WALK(VADDR, REG1, REG2, FAIL_LABEL)	\
170 	sethi		%hi(swapper_pg_dir), REG1; \
171 	or		REG1, %lo(swapper_pg_dir), REG1; \
172 	sllx		VADDR, 64 - (PGDIR_SHIFT + PGDIR_BITS), REG2; \
173 	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
174 	andn		REG2, 0x3, REG2; \
175 	lduw		[REG1 + REG2], REG1; \
176 	brz,pn		REG1, FAIL_LABEL; \
177 	 sllx		VADDR, 64 - (PMD_SHIFT + PMD_BITS), REG2; \
178 	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
179 	sllx		REG1, 11, REG1; \
180 	andn		REG2, 0x3, REG2; \
181 	lduwa		[REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
182 	brz,pn		REG1, FAIL_LABEL; \
183 	 sllx		VADDR, 64 - PMD_SHIFT, REG2; \
184 	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
185 	sllx		REG1, 11, REG1; \
186 	andn		REG2, 0x7, REG2; \
187 	add		REG1, REG2, REG1;
188 
189 	/* Do a user page table walk in MMU globals.  Leaves physical PTE
190 	 * pointer in REG1.  Jumps to FAIL_LABEL on early page table walk
191 	 * termination.  Physical base of page tables is in PHYS_PGD which
192 	 * will not be modified.
193 	 *
194 	 * VADDR will not be clobbered, but REG1 and REG2 will.
195 	 */
196 #define USER_PGTABLE_WALK_TL1(VADDR, PHYS_PGD, REG1, REG2, FAIL_LABEL)	\
197 	sllx		VADDR, 64 - (PGDIR_SHIFT + PGDIR_BITS), REG2; \
198 	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
199 	andn		REG2, 0x3, REG2; \
200 	lduwa		[PHYS_PGD + REG2] ASI_PHYS_USE_EC, REG1; \
201 	brz,pn		REG1, FAIL_LABEL; \
202 	 sllx		VADDR, 64 - (PMD_SHIFT + PMD_BITS), REG2; \
203 	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
204 	sllx		REG1, 11, REG1; \
205 	andn		REG2, 0x3, REG2; \
206 	lduwa		[REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
207 	brz,pn		REG1, FAIL_LABEL; \
208 	 sllx		VADDR, 64 - PMD_SHIFT, REG2; \
209 	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
210 	sllx		REG1, 11, REG1; \
211 	andn		REG2, 0x7, REG2; \
212 	add		REG1, REG2, REG1;
213 
214 /* Lookup a OBP mapping on VADDR in the prom_trans[] table at TL>0.
215  * If no entry is found, FAIL_LABEL will be branched to.  On success
216  * the resulting PTE value will be left in REG1.  VADDR is preserved
217  * by this routine.
218  */
219 #define OBP_TRANS_LOOKUP(VADDR, REG1, REG2, REG3, FAIL_LABEL) \
220 	sethi		%hi(prom_trans), REG1; \
221 	or		REG1, %lo(prom_trans), REG1; \
222 97:	ldx		[REG1 + 0x00], REG2; \
223 	brz,pn		REG2, FAIL_LABEL; \
224 	 nop; \
225 	ldx		[REG1 + 0x08], REG3; \
226 	add		REG2, REG3, REG3; \
227 	cmp		REG2, VADDR; \
228 	bgu,pt		%xcc, 98f; \
229 	 cmp		VADDR, REG3; \
230 	bgeu,pt		%xcc, 98f; \
231 	 ldx		[REG1 + 0x10], REG3; \
232 	sub		VADDR, REG2, REG2; \
233 	ba,pt		%xcc, 99f; \
234 	 add		REG3, REG2, REG1; \
235 98:	ba,pt		%xcc, 97b; \
236 	 add		REG1, (3 * 8), REG1; \
237 99:
238 
239 	/* We use a 32K TSB for the whole kernel, this allows to
240 	 * handle about 16MB of modules and vmalloc mappings without
241 	 * incurring many hash conflicts.
242 	 */
243 #define KERNEL_TSB_SIZE_BYTES	(32 * 1024)
244 #define KERNEL_TSB_NENTRIES	\
245 	(KERNEL_TSB_SIZE_BYTES / 16)
246 #define KERNEL_TSB4M_NENTRIES	4096
247 
248 	/* Do a kernel TSB lookup at tl>0 on VADDR+TAG, branch to OK_LABEL
249 	 * on TSB hit.  REG1, REG2, REG3, and REG4 are used as temporaries
250 	 * and the found TTE will be left in REG1.  REG3 and REG4 must
251 	 * be an even/odd pair of registers.
252 	 *
253 	 * VADDR and TAG will be preserved and not clobbered by this macro.
254 	 */
255 #define KERN_TSB_LOOKUP_TL1(VADDR, TAG, REG1, REG2, REG3, REG4, OK_LABEL) \
256 	sethi		%hi(swapper_tsb), REG1; \
257 	or		REG1, %lo(swapper_tsb), REG1; \
258 	srlx		VADDR, PAGE_SHIFT, REG2; \
259 	and		REG2, (KERNEL_TSB_NENTRIES - 1), REG2; \
260 	sllx		REG2, 4, REG2; \
261 	add		REG1, REG2, REG2; \
262 	KTSB_LOAD_QUAD(REG2, REG3); \
263 	cmp		REG3, TAG; \
264 	be,a,pt		%xcc, OK_LABEL; \
265 	 mov		REG4, REG1;
266 
267 #ifndef CONFIG_DEBUG_PAGEALLOC
268 	/* This version uses a trick, the TAG is already (VADDR >> 22) so
269 	 * we can make use of that for the index computation.
270 	 */
271 #define KERN_TSB4M_LOOKUP_TL1(TAG, REG1, REG2, REG3, REG4, OK_LABEL) \
272 	sethi		%hi(swapper_4m_tsb), REG1; \
273 	or		REG1, %lo(swapper_4m_tsb), REG1; \
274 	and		TAG, (KERNEL_TSB4M_NENTRIES - 1), REG2; \
275 	sllx		REG2, 4, REG2; \
276 	add		REG1, REG2, REG2; \
277 	KTSB_LOAD_QUAD(REG2, REG3); \
278 	cmp		REG3, TAG; \
279 	be,a,pt		%xcc, OK_LABEL; \
280 	 mov		REG4, REG1;
281 #endif
282 
283 #endif /* !(_SPARC64_TSB_H) */
284