1 /* 2 * ross.h: Ross module specific definitions and defines. 3 * 4 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) 5 */ 6 7 #ifndef _SPARC_ROSS_H 8 #define _SPARC_ROSS_H 9 10 #include <asm/asi.h> 11 #include <asm/page.h> 12 13 /* Ross made Hypersparcs have a %psr 'impl' field of '0001'. The 'vers' 14 * field has '1111'. 15 */ 16 17 /* The MMU control register fields on the HyperSparc. 18 * 19 * ----------------------------------------------------------------- 20 * |implvers| RSV |CWR|SE|WBE| MID |BM| C|CS|MR|CM|RSV|CE|RSV|NF|ME| 21 * ----------------------------------------------------------------- 22 * 31 24 23-22 21 20 19 18-15 14 13 12 11 10 9 8 7-2 1 0 23 * 24 * Phew, lots of fields there ;-) 25 * 26 * CWR: Cache Wrapping Enabled, if one cache wrapping is on. 27 * SE: Snoop Enable, turns on bus snooping for cache activity if one. 28 * WBE: Write Buffer Enable, one turns it on. 29 * MID: The ModuleID of the chip for MBus transactions. 30 * BM: Boot-Mode. One indicates the MMU is in boot mode. 31 * C: Indicates whether accesses are cachable while the MMU is 32 * disabled. 33 * CS: Cache Size -- 0 = 128k, 1 = 256k 34 * MR: Memory Reflection, one indicates that the memory bus connected 35 * to the MBus supports memory reflection. 36 * CM: Cache Mode -- 0 = write-through, 1 = copy-back 37 * CE: Cache Enable -- 0 = no caching, 1 = cache is on 38 * NF: No Fault -- 0 = faults trap the CPU from supervisor mode 39 * 1 = faults from supervisor mode do not generate traps 40 * ME: MMU Enable -- 0 = MMU is off, 1 = MMU is on 41 */ 42 43 #define HYPERSPARC_CWENABLE 0x00200000 44 #define HYPERSPARC_SBENABLE 0x00100000 45 #define HYPERSPARC_WBENABLE 0x00080000 46 #define HYPERSPARC_MIDMASK 0x00078000 47 #define HYPERSPARC_BMODE 0x00004000 48 #define HYPERSPARC_ACENABLE 0x00002000 49 #define HYPERSPARC_CSIZE 0x00001000 50 #define HYPERSPARC_MRFLCT 0x00000800 51 #define HYPERSPARC_CMODE 0x00000400 52 #define HYPERSPARC_CENABLE 0x00000100 53 #define HYPERSPARC_NFAULT 0x00000002 54 #define HYPERSPARC_MENABLE 0x00000001 55 56 57 /* The ICCR instruction cache register on the HyperSparc. 58 * 59 * ----------------------------------------------- 60 * | | FTD | ICE | 61 * ----------------------------------------------- 62 * 31 1 0 63 * 64 * This register is accessed using the V8 'wrasr' and 'rdasr' 65 * opcodes, since not all assemblers understand them and those 66 * that do use different semantics I will just hard code the 67 * instruction with a '.word' statement. 68 * 69 * FTD: If set to one flush instructions executed during an 70 * instruction cache hit occurs, the corresponding line 71 * for said cache-hit is invalidated. If FTD is zero, 72 * an unimplemented 'flush' trap will occur when any 73 * flush is executed by the processor. 74 * 75 * ICE: If set to one, the instruction cache is enabled. If 76 * zero, the cache will not be used for instruction fetches. 77 * 78 * All other bits are read as zeros, and writes to them have no 79 * effect. 80 * 81 * Wheee, not many assemblers understand the %iccr register nor 82 * the generic asr r/w instructions. 83 * 84 * 1000 0011 0100 0111 1100 0000 0000 0000 ! rd %iccr, %g1 85 * 86 * 0x 8 3 4 7 c 0 0 0 ! 0x8347c000 87 * 88 * 1011 1111 1000 0000 0110 0000 0000 0000 ! wr %g1, 0x0, %iccr 89 * 90 * 0x b f 8 0 6 0 0 0 ! 0xbf806000 91 * 92 */ 93 94 #define HYPERSPARC_ICCR_FTD 0x00000002 95 #define HYPERSPARC_ICCR_ICE 0x00000001 96 97 #ifndef __ASSEMBLY__ 98 99 static inline unsigned int get_ross_icr(void) 100 { 101 unsigned int icreg; 102 103 __asm__ __volatile__(".word 0x8347c000\n\t" /* rd %iccr, %g1 */ 104 "mov %%g1, %0\n\t" 105 : "=r" (icreg) 106 : /* no inputs */ 107 : "g1", "memory"); 108 109 return icreg; 110 } 111 112 static inline void put_ross_icr(unsigned int icreg) 113 { 114 __asm__ __volatile__("or %%g0, %0, %%g1\n\t" 115 ".word 0xbf806000\n\t" /* wr %g1, 0x0, %iccr */ 116 "nop\n\t" 117 "nop\n\t" 118 "nop\n\t" 119 : /* no outputs */ 120 : "r" (icreg) 121 : "g1", "memory"); 122 123 return; 124 } 125 126 /* HyperSparc specific cache flushing. */ 127 128 /* This is for the on-chip instruction cache. */ 129 static inline void hyper_flush_whole_icache(void) 130 { 131 __asm__ __volatile__("sta %%g0, [%%g0] %0\n\t" 132 : /* no outputs */ 133 : "i" (ASI_M_FLUSH_IWHOLE) 134 : "memory"); 135 return; 136 } 137 138 extern int vac_cache_size; 139 extern int vac_line_size; 140 141 static inline void hyper_clear_all_tags(void) 142 { 143 unsigned long addr; 144 145 for(addr = 0; addr < vac_cache_size; addr += vac_line_size) 146 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" 147 : /* no outputs */ 148 : "r" (addr), "i" (ASI_M_DATAC_TAG) 149 : "memory"); 150 } 151 152 static inline void hyper_flush_unconditional_combined(void) 153 { 154 unsigned long addr; 155 156 for (addr = 0; addr < vac_cache_size; addr += vac_line_size) 157 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" 158 : /* no outputs */ 159 : "r" (addr), "i" (ASI_M_FLUSH_CTX) 160 : "memory"); 161 } 162 163 static inline void hyper_flush_cache_user(void) 164 { 165 unsigned long addr; 166 167 for (addr = 0; addr < vac_cache_size; addr += vac_line_size) 168 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" 169 : /* no outputs */ 170 : "r" (addr), "i" (ASI_M_FLUSH_USER) 171 : "memory"); 172 } 173 174 static inline void hyper_flush_cache_page(unsigned long page) 175 { 176 unsigned long end; 177 178 page &= PAGE_MASK; 179 end = page + PAGE_SIZE; 180 while (page < end) { 181 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" 182 : /* no outputs */ 183 : "r" (page), "i" (ASI_M_FLUSH_PAGE) 184 : "memory"); 185 page += vac_line_size; 186 } 187 } 188 189 #endif /* !(__ASSEMBLY__) */ 190 191 #endif /* !(_SPARC_ROSS_H) */ 192