1 /* 2 * arch/sh/mm/cache-sh4.c 3 * 4 * Copyright (C) 1999, 2000, 2002 Niibe Yutaka 5 * Copyright (C) 2001 - 2007 Paul Mundt 6 * Copyright (C) 2003 Richard Curnow 7 * Copyright (c) 2007 STMicroelectronics (R&D) Ltd. 8 * 9 * This file is subject to the terms and conditions of the GNU General Public 10 * License. See the file "COPYING" in the main directory of this archive 11 * for more details. 12 */ 13 #include <linux/init.h> 14 #include <linux/mm.h> 15 #include <linux/io.h> 16 #include <linux/mutex.h> 17 #include <asm/mmu_context.h> 18 #include <asm/cacheflush.h> 19 20 /* 21 * The maximum number of pages we support up to when doing ranged dcache 22 * flushing. Anything exceeding this will simply flush the dcache in its 23 * entirety. 24 */ 25 #define MAX_DCACHE_PAGES 64 /* XXX: Tune for ways */ 26 #define MAX_ICACHE_PAGES 32 27 28 static void __flush_dcache_segment_1way(unsigned long start, 29 unsigned long extent); 30 static void __flush_dcache_segment_2way(unsigned long start, 31 unsigned long extent); 32 static void __flush_dcache_segment_4way(unsigned long start, 33 unsigned long extent); 34 35 static void __flush_cache_4096(unsigned long addr, unsigned long phys, 36 unsigned long exec_offset); 37 38 /* 39 * This is initialised here to ensure that it is not placed in the BSS. If 40 * that were to happen, note that cache_init gets called before the BSS is 41 * cleared, so this would get nulled out which would be hopeless. 42 */ 43 static void (*__flush_dcache_segment_fn)(unsigned long, unsigned long) = 44 (void (*)(unsigned long, unsigned long))0xdeadbeef; 45 46 static void compute_alias(struct cache_info *c) 47 { 48 c->alias_mask = ((c->sets - 1) << c->entry_shift) & ~(PAGE_SIZE - 1); 49 c->n_aliases = c->alias_mask ? (c->alias_mask >> PAGE_SHIFT) + 1 : 0; 50 } 51 52 static void __init emit_cache_params(void) 53 { 54 printk("PVR=%08x CVR=%08x PRR=%08x\n", 55 ctrl_inl(CCN_PVR), 56 ctrl_inl(CCN_CVR), 57 ctrl_inl(CCN_PRR)); 58 printk("I-cache : n_ways=%d n_sets=%d way_incr=%d\n", 59 boot_cpu_data.icache.ways, 60 boot_cpu_data.icache.sets, 61 boot_cpu_data.icache.way_incr); 62 printk("I-cache : entry_mask=0x%08x alias_mask=0x%08x n_aliases=%d\n", 63 boot_cpu_data.icache.entry_mask, 64 boot_cpu_data.icache.alias_mask, 65 boot_cpu_data.icache.n_aliases); 66 printk("D-cache : n_ways=%d n_sets=%d way_incr=%d\n", 67 boot_cpu_data.dcache.ways, 68 boot_cpu_data.dcache.sets, 69 boot_cpu_data.dcache.way_incr); 70 printk("D-cache : entry_mask=0x%08x alias_mask=0x%08x n_aliases=%d\n", 71 boot_cpu_data.dcache.entry_mask, 72 boot_cpu_data.dcache.alias_mask, 73 boot_cpu_data.dcache.n_aliases); 74 75 /* 76 * Emit Secondary Cache parameters if the CPU has a probed L2. 77 */ 78 if (boot_cpu_data.flags & CPU_HAS_L2_CACHE) { 79 printk("S-cache : n_ways=%d n_sets=%d way_incr=%d\n", 80 boot_cpu_data.scache.ways, 81 boot_cpu_data.scache.sets, 82 boot_cpu_data.scache.way_incr); 83 printk("S-cache : entry_mask=0x%08x alias_mask=0x%08x n_aliases=%d\n", 84 boot_cpu_data.scache.entry_mask, 85 boot_cpu_data.scache.alias_mask, 86 boot_cpu_data.scache.n_aliases); 87 } 88 89 if (!