xref: /openbmc/linux/arch/sh/mm/cache-sh4.c (revision e8e0929d)
1 /*
2  * arch/sh/mm/cache-sh4.c
3  *
4  * Copyright (C) 1999, 2000, 2002  Niibe Yutaka
5  * Copyright (C) 2001 - 2007  Paul Mundt
6  * Copyright (C) 2003  Richard Curnow
7  * Copyright (c) 2007 STMicroelectronics (R&D) Ltd.
8  *
9  * This file is subject to the terms and conditions of the GNU General Public
10  * License.  See the file "COPYING" in the main directory of this archive
11  * for more details.
12  */
13 #include <linux/init.h>
14 #include <linux/mm.h>
15 #include <linux/io.h>
16 #include <linux/mutex.h>
17 #include <linux/fs.h>
18 #include <asm/mmu_context.h>
19 #include <asm/cacheflush.h>
20 
21 /*
22  * The maximum number of pages we support up to when doing ranged dcache
23  * flushing. Anything exceeding this will simply flush the dcache in its
24  * entirety.
25  */
26 #define MAX_DCACHE_PAGES	64	/* XXX: Tune for ways */
27 #define MAX_ICACHE_PAGES	32
28 
29 static void __flush_cache_4096(unsigned long addr, unsigned long phys,
30 			       unsigned long exec_offset);
31 
32 /*
33  * This is initialised here to ensure that it is not placed in the BSS.  If
34  * that were to happen, note that cache_init gets called before the BSS is
35  * cleared, so this would get nulled out which would be hopeless.
36  */
37 static void (*__flush_dcache_segment_fn)(unsigned long, unsigned long) =
38 	(void (*)(unsigned long, unsigned long))0xdeadbeef;
39 
40 /*
41  * Write back the range of D-cache, and purge the I-cache.
42  *
43  * Called from kernel/module.c:sys_init_module and routine for a.out format,
44  * signal handler code and kprobes code
45  */
46 static void sh4_flush_icache_range(void *args)
47 {
48 	struct flusher_data *data = args;
49 	unsigned long start, end;
50 	unsigned long flags, v;
51 	int i;
52 
53 	start = data->addr1;
54 	end = data->addr2;
55 
56 	/* If there are too many pages then just blow away the caches */
57 	if (((end - start) >> PAGE_SHIFT) >= MAX_ICACHE_PAGES) {
58 		local_flush_cache_all(NULL);
59 		return;
60 	}
61 
62 	/*
63 	 * Selectively flush d-cache then invalidate the i-cache.
64 	 * This is inefficient, so only use this for small ranges.
65 	 */
66 	start &= ~(L1_CACHE_BYTES-1);
67 	end += L1_CACHE_BYTES-1;
68 	end &= ~(L1_CACHE_BYTES-1);
69 
70 	local_irq_save(flags);
71 	jump_to_uncached();
72 
73 	for (v = start; v < end; v += L1_CACHE_BYTES) {
74 		unsigned long icacheaddr;
75 
76 		__ocbwb(v);
77 
78 		icacheaddr = CACHE_IC_ADDRESS_ARRAY | (v &
79 				cpu_data->icache.entry_mask);
80 
81 		/* Clear i-cache line valid-bit */
82 		for (i = 0; i < cpu_data->icache.ways; i++) {
83 			__raw_writel(0, icacheaddr);
84 			icacheaddr += cpu_data->icache.way_incr;
85 		}
86 	}
87 
88 	back_to_cached();
89 	local_irq_restore(flags);
90 }
91 
92 static inline void flush_cache_4096(unsigned long start,
93 				    unsigned long phys)
94 {
95 	unsigned long flags, exec_offset = 0;
96 
97 	/*
98 	 * All types of SH-4 require PC to be in P2 to operate on the I-cache.
99 	 * Some types of SH-4 require PC to be in P2 to operate on the D-cache.
100 	 */
101 	if ((boot_cpu_data.flags & CPU_HAS_P2_FLUSH_BUG) ||
102 	    (start < CACHE_OC_ADDRESS_ARRAY))
103 		exec_offset = 0x20000000;
104 
105 	local_irq_save(flags);
106 	__flush_cache_4096(start | SH_CACHE_ASSOC,
107 			   P1SEGADDR(phys), exec_offset);
108 	local_irq_restore(flags);
109 }
110 
111 /*
112  * Write back & invalidate the D-cache of the page.
