xref: /openbmc/linux/arch/sh/mm/ioremap.c (revision c4f7ac64)
1 /*
2  * arch/sh/mm/ioremap.c
3  *
4  * (C) Copyright 1995 1996 Linus Torvalds
5  * (C) Copyright 2005 - 2010  Paul Mundt
6  *
7  * Re-map IO memory to kernel address space so that we can access it.
8  * This is needed for high PCI addresses that aren't mapped in the
9  * 640k-1MB IO memory area on PC's
10  *
11  * This file is subject to the terms and conditions of the GNU General
12  * Public License. See the file "COPYING" in the main directory of this
13  * archive for more details.
14  */
15 #include <linux/vmalloc.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/mm.h>
19 #include <linux/pci.h>
20 #include <linux/io.h>
21 #include <asm/io_trapped.h>
22 #include <asm/page.h>
23 #include <asm/pgalloc.h>
24 #include <asm/addrspace.h>
25 #include <asm/cacheflush.h>
26 #include <asm/tlbflush.h>
27 #include <asm/mmu.h>
28 #include "ioremap.h"
29 
30 /*
31  * On 32-bit SH, we traditionally have the whole physical address space mapped
32  * at all times (as MIPS does), so "ioremap()" and "iounmap()" do not need to do
33  * anything but place the address in the proper segment.  This is true for P1
34  * and P2 addresses, as well as some P3 ones.  However, most of the P3 addresses
35  * and newer cores using extended addressing need to map through page tables, so
36  * the ioremap() implementation becomes a bit more complicated.
37  */
38 #ifdef CONFIG_29BIT
39 static void __iomem *
40 __ioremap_29bit(phys_addr_t offset, unsigned long size, pgprot_t prot)
41 {
42 	phys_addr_t last_addr = offset + size - 1;
43 
44 	/*
45 	 * For P1 and P2 space this is trivial, as everything is already
46 	 * mapped. Uncached access for P1 addresses are done through P2.
47 	 * In the P3 case or for addresses outside of the 29-bit space,
48 	 * mapping must be done by the PMB or by using page tables.
49 	 */
50 	if (likely(PXSEG(offset) < P3SEG && PXSEG(last_addr) < P3SEG)) {
51 		u64 flags = pgprot_val(prot);
52 
53 		/*
54 		 * Anything using the legacy PTEA space attributes needs
55 		 * to be kicked down to page table mappings.
56 		 */
57 		if (unlikely(flags & _PAGE_PCC_MASK))
58 			return NULL;
59 		if (unlikely(flags & _PAGE_CACHABLE))
60 			return (void __iomem *)P1SEGADDR(offset);
61 
62 		return (void __iomem *)P2SEGADDR(offset);
63 	}
64 
65 	/* P4 above the store queues are always mapped. */
66 	if (unlikely(offset >= P3_ADDR_MAX))
67 		return (void __iomem *)P4SEGADDR(offset);
68 
69 	return NULL;
70 }
71 #else
72 #define __ioremap_29bit(offset, size, prot)		NULL
73 #endif /* CONFIG_29BIT */
74 
75 /*
76  * Remap an arbitrary physical address space into the kernel virtual
77  * address space. Needed when the kernel wants to access high addresses
78  * directly.
79  *
80  * NOTE! We need to allow non-page-aligned mappings too: we will obviously
81  * have to convert them into an offset in a page-aligned mapping, but the
82  * caller shouldn't need to know that small detail.
83  */
84 void __iomem * __ref
85 __ioremap_caller(phys_addr_t phys_addr, unsigned long size,
86 		 pgprot_t pgprot, void *caller)
87 {
88 	struct vm_struct *area;
89 	unsigned long offset, last_addr, addr, orig_addr;
90 	void __iomem *mapped;
91 
92 	mapped = __ioremap_trapped(phys_addr, size);
93 	if (mapped)
94 		return mapped;
95 
96 	mapped = __ioremap_29bit(phys_addr, size, pgprot);
97 	if (mapped)
98 		return mapped;
99 
100 	/* Don't allow wraparound or zero size */
101 	last_addr = phys_addr + size - 1;
102 	if (!size || last_addr < phys_addr)
103 		return NULL;
104 
105 	/*
106 	 * If we can't yet use the regular approach, go the fixmap route.
107 	 */
108 	if (!mem_init_done)
109 		return ioremap_fixed(phys_addr, size, pgprot);
110 
111 	/*
112 	 * First try to remap through the PMB.
113 	 * PMB entries are all pre-faulted.
114 	 */
115 	mapped = pmb_remap_caller(phys_addr, size, pgprot, caller);
116 	if (mapped && !IS_ERR(mapped))
117 		return mapped;
118 
119 	/*
120 	 * Mappings have to be page-aligned
121 	 */
122 	offset = phys_addr & ~PAGE_MASK;
123 	phys_addr &= PAGE_MASK;
124 	size = PAGE_ALIGN(last_addr+1) - phys_addr;
125 
126 	/*
127 	 * Ok, go for it..
128 	 */
129 	area = get_vm_area_caller(size, VM_IOREMAP, caller);
130 	if (!area)
131 		return NULL;
132 	area->phys_addr = phys_addr;
133 	orig_addr = addr = (unsigned long)area->addr;
134 
135 	if (ioremap_page_range(addr, addr + size, phys_addr, pgprot)) {
136 		vunmap((void *)orig_addr);
137 		return NULL;
138 	}
139 
140 	return (void __iomem *)(offset + (char *)orig_addr);
141 }
142 EXPORT_SYMBOL(__ioremap_caller);
143 
144 /*
145  * Simple checks for non-translatable mappings.
146  */
147 static inline int iomapping_nontranslatable(unsigned long offset)
148 {
149 #ifdef CONFIG_29BIT
150 	/*
151 	 * In 29-bit mode this includes the fixed P1/P2 areas, as well as
152 	 * parts of P3.
153 	 */
154 	if (PXSEG(offset) < P3SEG || offset >= P3_ADDR_MAX)
155 		return 1;
156 #endif
157 
158 	return 0;
159 }
160 
161 void iounmap(void __iomem *addr)
162 {
163 	unsigned long vaddr = (unsigned long __force)addr;
164 	struct vm_struct *p;
165 
166 	/*
167 	 * Nothing to do if there is no translatable mapping.
168 	 */
169 	if (iomapping_nontranslatable(vaddr))
170 		return;
171 
172 	/*
173 	 * There's no VMA if it's from an early fixed mapping.
174 	 */
175 	if (iounmap_fixed(addr) == 0)
176 		return;
177 
178 	/*
179 	 * If the PMB handled it, there's nothing else to do.
180 	 */
181 	if (pmb_unmap(addr) == 0)
182 		return;
183 
184 	p = remove_vm_area((void *)(vaddr & PAGE_MASK));
185 	if (!p) {
186 		printk(KERN_ERR "%s: bad address %p\n", __func__, addr);
187 		return;
188 	}
189 
190 	kfree(p);
191 }
192 EXPORT_SYMBOL(iounmap);
193