__flush_dcache_segment_fn) 90 panic("unknown number of cache ways\n"); 91 } 92 93 /* 94 * SH-4 has virtually indexed and physically tagged cache. 95 */ 96 void __init p3_cache_init(void) 97 { 98 compute_alias(&boot_cpu_data.icache); 99 compute_alias(&boot_cpu_data.dcache); 100 compute_alias(&boot_cpu_data.scache); 101 102 switch (boot_cpu_data.dcache.ways) { 103 case 1: 104 __flush_dcache_segment_fn = __flush_dcache_segment_1way; 105 break; 106 case 2: 107 __flush_dcache_segment_fn = __flush_dcache_segment_2way; 108 break; 109 case 4: 110 __flush_dcache_segment_fn = __flush_dcache_segment_4way; 111 break; 112 default: 113 __flush_dcache_segment_fn = NULL; 114 break; 115 } 116 117 emit_cache_params(); 118 } 119 120 /* 121 * Write back the dirty D-caches, but not invalidate them. 122 * 123 * START: Virtual Address (U0, P1, or P3) 124 * SIZE: Size of the region. 125 */ 126 void __flush_wback_region(void *start, int size) 127 { 128 unsigned long v; 129 unsigned long begin, end; 130 131 begin = (unsigned long)start & ~(L1_CACHE_BYTES-1); 132 end = ((unsigned long)start + size + L1_CACHE_BYTES-1) 133 & ~(L1_CACHE_BYTES-1); 134 for (v = begin; v < end; v+=L1_CACHE_BYTES) { 135 asm volatile("ocbwb %0" 136 : /* no output */ 137 : "m" (__m(v))); 138 } 139 } 140 141 /* 142 * Write back the dirty D-caches and invalidate them. 143 * 144 * START: Virtual Address (U0, P1, or P3) 145 * SIZE: Size of the region. 146 */ 147 void __flush_purge_region(void *start, int size) 148 { 149 unsigned long v; 150 unsigned long begin, end; 151 152 begin = (unsigned long)start & ~(L1_CACHE_BYTES-1); 153 end = ((unsigned long)start + size + L1_CACHE_BYTES-1) 154 & ~(L1_CACHE_BYTES-1); 155 for (v = begin; v < end; v+=L1_CACHE_BYTES) { 156 asm volatile("ocbp %0" 157 : /* no output */ 158 : "m" (__m(v))); 159 } 160 } 161 162 /* 163 * No write back please 164 */ 165 void __flush_invalidate_region(void *start, int size) 166 { 167 unsigned long v; 168 unsigned long begin, end; 169 170 begin = (unsigned long)start & ~(L1_CACHE_BYTES-1); 171 end = ((unsigned long)start + size + L1_CACHE_BYTES-1) 172 & ~(L1_CACHE_BYTES-1); 173 for (v = begin; v < end; v+=L1_CACHE_BYTES) { 174 asm volatile("ocbi %0" 175 : /* no output */ 176 : "m" (__m(v))); 177 } 178 } 179 180 /* 181 * Write back the range of D-cache, and purge the I-cache. 182 * 183 * Called from kernel/module.c:sys_init_module and routine for a.out format, 184 * signal handler code and kprobes code 185 */ 186 void flush_icache_range(unsigned long start, unsigned long end) 187 { 188 int icacheaddr; 189 unsigned long flags, v; 190 int i; 191 192 /* If there are too many pages then just blow the caches */ 193 if (((end - start) >> PAGE_SHIFT) >= MAX_ICACHE_PAGES) { 194 flush_cache_all(); 195 } else { 196 /* selectively flush d-cache then invalidate the i-cache */ 197 /* this is inefficient, so only use for small ranges */ 198 start &= ~(L1_CACHE_BYTES-1); 199 end += L1_CACHE_BYTES-1; 200 end &= ~(L1_CACHE_BYTES-1); 201 202 local_irq_save(flags); 203 jump_to_uncached(); 204 205 for (v = start; v < end; v+=L1_CACHE_BYTES) { 206 asm volatile("ocbwb %0" 207 : /* no output */ 208 : "m" (__m(v))); 209 210 icacheaddr = CACHE_IC_ADDRESS_ARRAY | ( 211 v & cpu_data->icache.entry_mask); 212 213 for (i = 0; i < cpu_data->icache.ways; 214 i++, icacheaddr += cpu_data->icache.way_incr) 215 /* Clear i-cache line valid-bit */ 216 ctrl_outl(0, icacheaddr); 217 } 218 219 back_to_cached(); 220 local_irq_restore(flags); 221 } 222 } 223 224 static inline void flush_cache_4096(unsigned long start, 225 unsigned long phys) 226 { 227 unsigned long flags, exec_offset = 0; 228 229 /* 230 * All types of SH-4 require PC to be in P2 to operate on the I-cache. 231 * Some types of SH-4 require PC to be in P2 to operate on the D-cache. 232 */ 233 if ((boot_cpu_data.flags & CPU_HAS_P2_FLUSH_BUG) || 234 (start < CACHE_OC_ADDRESS_ARRAY)) 235 exec_offset = 0x20000000; 236 237 local_irq_save(flags); 238 __flush_cache_4096(start | SH_CACHE_ASSOC, 239 P1SEGADDR(phys), exec_offset); 240 local_irq_restore(flags); 241 } 242 243 /* 244 * Write back & invalidate the D-cache of the page. 245 * (To avoid "alias" issues) 246 */ 247 void flush_dcache_page(struct page *page) 248 { 249 if (test_bit(PG_mapped, &page->flags)) { 250 unsigned long phys = PHYSADDR(page_address(page)); 251 unsigned long addr = CACHE_OC_ADDRESS_ARRAY; 252 int i, n; 253 254 /* Loop all the D-cache */ 255 n = boot_cpu_data.dcache.n_aliases; 256 for (i = 0; i < n; i++, addr += 4096) 257 flush_cache_4096(addr, phys); 258 } 259 260 wmb(); 261 } 262 263 /* TODO: Selective icache invalidation through IC address array.. */ 264 static void __uses_jump_to_uncached flush_icache_all(void) 265 { 266 unsigned long flags, ccr; 267 268 local_irq_save(flags); 269 jump_to_uncached(); 270 271 /* Flush I-cache */ 272 ccr = ctrl_inl(CCR); 273 ccr |= CCR_CACHE_ICI; 274 ctrl_outl(ccr, CCR); 275 276 /* 277 * back_to_cached() will take care of the barrier for us, don't add 278 * another one! 279 */ 280 281 back_to_cached(); 282 local_irq_restore(flags); 283 } 284 285 void flush_dcache_all(void) 286 { 287 (*__flush_dcache_segment_fn)(0UL, boot_cpu_data.dcache.way_size); 288 wmb(); 289 } 290 291 void flush_cache_all(void) 292 { 293 flush_dcache_all(); 294 flush_icache_all(); 295 } 296 297 static void __flush_cache_mm(struct mm_struct *mm, unsigned long start, 298 unsigned long end) 299 { 300 unsigned long d = 0, p = start & PAGE_MASK; 301 unsigned long alias_mask = boot_cpu_data.dcache.alias_mask; 302 unsigned long n_aliases = boot_cpu_data.dcache.n_aliases; 303 unsigned long select_bit; 304 unsigned long all_aliases_mask; 305 unsigned long addr_offset; 306 pgd_t *dir; 307 pmd_t *pmd; 308 pud_t *pud; 309 pte_t *pte; 310 int i; 311 312 dir = pgd_offset(mm, p); 313 pud = pud_offset(dir, p); 314 pmd = pmd_offset(pud, p); 315 end = PAGE_ALIGN(end); 316 317 all_aliases_mask = (1 << n_aliases) - 1; 318 319 do { 320 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) { 321 p &= PMD_MASK; 322 p += PMD_SIZE; 323 pmd++; 324 325 continue; 326 } 327 328 pte = pte_offset_kernel(pmd, p); 329 330 do { 331 unsigned long phys; 332 pte_t entry = *pte; 333 334 if (!