113  * (To avoid "alias" issues)
114  */
115 static void sh4_flush_dcache_page(void *arg)
116 {
117 	struct page *page = arg;
118 #ifndef CONFIG_SMP
119 	struct address_space *mapping = page_mapping(page);
120 
121 	if (mapping && !mapping_mapped(mapping))
122 		set_bit(PG_dcache_dirty, &page->flags);
123 	else
124 #endif
125 	{
126 		unsigned long phys = PHYSADDR(page_address(page));
127 		unsigned long addr = CACHE_OC_ADDRESS_ARRAY;
128 		int i, n;
129 
130 		/* Loop all the D-cache */
131 		n = boot_cpu_data.dcache.n_aliases;
132 		for (i = 0; i < n; i++, addr += 4096)
133 			flush_cache_4096(addr, phys);
134 	}
135 
136 	wmb();
137 }
138 
139 /* TODO: Selective icache invalidation through IC address array.. */
140 static void __uses_jump_to_uncached flush_icache_all(void)
141 {
142 	unsigned long flags, ccr;
143 
144 	local_irq_save(flags);
145 	jump_to_uncached();
146 
147 	/* Flush I-cache */
148 	ccr = ctrl_inl(CCR);
149 	ccr |= CCR_CACHE_ICI;
150 	ctrl_outl(ccr, CCR);
151 
152 	/*
153 	 * back_to_cached() will take care of the barrier for us, don't add
154 	 * another one!
155 	 */
156 
157 	back_to_cached();
158 	local_irq_restore(flags);
159 }
160 
161 static inline void flush_dcache_all(void)
162 {
163 	(*__flush_dcache_segment_fn)(0UL, boot_cpu_data.dcache.way_size);
164 	wmb();
165 }
166 
167 static void sh4_flush_cache_all(void *unused)
168 {
169 	flush_dcache_all();
170 	flush_icache_all();
171 }
172 
173 static void __flush_cache_mm(struct mm_struct *mm, unsigned long start,
174 			     unsigned long end)
175 {
176 	unsigned long d = 0, p = start & PAGE_MASK;
177 	unsigned long alias_mask = boot_cpu_data.dcache.alias_mask;
178 	unsigned long n_aliases = boot_cpu_data.dcache.n_aliases;
179 	unsigned long select_bit;
180 	unsigned long all_aliases_mask;
181 	unsigned long addr_offset;
182 	pgd_t *dir;
183 	pmd_t *pmd;
184 	pud_t *pud;
185 	pte_t *pte;
186 	int i;
187 
188 	dir = pgd_offset(mm, p);
189 	pud = pud_offset(dir, p);
190 	pmd = pmd_offset(pud, p);
191 	end = PAGE_ALIGN(end);
192 
193 	all_aliases_mask = (1 << n_aliases) - 1;
194 
195 	do {
196 		if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) {
197 			p &= PMD_MASK;
198 			p += PMD_SIZE;
199 			pmd++;
200 
201 			continue;
202 		}
203 
204 		pte = pte_offset_kernel(pmd, p);
205 
206 		do {
207 			unsigned long phys;
208 			pte_t entry = *pte;
209 
210 			if (!(pte_val(entry) & _PAGE_PRESENT)) {
211 				pte++;
212 				p += PAGE_SIZE;
213 				continue;
214 			}
215 
216 			phys = pte_val(entry) & PTE_PHYS_MASK;
217 
218 			if ((p ^ phys) & alias_mask) {
219 				d |= 1 << ((p & alias_mask) >> PAGE_SHIFT);
220 				d |= 1 << ((phys & alias_mask) >> PAGE_SHIFT);
221 
222 				if (d == all_aliases_mask)
223 					goto loop_exit;
224 			}
225 
226 			pte++;
227 			p += PAGE_SIZE;
228 		} while (p < end && ((unsigned long)pte & ~PAGE_MASK));
229 		pmd++;
230 	} while (p < end);
231 
232 loop_exit:
233 	addr_offset = 0;
234 	select_bit = 1;
235 
236 	for (i = 0; i < n_aliases; i++) {
237 		if (d & select_bit) {
238 			(*__flush_dcache_segment_fn)(addr_offset, PAGE_SIZE);
239 			wmb();
240 		}
241 
242 		select_bit <<= 1;
243 		addr_offset += PAGE_SIZE;
244 	}
245 }
246 
247 /*
248  * Note : (RPC) since the caches are physically tagged, the only point
249  * of flush_cache_mm for SH-4 is to get rid of aliases from the
250  * D-cache.  The assumption elsewhere, e.g. flush_cache_range, is that
251  * lines can stay resident so long as the virtual address they were
252  * accessed with (hence cache set) is in accord with the physical
253  * address (i.e. tag).  It's no different here.  So I reckon we don't
254  * need to flush the I-cache, since aliases don't matter for that.  We
255  * should try that.
