xref: /openbmc/linux/arch/sh/mm/cache.c (revision 2359ccdd)
1 /*
2  * arch/sh/mm/cache.c
3  *
4  * Copyright (C) 1999, 2000, 2002  Niibe Yutaka
5  * Copyright (C) 2002 - 2010  Paul Mundt
6  *
7  * Released under the terms of the GNU GPL v2.0.
8  */
9 #include <linux/mm.h>
10 #include <linux/init.h>
11 #include <linux/mutex.h>
12 #include <linux/fs.h>
13 #include <linux/smp.h>
14 #include <linux/highmem.h>
15 #include <linux/module.h>
16 #include <asm/mmu_context.h>
17 #include <asm/cacheflush.h>
18 
19 void (*local_flush_cache_all)(void *args) = cache_noop;
20 void (*local_flush_cache_mm)(void *args) = cache_noop;
21 void (*local_flush_cache_dup_mm)(void *args) = cache_noop;
22 void (*local_flush_cache_page)(void *args) = cache_noop;
23 void (*local_flush_cache_range)(void *args) = cache_noop;
24 void (*local_flush_dcache_page)(void *args) = cache_noop;
25 void (*local_flush_icache_range)(void *args) = cache_noop;
26 void (*local_flush_icache_page)(void *args) = cache_noop;
27 void (*local_flush_cache_sigtramp)(void *args) = cache_noop;
28 
29 void (*__flush_wback_region)(void *start, int size);
30 EXPORT_SYMBOL(__flush_wback_region);
31 void (*__flush_purge_region)(void *start, int size);
32 EXPORT_SYMBOL(__flush_purge_region);
33 void (*__flush_invalidate_region)(void *start, int size);
34 EXPORT_SYMBOL(__flush_invalidate_region);
35 
36 static inline void noop__flush_region(void *start, int size)
37 {
38 }
39 
40 static inline void cacheop_on_each_cpu(void (*func) (void *info), void *info,
41                                    int wait)
42 {
43 	preempt_disable();
44 
45 	/* Needing IPI for cross-core flush is SHX3-specific. */
46 #ifdef CONFIG_CPU_SHX3
47 	/*
48 	 * It's possible that this gets called early on when IRQs are
49 	 * still disabled due to ioremapping by the boot CPU, so don't
50 	 * even attempt IPIs unless there are other CPUs online.
51 	 */
52 	if (num_online_cpus() > 1)
53 		smp_call_function(func, info, wait);
54 #endif
55 
56 	func(info);
57 
58 	preempt_enable();
59 }
60 
61 void copy_to_user_page(struct vm_area_struct *vma, struct page *page,
62 		       unsigned long vaddr, void *dst, const void *src,
63 		       unsigned long len)
64 {
65 	if (boot_cpu_data.dcache.n_aliases && page_mapcount(page) &&
66 	    test_bit(PG_dcache_clean, &page->flags)) {
67 		void *vto = kmap_coherent(page, vaddr) + (vaddr & ~PAGE_MASK);
68 		memcpy(vto, src, len);
69 		kunmap_coherent(vto);
70 	} else {
71 		memcpy(dst, src, len);
72 		if (boot_cpu_data.dcache.n_aliases)
73 			clear_bit(PG_dcache_clean, &page->flags);
74 	}
75 
76 	if (vma->vm_flags & VM_EXEC)
77 		flush_cache_page(vma, vaddr, page_to_pfn(page));
78 }
79 
80 void copy_from_user_page(struct vm_area_struct *vma, struct page *page,
81 			 unsigned long vaddr, void *dst, const void *src,
82 			 unsigned long len)
83 {
84 	if (boot_cpu_data.dcache.n_aliases && page_mapcount(page) &&
85 	    test_bit(PG_dcache_clean, &page->flags)) {
86 		void *vfrom = kmap_coherent(page, vaddr) + (vaddr & ~PAGE_MASK);
87 		memcpy(dst, vfrom, len);
88 		kunmap_coherent(vfrom);
89 	} else {
90 		memcpy(dst, src, len);
91 		if (boot_cpu_data.dcache.n_aliases)
92 			clear_bit(PG_dcache_clean, &page->flags);
93 	}
94 }
95 
96 void copy_user_highpage(struct page *to, struct page *from,
97 			unsigned long vaddr, struct vm_area_struct *vma)
98 {
99 	void *vfrom, *vto;
100 
101 	vto = kmap_atomic(to);
102 
103 	if (boot_cpu_data.dcache.n_aliases && page_mapcount(from) &&
104 	    test_bit(PG_dcache_clean, &from->flags)) {
105 		vfrom = kmap_coherent(from, vaddr);
106 		copy_page(vto, vfrom);
107 		kunmap_coherent(vfrom);
108 	} else {
109 		vfrom = kmap_atomic(from);
110 		copy_page(vto, vfrom);