(pte_val(entry) & _PAGE_PRESENT)) { 335 pte++; 336 p += PAGE_SIZE; 337 continue; 338 } 339 340 phys = pte_val(entry) & PTE_PHYS_MASK; 341 342 if ((p ^ phys) & alias_mask) { 343 d |= 1 << ((p & alias_mask) >> PAGE_SHIFT); 344 d |= 1 << ((phys & alias_mask) >> PAGE_SHIFT); 345 346 if (d == all_aliases_mask) 347 goto loop_exit; 348 } 349 350 pte++; 351 p += PAGE_SIZE; 352 } while (p < end && ((unsigned long)pte & ~PAGE_MASK)); 353 pmd++; 354 } while (p < end); 355 356 loop_exit: 357 addr_offset = 0; 358 select_bit = 1; 359 360 for (i = 0; i < n_aliases; i++) { 361 if (d & select_bit) { 362 (*__flush_dcache_segment_fn)(addr_offset, PAGE_SIZE); 363 wmb(); 364 } 365 366 select_bit <<= 1; 367 addr_offset += PAGE_SIZE; 368 } 369 } 370 371 /* 372 * Note : (RPC) since the caches are physically tagged, the only point 373 * of flush_cache_mm for SH-4 is to get rid of aliases from the 374 * D-cache. The assumption elsewhere, e.g. flush_cache_range, is that 375 * lines can stay resident so long as the virtual address they were 376 * accessed with (hence cache set) is in accord with the physical 377 * address (i.e. tag). It's no different here. So I reckon we don't 378 * need to flush the I-cache, since aliases don't matter for that. We 379 * should try that. 380 * 381 * Caller takes mm->mmap_sem. 382 */ 383 void flush_cache_mm(struct mm_struct *mm) 384 { 385 /* 386 * If cache is only 4k-per-way, there are never any 'aliases'. Since 387 * the cache is physically tagged, the data can just be left in there. 388 */ 389 if (boot_cpu_data.dcache.n_aliases == 0) 390 return; 391 392 /* 393 * Don't bother groveling around the dcache for the VMA ranges 394 * if there are too many PTEs to make it worthwhile. 395 */ 396 if (mm->nr_ptes >= MAX_DCACHE_PAGES) 397 flush_dcache_all(); 398 else { 399 struct vm_area_struct *vma; 400 401 /* 402 * In this case there are reasonably sized ranges to flush, 403 * iterate through the VMA list and take care of any aliases. 404 */ 405 for (vma = mm->mmap; vma; vma = vma->vm_next) 406 __flush_cache_mm(mm, vma->vm_start, vma->vm_end); 407 } 408 409 /* Only touch the icache if one of the VMAs has VM_EXEC set. */ 410 if (mm->exec_vm) 411 flush_icache_all(); 412 } 413 414 /* 415 * Write back and invalidate I/D-caches for the page. 416 * 417 * ADDR: Virtual Address (U0 address) 418 * PFN: Physical page number 419 */ 420 void flush_cache_page(struct vm_area_struct *vma, unsigned long address, 421 unsigned long pfn) 422 { 423 unsigned long phys = pfn << PAGE_SHIFT; 424 unsigned int alias_mask; 425 426 alias_mask = boot_cpu_data.dcache.alias_mask; 427 428 /* We only need to flush D-cache when we have alias */ 429 if ((address^phys) & alias_mask) { 430 /* Loop 4K of the D-cache */ 431 flush_cache_4096( 432 CACHE_OC_ADDRESS_ARRAY | (address & alias_mask), 433 phys); 434 /* Loop another 4K of the D-cache */ 435 flush_cache_4096( 436 CACHE_OC_ADDRESS_ARRAY | (phys & alias_mask), 437 phys); 438 } 439 440 alias_mask = boot_cpu_data.icache.alias_mask; 441 if (vma->vm_flags & VM_EXEC) { 442 /* 443 * Evict entries from the portion of the cache from which code 444 * may have been executed at this address (virtual). There's 445 * no need to evict from the portion corresponding to the 446 * physical address as for the D-cache, because we know the 447 * kernel has never executed the code through its identity 448 * translation. 