256  *
257  * Caller takes mm->mmap_sem.
258  */
259 static void sh4_flush_cache_mm(void *arg)
260 {
261 	struct mm_struct *mm = arg;
262 
263 	if (cpu_context(smp_processor_id(), mm) == NO_CONTEXT)
264 		return;
265 
266 	/*
267 	 * If cache is only 4k-per-way, there are never any 'aliases'.  Since
268 	 * the cache is physically tagged, the data can just be left in there.
269 	 */
270 	if (boot_cpu_data.dcache.n_aliases == 0)
271 		return;
272 
273 	/*
274 	 * Don't bother groveling around the dcache for the VMA ranges
275 	 * if there are too many PTEs to make it worthwhile.
276 	 */
277 	if (mm->nr_ptes >= MAX_DCACHE_PAGES)
278 		flush_dcache_all();
279 	else {
280 		struct vm_area_struct *vma;
281 
282 		/*
283 		 * In this case there are reasonably sized ranges to flush,
284 		 * iterate through the VMA list and take care of any aliases.
285 		 */
286 		for (vma = mm->mmap; vma; vma = vma->vm_next)
287 			__flush_cache_mm(mm, vma->vm_start, vma->vm_end);
288 	}
289 
290 	/* Only touch the icache if one of the VMAs has VM_EXEC set. */
291 	if (mm->exec_vm)
292 		flush_icache_all();
293 }
294 
295 /*
296  * Write back and invalidate I/D-caches for the page.
297  *
298  * ADDR: Virtual Address (U0 address)
299  * PFN: Physical page number
300  */
301 static void sh4_flush_cache_page(void *args)
302 {
303 	struct flusher_data *data = args;
304 	struct vm_area_struct *vma;
305 	unsigned long address, pfn, phys;
306 	unsigned int alias_mask;
307 
308 	vma = data->vma;
309 	address = data->addr1;
310 	pfn = data->addr2;
311 	phys = pfn << PAGE_SHIFT;
312 
313 	if (cpu_context(smp_processor_id(), vma->vm_mm) == NO_CONTEXT)
314 		return;
315 
316 	alias_mask = boot_cpu_data.dcache.alias_mask;
317 
318 	/* We only need to flush D-cache when we have alias */
319 	if ((address^phys) & alias_mask) {
320 		/* Loop 4K of the D-cache */
321 		flush_cache_4096(
322 			CACHE_OC_ADDRESS_ARRAY | (address & alias_mask),
323 			phys);
324 		/* Loop another 4K of the D-cache */
325 		flush_cache_4096(
326 			CACHE_OC_ADDRESS_ARRAY | (phys & alias_mask),
327 			phys);
328 	}
329 
330 	alias_mask = boot_cpu_data.icache.alias_mask;
331 	if (vma->vm_flags & VM_EXEC) {
332 		/*
333 		 * Evict entries from the portion of the cache from which code
334 		 * may have been executed at this address (virtual).  There's
335 		 * no need to evict from the portion corresponding to the
336 		 * physical address as for the D-cache, because we know the
337 		 * kernel has never executed the code through its identity
338 		 * translation.