111 		kunmap_atomic(vfrom);
112 	}
113 
114 	if (pages_do_alias((unsigned long)vto, vaddr & PAGE_MASK) ||
115 	    (vma->vm_flags & VM_EXEC))
116 		__flush_purge_region(vto, PAGE_SIZE);
117 
118 	kunmap_atomic(vto);
119 	/* Make sure this page is cleared on other CPU's too before using it */
120 	smp_wmb();
121 }
122 EXPORT_SYMBOL(copy_user_highpage);
123 
124 void clear_user_highpage(struct page *page, unsigned long vaddr)
125 {
126 	void *kaddr = kmap_atomic(page);
127 
128 	clear_page(kaddr);
129 
130 	if (pages_do_alias((unsigned long)kaddr, vaddr & PAGE_MASK))
131 		__flush_purge_region(kaddr, PAGE_SIZE);
132 
133 	kunmap_atomic(kaddr);
134 }
135 EXPORT_SYMBOL(clear_user_highpage);
136 
137 void __update_cache(struct vm_area_struct *vma,
138 		    unsigned long address, pte_t pte)
139 {
140 	struct page *page;
141 	unsigned long pfn = pte_pfn(pte);
142 
143 	if (!boot_cpu_data.dcache.n_aliases)
144 		return;
145 
146 	page = pfn_to_page(pfn);
147 	if (pfn_valid(pfn)) {
148 		int dirty = !test_and_set_bit(PG_dcache_clean, &page->flags);
149 		if (dirty)
150 			__flush_purge_region(page_address(page), PAGE_SIZE);
151 	}
152 }
153 
154 void __flush_anon_page(struct page *page, unsigned long vmaddr)
155 {
156 	unsigned long addr = (unsigned long) page_address(page);
157 
158 	if (pages_do_alias(addr, vmaddr)) {
159 		if (boot_cpu_data.dcache.n_aliases && page_mapcount(page) &&
160 		    test_bit(PG_dcache_clean, &page->flags)) {
161 			void *kaddr;
162 
163 			kaddr = kmap_coherent(page, vmaddr);
164 			/* XXX.. For now kunmap_coherent() does a purge */
165 			/* __flush_purge_region((void *)kaddr, PAGE_SIZE); */
166 			kunmap_coherent(kaddr);
167 		} else
168 			__flush_purge_region((void *)addr, PAGE_SIZE);
169 	}
170 }
171 
172 void flush_cache_all(void)
173 {
174 	cacheop_on_each_cpu(local_flush_cache_all, NULL, 1);
175 }
176 EXPORT_SYMBOL(flush_cache_all);
177 
178 void flush_cache_mm(struct mm_struct *mm)
179 {
180 	if (boot_cpu_data.dcache.n_aliases == 0)
181 		return;
182 
183 	cacheop_on_each_cpu(local_flush_cache_mm, mm, 1);
184 }
185 
186 void flush_cache_dup_mm(struct mm_struct *mm)
187 {
188 	if (boot_cpu_data.dcache.n_aliases == 0)
189 		return;
190 
191 	cacheop_on_each_cpu(local_flush_cache_dup_mm, mm, 1);
192 }
193 
194 void flush_cache_page(struct vm_area_struct *vma, unsigned long addr,
195 		      unsigned long pfn)
196 {
197 	struct flusher_data data;
198 
199 	data.vma = vma;
200 	data.addr1 = addr;
201 	data.addr2 = pfn;
202 
203 	cacheop_on_each_cpu(local_flush_cache_page, (void *)&data, 1);
204 }
205 
206 void flush_cache_range(struct vm_area_struct *vma, unsigned long start,
207 		       unsigned long end)
208 {
209 	struct flusher_data data;
210 
211 	data.vma = vma;
212 	data.addr1 = start;
213 	data.addr2 = end;
214 
215 	cacheop_on_each_cpu(local_flush_cache_range, (void *)&data, 1);
216 }
217 EXPORT_SYMBOL(flush_cache_range);
218 
219 void flush_dcache_page(struct page *page)
220 {
221 	cacheop_on_each_cpu(local_flush_dcache_page, page, 1);
222 }
223 EXPORT_SYMBOL(flush_dcache_page);
224 
225 void flush_icache_range(unsigned long start, unsigned long end)
226 {
227 	struct flusher_data data;
228 
229 	data.vma = NULL;
230 	data.addr1 = start;
231 	data.addr2 = end;
232 
233 	cacheop_on_each_cpu(local_flush_icache_range, (void *)&data, 1);
234 }
235 EXPORT_SYMBOL(flush_icache_range);
236 
237 void flush_icache_page(struct vm_area_struct *vma, struct page *page)
238 {
239 	/* Nothing uses the VMA, so just pass the struct page along */
240 	cacheop_on_each_cpu(local_flush_icache_page, page, 1);
241 }
242 
243 void flush_cache_sigtramp(unsigned long address)
244 {
245 	cacheop_on_each_cpu(local_flush_cache_sigtramp, (void *)address, 1);