449 */ 450 flush_cache_4096( 451 CACHE_IC_ADDRESS_ARRAY | (address & alias_mask), 452 phys); 453 } 454 } 455 456 /* 457 * Write back and invalidate D-caches. 458 * 459 * START, END: Virtual Address (U0 address) 460 * 461 * NOTE: We need to flush the _physical_ page entry. 462 * Flushing the cache lines for U0 only isn't enough. 463 * We need to flush for P1 too, which may contain aliases. 464 */ 465 void flush_cache_range(struct vm_area_struct *vma, unsigned long start, 466 unsigned long end) 467 { 468 /* 469 * If cache is only 4k-per-way, there are never any 'aliases'. Since 470 * the cache is physically tagged, the data can just be left in there. 471 */ 472 if (boot_cpu_data.dcache.n_aliases == 0) 473 return; 474 475 /* 476 * Don't bother with the lookup and alias check if we have a 477 * wide range to cover, just blow away the dcache in its 478 * entirety instead. -- PFM. 479 */ 480 if (((end - start) >> PAGE_SHIFT) >= MAX_DCACHE_PAGES) 481 flush_dcache_all(); 482 else 483 __flush_cache_mm(vma->vm_mm, start, end); 484 485 if (vma->vm_flags & VM_EXEC) { 486 /* 487 * TODO: Is this required??? Need to look at how I-cache 488 * coherency is assured when new programs are loaded to see if 489 * this matters. 490 */ 491 flush_icache_all(); 492 } 493 } 494 495 /* 496 * flush_icache_user_range 497 * @vma: VMA of the process 498 * @page: page 499 * @addr: U0 address 500 * @len: length of the range (< page size) 501 */ 502 void flush_icache_user_range(struct vm_area_struct *vma, 503 struct page *page, unsigned long addr, int len) 504 { 505 flush_cache_page(vma, addr, page_to_pfn(page)); 506 mb(); 507 } 508 509 /** 510 * __flush_cache_4096 511 * 512 * @addr: address in memory mapped cache array 513 * @phys: P1 address to flush (has to match tags if addr has 'A' bit 514 * set i.e. associative write) 515 * @exec_offset: set to 0x20000000 if flush has to be executed from P2 516 * region else 0x0 517 * 518 * The offset into the cache array implied by 'addr' selects the 519 * 'colour' of the virtual address range that will be flushed. The 520 * operation (purge/write-back) is selected by the lower 2 bits of 521 * 'phys'. 522 */ 523 static void __flush_cache_4096(unsigned long addr, unsigned long phys, 524 unsigned long exec_offset) 525 { 526 int way_count; 527 unsigned long base_addr = addr; 528 struct cache_info *dcache; 529 unsigned long way_incr; 530 unsigned long a, ea, p; 531 unsigned long temp_pc; 532 533 dcache = &boot_cpu_data.dcache; 534 /* Write this way for better assembly. */ 535 way_count = dcache->ways; 536 way_incr = dcache->way_incr; 537 538 /* 539 * Apply exec_offset (i.e. branch to P2 if required.). 540 * 541 * FIXME: 542 * 543 * If I write "=r" for the (temp_pc), it puts this in r6 hence 544 * trashing exec_offset before it's been added on - why? Hence 545 * "=&r" as a 'workaround' 546 */ 547 asm volatile("mov.l 1f, %0\n\t" 548 "add %1, %0\n\t" 549 "jmp @%0\n\t" 550 "nop\n\t" 551 ".balign 4\n\t" 552 "1: .long 2f\n\t" 553 "2:\n" : "=&r" (temp_pc) : "r" (exec_offset)); 554 555 /* 556 * We know there will be >=1 iteration, so write as do-while to avoid 557 * pointless nead-of-loop check for 0 iterations. 