339 		 */
340 		flush_cache_4096(
341 			CACHE_IC_ADDRESS_ARRAY | (address & alias_mask),
342 			phys);
343 	}
344 }
345 
346 /*
347  * Write back and invalidate D-caches.
348  *
349  * START, END: Virtual Address (U0 address)
350  *
351  * NOTE: We need to flush the _physical_ page entry.
352  * Flushing the cache lines for U0 only isn't enough.
353  * We need to flush for P1 too, which may contain aliases.
354  */
355 static void sh4_flush_cache_range(void *args)
356 {
357 	struct flusher_data *data = args;
358 	struct vm_area_struct *vma;
359 	unsigned long start, end;
360 
361 	vma = data->vma;
362 	start = data->addr1;
363 	end = data->addr2;
364 
365 	if (cpu_context(smp_processor_id(), vma->vm_mm) == NO_CONTEXT)
366 		return;
367 
368 	/*
369 	 * If cache is only 4k-per-way, there are never any 'aliases'.  Since
370 	 * the cache is physically tagged, the data can just be left in there.
371 	 */
372 	if (boot_cpu_data.dcache.n_aliases == 0)
373 		return;
374 
375 	/*
376 	 * Don't bother with the lookup and alias check if we have a
377 	 * wide range to cover, just blow away the dcache in its
378 	 * entirety instead. -- PFM.
379 	 */
380 	if (((end - start) >> PAGE_SHIFT) >= MAX_DCACHE_PAGES)
381 		flush_dcache_all();
382 	else
383 		__flush_cache_mm(vma->vm_mm, start, end);
384 
385 	if (vma->vm_flags & VM_EXEC) {
386 		/*
387 		 * TODO: Is this required???  Need to look at how I-cache
388 		 * coherency is assured when new programs are loaded to see if
389 		 * this matters.
390 		 */
391 		flush_icache_all();
392 	}
393 }
394 
395 /**
396  * __flush_cache_4096
397  *
398  * @addr:  address in memory mapped cache array
399  * @phys:  P1 address to flush (has to match tags if addr has 'A' bit
400  *         set i.e. associative write)
401  * @exec_offset: set to 0x20000000 if flush has to be executed from P2
402  *               region else 0x0
403  *
404  * The offset into the cache array implied by 'addr' selects the
405  * 'colour' of the virtual address range that will be flushed.  The
406  * operation (purge/write-back) is selected by the lower 2 bits of
407  * 'phys'.
408  */
409 static void __flush_cache_4096(unsigned long addr, unsigned long phys,
410 			       unsigned long exec_offset)
411 {
412 	int way_count;
413 	unsigned long base_addr = addr;
414 	struct cache_info *dcache;
415 	unsigned long way_incr;
416 	unsigned long a, ea, p;
417 	unsigned long temp_pc;
418 
419 	dcache = &boot_cpu_data.dcache;
420 	/* Write this way for better assembly. */
421 	way_count = dcache->ways;
422 	way_incr = dcache->way_incr;
423 
424 	/*
425 	 * Apply exec_offset (i.e. branch to P2 if required.).
426 	 *
427 	 * FIXME:
428 	 *
429 	 *	If I write "=r" for the (temp_pc), it puts this in r6 hence
430 	 *	trashing exec_offset before it's been added on - why?  Hence
431 	 *	"=&r" as a 'workaround'
432 	 */
433 	asm volatile("mov.l 1f, %0\n\t"
434 		     "add   %1, %0\n\t"
435 		     "jmp   @%0\n\t"
436 		     "nop\n\t"
437 		     ".balign 4\n\t"
438 		     "1:  .long 2f\n\t"
439 		     "2:\n" : "=&r" (temp_pc) : "r" (exec_offset));
440 
441 	/*
442 	 * We know there will be >=1 iteration, so write as do-while to avoid
443 	 * pointless nead-of-loop check for 0 iterations.
444 	 */
445 	do {
446 		ea = base_addr + PAGE_SIZE;
447 		a = base_addr;
448 		p = phys;
449 
450 		do {
451 			*(volatile unsigned long *)a = p;
452 			/*
453 			 * Next line: intentionally not p+32, saves an add, p
454 			 * will do since only the cache tag bits need to
455 			 * match.
