1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _SPARC_PGTABLE_H 3 #define _SPARC_PGTABLE_H 4 5 /* asm/pgtable.h: Defines and functions used to work 6 * with Sparc page tables. 7 * 8 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) 9 * Copyright (C) 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz) 10 */ 11 12 #include <linux/const.h> 13 14 #define PMD_SHIFT 18 15 #define PMD_SIZE (1UL << PMD_SHIFT) 16 #define PMD_MASK (~(PMD_SIZE-1)) 17 #define PMD_ALIGN(__addr) (((__addr) + ~PMD_MASK) & PMD_MASK) 18 19 #define PGDIR_SHIFT 24 20 #define PGDIR_SIZE (1UL << PGDIR_SHIFT) 21 #define PGDIR_MASK (~(PGDIR_SIZE-1)) 22 #define PGDIR_ALIGN(__addr) (((__addr) + ~PGDIR_MASK) & PGDIR_MASK) 23 24 #ifndef __ASSEMBLY__ 25 #include <asm-generic/pgtable-nopud.h> 26 27 #include <linux/spinlock.h> 28 #include <linux/mm_types.h> 29 #include <asm/types.h> 30 #include <asm/pgtsrmmu.h> 31 #include <asm/vaddrs.h> 32 #include <asm/oplib.h> 33 #include <asm/cpu_type.h> 34 35 36 struct vm_area_struct; 37 struct page; 38 39 void load_mmu(void); 40 unsigned long calc_highpages(void); 41 unsigned long __init bootmem_init(unsigned long *pages_avail); 42 43 #define pte_ERROR(e) __builtin_trap() 44 #define pmd_ERROR(e) __builtin_trap() 45 #define pgd_ERROR(e) __builtin_trap() 46 47 #define PTRS_PER_PTE 64 48 #define PTRS_PER_PMD 64 49 #define PTRS_PER_PGD 256 50 #define USER_PTRS_PER_PGD PAGE_OFFSET / PGDIR_SIZE 51 #define PTE_SIZE (PTRS_PER_PTE*4) 52 53 #define PAGE_NONE SRMMU_PAGE_NONE 54 #define PAGE_SHARED SRMMU_PAGE_SHARED 55 #define PAGE_COPY SRMMU_PAGE_COPY 56 #define PAGE_READONLY SRMMU_PAGE_RDONLY 57 #define PAGE_KERNEL SRMMU_PAGE_KERNEL 58 59 /* Top-level page directory - dummy used by init-mm. 60 * srmmu.c will assign the real one (which is dynamically sized) */ 61 #define swapper_pg_dir NULL 62 63 void paging_init(void); 64 65 extern unsigned long ptr_in_current_pgd; 66 67 /* First physical page can be anywhere, the following is needed so that 68 * va-->pa and vice versa conversions work properly without performance 69 * hit for all __pa()/__va() operations. 70 */ 71 extern unsigned long phys_base; 72 extern unsigned long pfn_base; 73 74 /* 75 * ZERO_PAGE is a global shared page that is always zero: used 76 * for zero-mapped memory areas etc.. 77 */ 78 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)]; 79 80 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) 81 82 /* 83 * In general all page table modifications should use the V8 atomic 84 * swap instruction. This insures the mmu and the cpu are in sync 85 * with respect to ref/mod bits in the page tables. 86 */ 87 static inline unsigned long srmmu_swap(unsigned long *addr, unsigned long value) 88 { 89 __asm__ __volatile__("swap [%2], %0" : 90 "=&r" (value) : "0" (value), "r" (addr) : "memory"); 91 return value; 92 } 93 94 /* Certain architectures need to do special things when pte's 95 * within a page table are directly modified. Thus, the following 96 * hook is made available. 