558 */ 559 do { 560 ea = base_addr + PAGE_SIZE; 561 a = base_addr; 562 p = phys; 563 564 do { 565 *(volatile unsigned long *)a = p; 566 /* 567 * Next line: intentionally not p+32, saves an add, p 568 * will do since only the cache tag bits need to 569 * match. 570 */ 571 *(volatile unsigned long *)(a+32) = p; 572 a += 64; 573 p += 64; 574 } while (a < ea); 575 576 base_addr += way_incr; 577 } while (--way_count != 0); 578 } 579 580 /* 581 * Break the 1, 2 and 4 way variants of this out into separate functions to 582 * avoid nearly all the overhead of having the conditional stuff in the function 583 * bodies (+ the 1 and 2 way cases avoid saving any registers too). 584 */ 585 static void __flush_dcache_segment_1way(unsigned long start, 586 unsigned long extent_per_way) 587 { 588 unsigned long orig_sr, sr_with_bl; 589 unsigned long base_addr; 590 unsigned long way_incr, linesz, way_size; 591 struct cache_info *dcache; 592 register unsigned long a0, a0e; 593 594 asm volatile("stc sr, %0" : "=r" (orig_sr)); 595 sr_with_bl = orig_sr | (1<<28); 596 base_addr = ((unsigned long)&empty_zero_page[0]); 597 598 /* 599 * The previous code aligned base_addr to 16k, i.e. the way_size of all 600 * existing SH-4 D-caches. Whilst I don't see a need to have this 601 * aligned to any better than the cache line size (which it will be 602 * anyway by construction), let's align it to at least the way_size of 603 * any existing or conceivable SH-4 D-cache. -- RPC 604 */ 605 base_addr = ((base_addr >> 16) << 16); 606 base_addr |= start; 607 608 dcache = &boot_cpu_data.dcache; 609 linesz = dcache->linesz; 610 way_incr = dcache->way_incr; 611 way_size = dcache->way_size; 612 613 a0 = base_addr; 614 a0e = base_addr + extent_per_way; 615 do { 616 asm volatile("ldc %0, sr" : : "r" (sr_with_bl)); 617 asm volatile("movca.l r0, @%0\n\t" 618 "ocbi @%0" : : "r" (a0)); 619 a0 += linesz; 620 asm volatile("movca.l r0, @%0\n\t" 621 "ocbi @%0" : : "r" (a0)); 622 a0 += linesz; 623 asm volatile("movca.l r0, @%0\n\t" 624 "ocbi @%0" : : "r" (a0)); 625 a0 += linesz; 626 asm volatile("movca.l r0, @%0\n\t" 627 "ocbi @%0" : : "r" (a0)); 628 asm volatile("ldc %0, sr" : : "r" (orig_sr)); 629 a0 += linesz; 630 } while (a0 < a0e); 631 } 632 633 static void __flush_dcache_segment_2way(unsigned long start, 634 unsigned long extent_per_way) 635 { 636 unsigned long orig_sr, sr_with_bl; 637 unsigned long base_addr; 638 unsigned long way_incr, linesz, way_size; 639 struct cache_info *dcache; 640 register unsigned long a0, a1, a0e; 641 642 asm volatile("stc sr, %0" : "=r" (orig_sr)); 643 sr_with_bl = orig_sr | (1<<28); 644 base_addr = ((unsigned long)&empty_zero_page[0]); 645 646 /* See comment under 1-way above */ 647 base_addr = ((base_addr >> 16) << 16); 648 base_addr |= start; 649 650 dcache = &boot_cpu_data.dcache; 651 linesz = dcache->linesz; 652 way_incr = dcache->way_incr; 653 way_size = dcache->way_size; 