456 			 */
457 			*(volatile unsigned long *)(a+32) = p;
458 			a += 64;
459 			p += 64;
460 		} while (a < ea);
461 
462 		base_addr += way_incr;
463 	} while (--way_count != 0);
464 }
465 
466 /*
467  * Break the 1, 2 and 4 way variants of this out into separate functions to
468  * avoid nearly all the overhead of having the conditional stuff in the function
469  * bodies (+ the 1 and 2 way cases avoid saving any registers too).
470  *
471  * We want to eliminate unnecessary bus transactions, so this code uses
472  * a non-obvious technique.
473  *
474  * Loop over a cache way sized block of, one cache line at a time. For each
475  * line, use movca.a to cause the current cache line contents to be written
476  * back, but without reading anything from main memory. However this has the
477  * side effect that the cache is now caching that memory location. So follow
478  * this with a cache invalidate to mark the cache line invalid. And do all
479  * this with interrupts disabled, to avoid the cache line being accidently
480  * evicted while it is holding garbage.
481  *
482  * This also breaks in a number of circumstances:
483  * - if there are modifications to the region of memory just above
484  *   empty_zero_page (for example because a breakpoint has been placed
485  *   there), then these can be lost.
486  *
487  *   This is because the the memory address which the cache temporarily
488  *   caches in the above description is empty_zero_page. So the
489  *   movca.l hits the cache (it is assumed that it misses, or at least
490  *   isn't dirty), modifies the line and then invalidates it, losing the
491  *   required change.
492  *
493  * - If caches are disabled or configured in write-through mode, then
494  *   the movca.l writes garbage directly into memory.
495  */
496 static void __flush_dcache_segment_writethrough(unsigned long start,
497 					        unsigned long extent_per_way)
498 {
499 	unsigned long addr;
500 	int i;
501 
502 	addr = CACHE_OC_ADDRESS_ARRAY | (start & cpu_data->dcache.entry_mask);
503 
504 	while (extent_per_way) {
505 		for (i = 0; i < cpu_data->dcache.ways; i++)
506 			__raw_writel(0, addr + cpu_data->dcache.way_incr * i);
507 
508 		addr += cpu_data->dcache.linesz;
509 		extent_per_way -= cpu_data->dcache.linesz;
510 	}
511 }
512 
513 static void __flush_dcache_segment_1way(unsigned long start,
514 					unsigned long extent_per_way)
515 {
516 	unsigned long orig_sr, sr_with_bl;
517 	unsigned long base_addr;
518 	unsigned long way_incr, linesz, way_size;
519 	struct cache_info *dcache;
520 	register unsigned long a0, a0e;
521 
522 	asm volatile("stc sr, %0" : "=r" (orig_sr));
523 	sr_with_bl = orig_sr | (1<<28);
524 	base_addr = ((unsigned long)&empty_zero_page[0]);
525 
526 	/*
527 	 * The previous code aligned base_addr to 16k, i.e. the way_size of all
528 	 * existing SH-4 D-caches.  Whilst I don't see a need to have this
529 	 * aligned to any better than the cache line size (which it will be
530 	 * anyway by construction), let's align it to at least the way_size of
531 	 * any existing or conceivable SH-4 D-cache.  -- RPC
532 	 */
533 	base_addr = ((base_addr >> 16) << 16);
534 	base_addr |= start;