97 */ 98 99 static inline void set_pte(pte_t *ptep, pte_t pteval) 100 { 101 srmmu_swap((unsigned long *)ptep, pte_val(pteval)); 102 } 103 104 static inline int srmmu_device_memory(unsigned long x) 105 { 106 return ((x & 0xF0000000) != 0); 107 } 108 109 static inline unsigned long pmd_pfn(pmd_t pmd) 110 { 111 return (pmd_val(pmd) & SRMMU_PTD_PMASK) >> (PAGE_SHIFT-4); 112 } 113 114 static inline struct page *pmd_page(pmd_t pmd) 115 { 116 if (srmmu_device_memory(pmd_val(pmd))) 117 BUG(); 118 return pfn_to_page(pmd_pfn(pmd)); 119 } 120 121 static inline unsigned long __pmd_page(pmd_t pmd) 122 { 123 unsigned long v; 124 125 if (srmmu_device_memory(pmd_val(pmd))) 126 BUG(); 127 128 v = pmd_val(pmd) & SRMMU_PTD_PMASK; 129 return (unsigned long)__nocache_va(v << 4); 130 } 131 132 static inline unsigned long pmd_page_vaddr(pmd_t pmd) 133 { 134 unsigned long v = pmd_val(pmd) & SRMMU_PTD_PMASK; 135 return (unsigned long)__nocache_va(v << 4); 136 } 137 138 static inline pmd_t *pud_pgtable(pud_t pud) 139 { 140 if (srmmu_device_memory(pud_val(pud))) { 141 return (pmd_t *)~0; 142 } else { 143 unsigned long v = pud_val(pud) & SRMMU_PTD_PMASK; 144 return (pmd_t *)__nocache_va(v << 4); 145 } 146 } 147 148 static inline int pte_present(pte_t pte) 149 { 150 return ((pte_val(pte) & SRMMU_ET_MASK) == SRMMU_ET_PTE); 151 } 152 153 static inline int pte_none(pte_t pte) 154 { 155 return !pte_val(pte); 156 } 157 158 static inline void __pte_clear(pte_t *ptep) 159 { 160 set_pte(ptep, __pte(0)); 161 } 162 163 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 164 { 165 __pte_clear(ptep); 166 } 167 168 static inline int pmd_bad(pmd_t pmd) 169 { 170 return (pmd_val(pmd) & SRMMU_ET_MASK) != SRMMU_ET_PTD; 171 } 172 173 static inline int pmd_present(pmd_t pmd) 174 { 175 return ((pmd_val(pmd) & SRMMU_ET_MASK) == SRMMU_ET_PTD); 176 } 177 178 static inline int pmd_none(pmd_t pmd) 179 { 180 return !pmd_val(pmd); 181 } 182 183 static inline void pmd_clear(pmd_t *pmdp) 184 { 185 set_pte((pte_t *)&pmd_val(*pmdp), __pte(0)); 186 } 187 188 static inline int pud_none(pud_t pud) 189 { 190 return !(pud_val(pud) & 0xFFFFFFF); 191 } 192 193 static inline int pud_bad(pud_t pud) 194 { 195 return (pud_val(pud) & SRMMU_ET_MASK) != SRMMU_ET_PTD; 196 } 197 198 static inline int pud_present(pud_t pud) 199 { 200 return ((pud_val(pud) & SRMMU_ET_MASK) == SRMMU_ET_PTD); 201 } 202 203 static inline void pud_clear(pud_t *pudp) 204 { 205 set_pte((pte_t *)pudp, __pte(0)); 206 } 207 208 /* 209 * The following only work if pte_present() is true. 210 * Undefined behaviour if not.. 211 */ 212 static inline int pte_write(pte_t pte) 213 { 214 return pte_val(pte) & SRMMU_WRITE; 215 } 216 217 static inline int pte_dirty(pte_t pte) 218 { 219 return pte_val(pte) & SRMMU_DIRTY; 220 } 221 222 static inline int pte_young(pte_t pte) 223 { 224 return pte_val(pte) & SRMMU_REF; 225 } 226 227 static inline pte_t pte_wrprotect(pte_t pte) 228 { 229 return __pte(pte_val(pte) & ~SRMMU_WRITE); 230 } 231 232 static inline pte_t pte_mkclean(pte_t pte) 233 { 234 return __pte(pte_val(pte) & ~SRMMU_DIRTY); 235 } 236 237 static inline pte_t pte_mkold(pte_t pte) 238 { 239 return __pte(pte_val(pte) & ~SRMMU_REF); 240 } 241 242 static inline pte_t pte_mkwrite(pte_t pte) 243 { 244 return __pte(pte_val(pte) | SRMMU_WRITE); 245 } 246 247 static inline pte_t pte_mkdirty(pte_t pte) 248 { 249 return __pte(pte_val(pte) | SRMMU_DIRTY); 250 } 251 252 static inline pte_t pte_mkyoung(pte_t pte) 253 { 254 return __pte(pte_val(pte) | SRMMU_REF); 255 } 256 257 #define PFN_PTE_SHIFT (PAGE_SHIFT - 4) 258 #define pfn_pte(pfn, prot) mk_pte(pfn_to_page(pfn), prot) 259 260 static inline unsigned long pte_pfn(pte_t pte) 261 { 262 if (srmmu_device_memory(pte_val(pte))) { 263 /* Just return something that will cause 264 * pfn_valid() to return false. This makes 265 * copy_one_pte() to just directly copy to 266 * PTE over. 267 */ 268 return ~0UL; 269 } 270 return (pte_val(pte) & SRMMU_PTE_PMASK) >> PFN_PTE_SHIFT; 271 } 272 273 #define pte_page(pte) pfn_to_page(pte_pfn(pte)) 274 275 /* 276 * Conversion functions: convert a page and protection to a page entry, 277 * and a page entry and page directory to the page they refer to. 278 */ 279 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot) 280 { 281 return __pte((page_to_pfn(page) << (PAGE_SHIFT-4)) | pgprot_val(pgprot)); 282 } 283 284 static inline pte_t mk_pte_phys(unsigned long page, pgprot_t pgprot) 285 { 286 return __pte(((page) >> 4) | pgprot_val(pgprot)); 287 } 288 289 static inline pte_t mk_pte_io(unsigned long page, pgprot_t pgprot, int space) 290 { 291 return __pte(((page) >> 4) | (space << 28) | pgprot_val(pgprot)); 292 } 293 294 #define pgprot_noncached pgprot_noncached 295 static inline pgprot_t pgprot_noncached(pgprot_t prot) 296 { 297 pgprot_val(prot) &= ~pgprot_val(__pgprot(SRMMU_CACHE)); 298 return prot; 299 } 300 301 static pte_t pte_modify(pte_t pte, pgprot_t newprot) __attribute_const__; 302 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 303 { 304 return __pte((pte_val(pte) & SRMMU_CHG_MASK) | 305 pgprot_val(newprot)); 306 } 307 308 /* only used by the huge vmap code, should never be called */ 309 #define pud_page(pud) NULL 310 311 struct seq_file; 312 void mmu_info(struct seq_file *m); 313 314 /* Fault handler stuff... */ 315 #define FAULT_CODE_PROT 0x1 316 #define FAULT_CODE_WRITE 0x2 317 #define FAULT_CODE_USER 0x4 318 319 #define update_mmu_cache(vma, address, ptep) do { } while (0) 320 #define update_mmu_cache_range(vmf, vma, address, ptep, nr) do { } while (0) 321 322 void srmmu_mapiorange(unsigned int bus, unsigned long xpa, 323 unsigned long xva, unsigned int len); 324 void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len); 325 326 /* 327 * Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that 328 * are !pte_none() && !pte_present(). 