246 }
247 
248 static void compute_alias(struct cache_info *c)
249 {
250 #ifdef CONFIG_MMU
251 	c->alias_mask = ((c->sets - 1) << c->entry_shift) & ~(PAGE_SIZE - 1);
252 #else
253 	c->alias_mask = 0;
254 #endif
255 	c->n_aliases = c->alias_mask ? (c->alias_mask >> PAGE_SHIFT) + 1 : 0;
256 }
257 
258 static void __init emit_cache_params(void)
259 {
260 	printk(KERN_NOTICE "I-cache : n_ways=%d n_sets=%d way_incr=%d\n",
261 		boot_cpu_data.icache.ways,
262 		boot_cpu_data.icache.sets,
263 		boot_cpu_data.icache.way_incr);
264 	printk(KERN_NOTICE "I-cache : entry_mask=0x%08x alias_mask=0x%08x n_aliases=%d\n",
265 		boot_cpu_data.icache.entry_mask,
266 		boot_cpu_data.icache.alias_mask,
267 		boot_cpu_data.icache.n_aliases);
268 	printk(KERN_NOTICE "D-cache : n_ways=%d n_sets=%d way_incr=%d\n",
269 		boot_cpu_data.dcache.ways,
270 		boot_cpu_data.dcache.sets,
271 		boot_cpu_data.dcache.way_incr);
272 	printk(KERN_NOTICE "D-cache : entry_mask=0x%08x alias_mask=0x%08x n_aliases=%d\n",
273 		boot_cpu_data.dcache.entry_mask,
274 		boot_cpu_data.dcache.alias_mask,
275 		boot_cpu_data.dcache.n_aliases);
276 
277 	/*
278 	 * Emit Secondary Cache parameters if the CPU has a probed L2.
279 	 */
280 	if (boot_cpu_data.flags & CPU_HAS_L2_CACHE) {
281 		printk(KERN_NOTICE "S-cache : n_ways=%d n_sets=%d way_incr=%d\n",
282 			boot_cpu_data.scache.ways,
283 			boot_cpu_data.scache.sets,
284 			boot_cpu_data.scache.way_incr);
285 		printk(KERN_NOTICE "S-cache : entry_mask=0x%08x alias_mask=0x%08x n_aliases=%d\n",
286 			boot_cpu_data.scache.entry_mask,
287 			boot_cpu_data.scache.alias_mask,
288 			boot_cpu_data.scache.n_aliases);
289 	}
290 }
291 
292 void __init cpu_cache_init(void)
293 {
294 	unsigned int cache_disabled = 0;
295 
296 #ifdef SH_CCR
297 	cache_disabled = !(__raw_readl(SH_CCR) & CCR_CACHE_ENABLE);
298 #endif
299 
300 	compute_alias(&boot_cpu_data.icache);
301 	compute_alias(&boot_cpu_data.dcache);
302 	compute_alias(&boot_cpu_data.scache);
303 
304 	__flush_wback_region		= noop__flush_region;
305 	__flush_purge_region		= noop__flush_region;
306 	__flush_invalidate_region	= noop__flush_region;
307 
308 	/*
309 	 * No flushing is necessary in the disabled cache case so we can
310 	 * just keep the noop functions in local_flush_..() and __flush_..()
311 	 */
312 	if (unlikely(cache_disabled))
313 		goto skip;
314 
315 	if (boot_cpu_data.type == CPU_J2) {
316 		extern void __weak j2_cache_init(void);
317 
318 		j2_cache_init();
319 	} else if (boot_cpu_data.family == CPU_FAMILY_SH2) {
320 		extern void __weak sh2_cache_init(void);
321 
322 		sh2_cache_init();
323 	}
324 
325 	if (boot_cpu_data.family == CPU_FAMILY_SH2A) {
326 		extern void __weak sh2a_cache_init(void);
327 
328 		sh2a_cache_init();
329 	}
330 
331 	if (boot_cpu_data.family == CPU_FAMILY_SH3) {
332 		extern void __weak sh3_cache_init(void);
333 
334 		sh3_cache_init();
335 
336 		if ((boot_cpu_data.type == CPU_SH7705) &&
337 		    (boot_cpu_data.dcache.sets == 512)) {
338 			extern void __weak sh7705_cache_init(void);
339 
340 			sh7705_cache_init();
341 		}
342 	}
343 
344 	if ((boot_cpu_data.family == CPU_FAMILY_SH4) ||
345 	    (boot_cpu_data.family == CPU_FAMILY_SH4A) ||
346 	    (boot_cpu_data.family == CPU_FAMILY_SH4AL_DSP)) {
347 		extern void __weak sh4_cache_init(void);
348 
349 		sh4_cache_init();
350 
351 		if ((boot_cpu_data.type == CPU_SH7786) ||
352 		    (boot_cpu_data.type == CPU_SHX3)) {
353 			extern void __weak shx3_cache_init(void);
354 
355 			shx3_cache_init();
356 		}
357 	}
358 
359 	if (boot_cpu_data.family == CPU_FAMILY_SH5) {
360 		extern void __weak sh5_cache_init(void);
361 
362 		sh5_cache_init();
363 	}
364 
365 skip:
366 	emit_cache_params();
367 }
368