535 
536 	dcache = &boot_cpu_data.dcache;
537 	linesz = dcache->linesz;
538 	way_incr = dcache->way_incr;
539 	way_size = dcache->way_size;
540 
541 	a0 = base_addr;
542 	a0e = base_addr + extent_per_way;
543 	do {
544 		asm volatile("ldc %0, sr" : : "r" (sr_with_bl));
545 		asm volatile("movca.l r0, @%0\n\t"
546 			     "ocbi @%0" : : "r" (a0));
547 		a0 += linesz;
548 		asm volatile("movca.l r0, @%0\n\t"
549 			     "ocbi @%0" : : "r" (a0));
550 		a0 += linesz;
551 		asm volatile("movca.l r0, @%0\n\t"
552 			     "ocbi @%0" : : "r" (a0));
553 		a0 += linesz;
554 		asm volatile("movca.l r0, @%0\n\t"
555 			     "ocbi @%0" : : "r" (a0));
556 		asm volatile("ldc %0, sr" : : "r" (orig_sr));
557 		a0 += linesz;
558 	} while (a0 < a0e);
559 }
560 
561 static void __flush_dcache_segment_2way(unsigned long start,
562 					unsigned long extent_per_way)
563 {
564 	unsigned long orig_sr, sr_with_bl;
565 	unsigned long base_addr;
566 	unsigned long way_incr, linesz, way_size;
567 	struct cache_info *dcache;
568 	register unsigned long a0, a1, a0e;
569 
570 	asm volatile("stc sr, %0" : "=r" (orig_sr));
571 	sr_with_bl = orig_sr | (1<<28);
572 	base_addr = ((unsigned long)&empty_zero_page[0]);
573 
574 	/* See comment under 1-way above */
575 	base_addr = ((base_addr >> 16) << 16);
576 	base_addr |= start;
577 
578 	dcache = &boot_cpu_data.dcache;
579 	linesz = dcache->linesz;
580 	way_incr = dcache->way_incr;
581 	way_size = dcache->way_size;
582 
583 	a0 = base_addr;
584 	a1 = a0 + way_incr;
585 	a0e = base_addr + extent_per_way;
586 	do {
587 		asm volatile("ldc %0, sr" : : "r" (sr_with_bl));
588 		asm volatile("movca.l r0, @%0\n\t"
589 			     "movca.l r0, @%1\n\t"
590 			     "ocbi @%0\n\t"
591 			     "ocbi @%1" : :
592 			     "r" (a0), "r" (a1));
593 		a0 += linesz;
594 		a1 += linesz;
595 		asm volatile("movca.l r0, @%0\n\t"
596 			     "movca.l r0, @%1\n\t"
597 			     "ocbi @%0\n\t"
598 			     "ocbi @%1" : :
599 			     "r" (a0), "r" (a1));
600 		a0 += linesz;
601 		a1 += linesz;
602 		asm volatile("movca.l r0, @%0\n\t"
603 			     "movca.l r0, @%1\n\t"
604 			     "ocbi @%0\n\t"
605 			     "ocbi @%1" : :
606 			     "r" (a0), "r" (a1));
607 		a0 += linesz;
608 		a1 += linesz;
609 		asm volatile("movca.l r0, @%0\n\t"
610 			     "movca.l r0, @%1\n\t"
611 			     "ocbi @%0\n\t"
612 			     "ocbi @%1" : :
613 			     "r" (a0), "r" (a1));
614 		asm volatile("ldc %0, sr" : : "r" (orig_sr));
615 		a0 += linesz;
616 		a1 += linesz;
617 	} while (a0 < a0e);
618 }
619 
620 static void __flush_dcache_segment_4way(unsigned long start,
621 					unsigned long extent_per_way)
622 {
623 	unsigned long orig_sr, sr_with_bl;
624 	unsigned long base_addr;
625 	unsigned long way_incr, linesz, way_size;
626 	struct cache_info *dcache;
627 	register unsigned long a0, a1, a2, a3, a0e;
628 
629 	asm volatile("stc sr, %0" : "=r" (orig_sr));
630 	sr_with_bl = orig_sr | (1<<28);
631 	base_addr = ((unsigned long)&empty_zero_page[0]);
632 
633 	/* See comment under 1-way above */
634 	base_addr = ((base_addr >> 16) << 16);
635 	base_addr |= start;
636 
637 	dcache = &boot_cpu_data.dcache;
638 	linesz = dcache->linesz;
639 	way_incr = dcache->way_incr;