329 * 330 * Format of swap PTEs: 331 * 332 * 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 333 * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 334 * <-------------- offset ---------------> < type -> E 0 0 0 0 0 0 335 */ 336 static inline unsigned long __swp_type(swp_entry_t entry) 337 { 338 return (entry.val >> SRMMU_SWP_TYPE_SHIFT) & SRMMU_SWP_TYPE_MASK; 339 } 340 341 static inline unsigned long __swp_offset(swp_entry_t entry) 342 { 343 return (entry.val >> SRMMU_SWP_OFF_SHIFT) & SRMMU_SWP_OFF_MASK; 344 } 345 346 static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset) 347 { 348 return (swp_entry_t) { 349 (type & SRMMU_SWP_TYPE_MASK) << SRMMU_SWP_TYPE_SHIFT 350 | (offset & SRMMU_SWP_OFF_MASK) << SRMMU_SWP_OFF_SHIFT }; 351 } 352 353 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 354 #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 355 356 static inline int pte_swp_exclusive(pte_t pte) 357 { 358 return pte_val(pte) & SRMMU_SWP_EXCLUSIVE; 359 } 360 361 static inline pte_t pte_swp_mkexclusive(pte_t pte) 362 { 363 return __pte(pte_val(pte) | SRMMU_SWP_EXCLUSIVE); 364 } 365 366 static inline pte_t pte_swp_clear_exclusive(pte_t pte) 367 { 368 return __pte(pte_val(pte) & ~SRMMU_SWP_EXCLUSIVE); 369 } 370 371 static inline unsigned long 372 __get_phys (unsigned long addr) 373 { 374 switch (sparc_cpu_model){ 375 case sun4m: 376 case sun4d: 377 return ((srmmu_get_pte (addr) & 0xffffff00) << 4); 378 default: 379 return 0; 380 } 381 } 382 383 static inline int 384 __get_iospace (unsigned long addr) 385 { 386 switch (sparc_cpu_model){ 387 case sun4m: 388 case sun4d: 389 return (srmmu_get_pte (addr) >> 28); 390 default: 391 return -1; 392 } 393 } 394 395 /* 396 * For sparc32&64, the pfn in io_remap_pfn_range() carries <iospace> in 397 * its high 4 bits. These macros/functions put it there or get it from there. 398 */ 399 #define MK_IOSPACE_PFN(space, pfn) (pfn | (space << (BITS_PER_LONG - 4))) 400 #define GET_IOSPACE(pfn) (pfn >> (BITS_PER_LONG - 4)) 401 #define GET_PFN(pfn) (pfn & 0x0fffffffUL) 402 403 int remap_pfn_range(struct vm_area_struct *, unsigned long, unsigned long, 404 unsigned long, pgprot_t); 405 406 static inline int io_remap_pfn_range(struct vm_area_struct *vma, 407 unsigned long from, unsigned long pfn, 408 unsigned long size, pgprot_t prot) 409 { 410 unsigned long long offset, space, phys_base; 411 412 offset = ((unsigned long long) GET_PFN(pfn)) << PAGE_SHIFT; 413 space = GET_IOSPACE(pfn); 414 phys_base = offset | (space << 32ULL); 415 416 return remap_pfn_range(vma, from, phys_base >> PAGE_SHIFT, size, prot); 417 } 418 #define io_remap_pfn_range io_remap_pfn_range 419 420 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 421 #define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \ 422 ({ \ 423 int __changed = !pte_same(*(__ptep), __entry); \ 424 if (__changed) { \ 425 set_pte(__ptep, __entry); \ 426 flush_tlb_page(__vma, __address); \ 427 } \ 428 __changed; \ 429 }) 430 431 #endif /* !(__ASSEMBLY__) */ 432 433 #define VMALLOC_START _AC(0xfe600000,UL) 434 #define VMALLOC_END _AC(0xffc00000,UL) 435 436 /* We provide our own get_unmapped_area to cope with VA holes for userland */ 437 #define HAVE_ARCH_UNMAPPED_AREA 438 439 #define pmd_pgtable(pmd) ((pgtable_t)__pmd_page(pmd)) 440 441 #endif /* !(_SPARC_PGTABLE_H) */ 442