654 655 a0 = base_addr; 656 a1 = a0 + way_incr; 657 a0e = base_addr + extent_per_way; 658 do { 659 asm volatile("ldc %0, sr" : : "r" (sr_with_bl)); 660 asm volatile("movca.l r0, @%0\n\t" 661 "movca.l r0, @%1\n\t" 662 "ocbi @%0\n\t" 663 "ocbi @%1" : : 664 "r" (a0), "r" (a1)); 665 a0 += linesz; 666 a1 += linesz; 667 asm volatile("movca.l r0, @%0\n\t" 668 "movca.l r0, @%1\n\t" 669 "ocbi @%0\n\t" 670 "ocbi @%1" : : 671 "r" (a0), "r" (a1)); 672 a0 += linesz; 673 a1 += linesz; 674 asm volatile("movca.l r0, @%0\n\t" 675 "movca.l r0, @%1\n\t" 676 "ocbi @%0\n\t" 677 "ocbi @%1" : : 678 "r" (a0), "r" (a1)); 679 a0 += linesz; 680 a1 += linesz; 681 asm volatile("movca.l r0, @%0\n\t" 682 "movca.l r0, @%1\n\t" 683 "ocbi @%0\n\t" 684 "ocbi @%1" : : 685 "r" (a0), "r" (a1)); 686 asm volatile("ldc %0, sr" : : "r" (orig_sr)); 687 a0 += linesz; 688 a1 += linesz; 689 } while (a0 < a0e); 690 } 691 692 static void __flush_dcache_segment_4way(unsigned long start, 693 unsigned long extent_per_way) 694 { 695 unsigned long orig_sr, sr_with_bl; 696 unsigned long base_addr; 697 unsigned long way_incr, linesz, way_size; 698 struct cache_info *dcache; 699 register unsigned long a0, a1, a2, a3, a0e; 700 701 asm volatile("stc sr, %0" : "=r" (orig_sr)); 702 sr_with_bl = orig_sr | (1<<28); 703 base_addr = ((unsigned long)&empty_zero_page[0]); 704 705 /* See comment under 1-way above */ 706 base_addr = ((base_addr >> 16) << 16); 707 base_addr |= start; 708 709 dcache = &boot_cpu_data.dcache; 710 linesz = dcache->linesz; 711 way_incr = dcache->way_incr; 712 way_size = dcache->way_size; 713 714 a0 = base_addr; 715 a1 = a0 + way_incr; 716 a2 = a1 + way_incr; 717 a3 = a2 + way_incr; 718 a0e = base_addr + extent_per_way; 719 do { 720 asm volatile("ldc %0, sr" : : "r" (sr_with_bl)); 721 asm volatile("movca.l r0, @%0\n\t" 722 "movca.l r0, @%1\n\t" 723 "movca.l r0, @%2\n\t" 724 "movca.l r0, @%3\n\t" 725 "ocbi @%0\n\t" 726 "ocbi @%1\n\t" 727 "ocbi @%2\n\t" 728 "ocbi @%3\n\t" : : 729 "r" (a0), "r" (a1), "r" (a2), "r" (a3)); 730 a0 += linesz; 731 a1 += linesz; 732 a2 += linesz; 733 a3 += linesz; 734 asm volatile("movca.l r0, @%0\n\t" 735 "movca.l r0, @%1\n\t" 736 "movca.l r0, @%2\n\t" 737 "movca.l r0, @%3\n\t" 738 "ocbi @%0\n\t" 739 "ocbi @%1\n\t" 740 "ocbi @%2\n\t" 741 "ocbi @%3\n\t" : : 742 "r" (a0), "r" (a1), "r" (a2), "r" (a3)); 743 a0 += linesz; 744 a1 += linesz; 745 a2 += linesz; 746 a3 += linesz; 747 asm volatile("movca.l r0, @%0\n\t" 748 "movca.l r0, @%1\n\t" 749 "movca.l r0, @%2\n\t" 750 "movca.l r0, @%3\n\t" 751 "ocbi @%0\n\t" 752 "ocbi @%1\n\t" 753 "ocbi @%2\n\t" 754 "ocbi @%3\n\t" : : 755 "r" (a0), "r" (a1), "r" (a2), "r" (a3)); 756 a0 += linesz; 757 a1 += linesz; 758 a2 += linesz; 759 a3 += linesz; 760 asm volatile("movca.l r0, @%0\n\t" 761 "movca.l r0, @%1\n\t" 762 "movca.l r0, @%2\n\t" 763 "movca.l r0, @%3\n\t" 764 "ocbi @%0\n\t" 765 "ocbi @%1\n\t" 766 "ocbi @%2\n\t" 767 "ocbi @%3\n\t" : : 768 "r" (a0), "r" (a1), "r" (a2), "r" (a3)); 769 asm volatile("ldc %0, sr" : : "r" (orig_sr)); 770 a0 += linesz; 771 a1 += linesz; 772 a2 += linesz; 773 a3 += linesz; 774 } while (a0 < a0e); 775 } 776