640 	way_size = dcache->way_size;
641 
642 	a0 = base_addr;
643 	a1 = a0 + way_incr;
644 	a2 = a1 + way_incr;
645 	a3 = a2 + way_incr;
646 	a0e = base_addr + extent_per_way;
647 	do {
648 		asm volatile("ldc %0, sr" : : "r" (sr_with_bl));
649 		asm volatile("movca.l r0, @%0\n\t"
650 			     "movca.l r0, @%1\n\t"
651 			     "movca.l r0, @%2\n\t"
652 			     "movca.l r0, @%3\n\t"
653 			     "ocbi @%0\n\t"
654 			     "ocbi @%1\n\t"
655 			     "ocbi @%2\n\t"
656 			     "ocbi @%3\n\t" : :
657 			     "r" (a0), "r" (a1), "r" (a2), "r" (a3));
658 		a0 += linesz;
659 		a1 += linesz;
660 		a2 += linesz;
661 		a3 += linesz;
662 		asm volatile("movca.l r0, @%0\n\t"
663 			     "movca.l r0, @%1\n\t"
664 			     "movca.l r0, @%2\n\t"
665 			     "movca.l r0, @%3\n\t"
666 			     "ocbi @%0\n\t"
667 			     "ocbi @%1\n\t"
668 			     "ocbi @%2\n\t"
669 			     "ocbi @%3\n\t" : :
670 			     "r" (a0), "r" (a1), "r" (a2), "r" (a3));
671 		a0 += linesz;
672 		a1 += linesz;
673 		a2 += linesz;
674 		a3 += linesz;
675 		asm volatile("movca.l r0, @%0\n\t"
676 			     "movca.l r0, @%1\n\t"
677 			     "movca.l r0, @%2\n\t"
678 			     "movca.l r0, @%3\n\t"
679 			     "ocbi @%0\n\t"
680 			     "ocbi @%1\n\t"
681 			     "ocbi @%2\n\t"
682 			     "ocbi @%3\n\t" : :
683 			     "r" (a0), "r" (a1), "r" (a2), "r" (a3));
684 		a0 += linesz;
685 		a1 += linesz;
686 		a2 += linesz;
687 		a3 += linesz;
688 		asm volatile("movca.l r0, @%0\n\t"
689 			     "movca.l r0, @%1\n\t"
690 			     "movca.l r0, @%2\n\t"
691 			     "movca.l r0, @%3\n\t"
692 			     "ocbi @%0\n\t"
693 			     "ocbi @%1\n\t"
694 			     "ocbi @%2\n\t"
695 			     "ocbi @%3\n\t" : :
696 			     "r" (a0), "r" (a1), "r" (a2), "r" (a3));
697 		asm volatile("ldc %0, sr" : : "r" (orig_sr));
698 		a0 += linesz;
699 		a1 += linesz;
700 		a2 += linesz;
701 		a3 += linesz;
702 	} while (a0 < a0e);
703 }
704 
705 extern void __weak sh4__flush_region_init(void);
706 
707 /*
708  * SH-4 has virtually indexed and physically tagged cache.
709  */
710 void __init sh4_cache_init(void)
711 {
712 	unsigned int wt_enabled = !!(__raw_readl(CCR) & CCR_CACHE_WT);
713 
714 	printk("PVR=%08x CVR=%08x PRR=%08x\n",
715 		ctrl_inl(CCN_PVR),
716 		ctrl_inl(CCN_CVR),
717 		ctrl_inl(CCN_PRR));
718 
719 	if (wt_enabled)
720 		__flush_dcache_segment_fn = __flush_dcache_segment_writethrough;
721 	else {
722 		switch (boot_cpu_data.dcache.ways) {
723 		case 1:
724 			__flush_dcache_segment_fn = __flush_dcache_segment_1way;
725 			break;
726 		case 2:
727 			__flush_dcache_segment_fn = __flush_dcache_segment_2way;
728 			break;
729 		case 4:
730 			__flush_dcache_segment_fn = __flush_dcache_segment_4way;
731 			break;
732 		default:
733 			panic("unknown number of cache ways\n");
734 			break;
735 		}
736 	}
737 
738 	local_flush_icache_range	= sh4_flush_icache_range;
739 	local_flush_dcache_page		= sh4_flush_dcache_page;
740 	local_flush_cache_all		= sh4_flush_cache_all;
741 	local_flush_cache_mm		= sh4_flush_cache_mm;
742 	local_flush_cache_dup_mm	= sh4_flush_cache_mm;
743 	local_flush_cache_page		= sh4_flush_cache_page;
744 	local_flush_cache_range		= sh4_flush_cache_range;
745 
746 	sh4__flush_region_init();
747 }
748