xref: /openbmc/linux/arch/sh/mm/consistent.c (revision f42b3800)
1 /*
2  * arch/sh/mm/consistent.c
3  *
4  * Copyright (C) 2004 - 2007  Paul Mundt
5  *
6  * Declared coherent memory functions based on arch/x86/kernel/pci-dma_32.c
7  *
8  * This file is subject to the terms and conditions of the GNU General Public
9  * License.  See the file "COPYING" in the main directory of this archive
10  * for more details.
11  */
12 #include <linux/mm.h>
13 #include <linux/dma-mapping.h>
14 #include <asm/cacheflush.h>
15 #include <asm/addrspace.h>
16 #include <asm/io.h>
17 
18 struct dma_coherent_mem {
19 	void		*virt_base;
20 	u32		device_base;
21 	int		size;
22 	int		flags;
23 	unsigned long	*bitmap;
24 };
25 
26 void *dma_alloc_coherent(struct device *dev, size_t size,
27 			   dma_addr_t *dma_handle, gfp_t gfp)
28 {
29 	void *ret, *ret_nocache;
30 	struct dma_coherent_mem *mem = dev ? dev->dma_mem : NULL;
31 	int order = get_order(size);
32 
33 	if (mem) {
34 		int page = bitmap_find_free_region(mem->bitmap, mem->size,
35 						     order);
36 		if (page >= 0) {
37 			*dma_handle = mem->device_base + (page << PAGE_SHIFT);
38 			ret = mem->virt_base + (page << PAGE_SHIFT);
39 			memset(ret, 0, size);
40 			return ret;
41 		}
42 		if (mem->flags & DMA_MEMORY_EXCLUSIVE)
43 			return NULL;
44 	}
45 
46 	ret = (void *)__get_free_pages(gfp, order);
47 	if (!ret)
48 		return NULL;
49 
50 	memset(ret, 0, size);
51 	/*
52 	 * Pages from the page allocator may have data present in
53 	 * cache. So flush the cache before using uncached memory.
54 	 */
55 	dma_cache_sync(dev, ret, size, DMA_BIDIRECTIONAL);
56 
57 	ret_nocache = ioremap_nocache(virt_to_phys(ret), size);
58 	if (!ret_nocache) {
59 		free_pages((unsigned long)ret, order);
60 		return NULL;
61 	}
62 
63 	*dma_handle = virt_to_phys(ret);
64 	return ret_nocache;
65 }
66 EXPORT_SYMBOL(dma_alloc_coherent);
67 
68 void dma_free_coherent(struct device *dev, size_t size,
69 			 void *vaddr, dma_addr_t dma_handle)
70 {
71 	struct dma_coherent_mem *mem = dev ? dev->dma_mem : NULL;
72 	int order = get_order(size);
73 
74 	if (mem && vaddr >= mem->virt_base && vaddr < (mem->virt_base + (mem->size << PAGE_SHIFT))) {
75 		int page = (vaddr - mem->virt_base) >> PAGE_SHIFT;
76 
77 		bitmap_release_region(mem->bitmap, page, order);
78 	} else {
79 		WARN_ON(irqs_disabled());	/* for portability */
80 		BUG_ON(mem && mem->flags & DMA_MEMORY_EXCLUSIVE);
81 		free_pages((unsigned long)phys_to_virt(dma_handle), order);
82 		iounmap(vaddr);
83 	}
84 }
85 EXPORT_SYMBOL(dma_free_coherent);
86 
87 int dma_declare_coherent_memory(struct device *dev, dma_addr_t bus_addr,
88 				dma_addr_t device_addr, size_t size, int flags)
89 {
90 	void __iomem *mem_base = NULL;
91 	int pages = size >> PAGE_SHIFT;
92 	int bitmap_size = BITS_TO_LONGS(pages) * sizeof(long);
93 
94 	if ((flags & (DMA_MEMORY_MAP | DMA_MEMORY_IO)) == 0)
95 		goto out;
96 	if (!size)
97 		goto out;
98 	if (dev->dma_mem)
99 		goto out;
100 
101 	/* FIXME: this routine just ignores DMA_MEMORY_INCLUDES_CHILDREN */
102 
103 	mem_base = ioremap_nocache(bus_addr, size);
104 	if (!mem_base)
105 		goto out;
106 
107 	dev->dma_mem = kmalloc(sizeof(struct dma_coherent_mem), GFP_KERNEL);
108 	if (!dev->dma_mem)
109 		goto out;
110 	dev->dma_mem->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
111 	if (!dev->dma_mem->bitmap)
112 		goto free1_out;
113 
114 	dev->dma_mem->virt_base = mem_base;
115 	dev->dma_mem->device_base = device_addr;
116 	dev->dma_mem->size = pages;
117 	dev->dma_mem->flags = flags;
118 
119 	if (flags & DMA_MEMORY_MAP)
120 		return DMA_MEMORY_MAP;
121 
122 	return DMA_MEMORY_IO;
123 
124  free1_out:
125 	kfree(dev->dma_mem);
126  out:
127 	if (mem_base)
128 		iounmap(mem_base);
129 	return 0;
130 }
131 EXPORT_SYMBOL(dma_declare_coherent_memory);
132 
133 void dma_release_declared_memory(struct device *dev)
134 {
135 	struct dma_coherent_mem *mem = dev->dma_mem;
136 
137 	if (!mem)
138 		return;
139 	dev->dma_mem = NULL;
140 	iounmap(mem->virt_base);
141 	kfree(mem->bitmap);
142 	kfree(mem);
143 }
144 EXPORT_SYMBOL(dma_release_declared_memory);
145 
146 void *dma_mark_declared_memory_occupied(struct device *dev,
147 					dma_addr_t device_addr, size_t size)
148 {
149 	struct dma_coherent_mem *mem = dev->dma_mem;
150 	int pages = (size + (device_addr & ~PAGE_MASK) + PAGE_SIZE - 1) >> PAGE_SHIFT;
151 	int pos, err;
152 
153 	if (!mem)
154 		return ERR_PTR(-EINVAL);
155 
156 	pos = (device_addr - mem->device_base) >> PAGE_SHIFT;
157 	err = bitmap_allocate_region(mem->bitmap, pos, get_order(pages));
158 	if (err != 0)
159 		return ERR_PTR(err);
160 	return mem->virt_base + (pos << PAGE_SHIFT);
161 }
162 EXPORT_SYMBOL(dma_mark_declared_memory_occupied);
163 
164 void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
165 		    enum dma_data_direction direction)
166 {
167 #ifdef CONFIG_CPU_SH5
168 	void *p1addr = vaddr;
169 #else
170 	void *p1addr = (void*) P1SEGADDR((unsigned long)vaddr);
171 #endif
172 
173 	switch (direction) {
174 	case DMA_FROM_DEVICE:		/* invalidate only */
175 		__flush_invalidate_region(p1addr, size);
176 		break;
177 	case DMA_TO_DEVICE:		/* writeback only */
178 		__flush_wback_region(p1addr, size);
179 		break;
180 	case DMA_BIDIRECTIONAL:		/* writeback and invalidate */
181 		__flush_purge_region(p1addr, size);
182 		break;
183 	default:
184 		BUG();
185 	}
186 }
187 EXPORT_SYMBOL(dma_cache_sync);
188