1 /* 2 * arch/sh/mm/cache-sh4.c 3 * 4 * Copyright (C) 1999, 2000, 2002 Niibe Yutaka 5 * Copyright (C) 2001 - 2007 Paul Mundt 6 * Copyright (C) 2003 Richard Curnow 7 * 8 * This file is subject to the terms and conditions of the GNU General Public 9 * License. See the file "COPYING" in the main directory of this archive 10 * for more details. 11 */ 12 #include <linux/init.h> 13 #include <linux/mm.h> 14 #include <linux/io.h> 15 #include <linux/mutex.h> 16 #include <asm/mmu_context.h> 17 #include <asm/cacheflush.h> 18 19 /* 20 * The maximum number of pages we support up to when doing ranged dcache 21 * flushing. Anything exceeding this will simply flush the dcache in its 22 * entirety. 23 */ 24 #define MAX_DCACHE_PAGES 64 /* XXX: Tune for ways */ 25 26 static void __flush_dcache_segment_1way(unsigned long start, 27 unsigned long extent); 28 static void __flush_dcache_segment_2way(unsigned long start, 29 unsigned long extent); 30 static void __flush_dcache_segment_4way(unsigned long start, 31 unsigned long extent); 32 33 static void __flush_cache_4096(unsigned long addr, unsigned long phys, 34 unsigned long exec_offset); 35 36 /* 37 * This is initialised here to ensure that it is not placed in the BSS. If 38 * that were to happen, note that cache_init gets called before the BSS is 39 * cleared, so this would get nulled out which would be hopeless. 40 */ 41 static void (*__flush_dcache_segment_fn)(unsigned long, unsigned long) = 42 (void (*)(unsigned long, unsigned long))0xdeadbeef; 43 44 static void compute_alias(struct cache_info *c) 45 { 46 c->alias_mask = ((c->sets - 1) << c->entry_shift) & ~(PAGE_SIZE - 1); 47 c->n_aliases = c->alias_mask ? (c->alias_mask >> PAGE_SHIFT) + 1 : 0; 48 } 49 50 static void __init emit_cache_params(void) 51 { 52 printk("PVR=%08x CVR=%08x PRR=%08x\n", 53 ctrl_inl(CCN_PVR), 54 ctrl_inl(CCN_CVR), 55 ctrl_inl(CCN_PRR)); 56 printk("I-cache : n_ways=%d n_sets=%d way_incr=%d\n", 57 boot_cpu_data.icache.ways, 58 boot_cpu_data.icache.sets, 59 boot_cpu_data.icache.way_incr); 60 printk("I-cache : entry_mask=0x%08x alias_mask=0x%08x n_aliases=%d\n", 61 boot_cpu_data.icache.entry_mask, 62 boot_cpu_data.icache.alias_mask, 63 boot_cpu_data.icache.n_aliases); 64 printk("D-cache : n_ways=%d n_sets=%d way_incr=%d\n", 65 boot_cpu_data.dcache.ways, 66 boot_cpu_data.dcache.sets, 67 boot_cpu_data.dcache.way_incr); 68 printk("D-cache : entry_mask=0x%08x alias_mask=0x%08x n_aliases=%d\n", 69 boot_cpu_data.dcache.entry_mask, 70 boot_cpu_data.dcache.alias_mask, 71 boot_cpu_data.dcache.n_aliases); 72 73 /* 74 * Emit Secondary Cache parameters if the CPU has a probed L2. 75 */ 76 if (boot_cpu_data.flags & CPU_HAS_L2_CACHE) { 77 printk("S-cache : n_ways=%d n_sets=%d way_incr=%d\n", 78 boot_cpu_data.scache.ways, 79 boot_cpu_data.scache.sets, 80 boot_cpu_data.scache.way_incr); 81 printk("S-cache : entry_mask=0x%08x alias_mask=0x%08x n_aliases=%d\n", 82 boot_cpu_data.scache.entry_mask, 83 boot_cpu_data.scache.alias_mask, 84 boot_cpu_data.scache.n_aliases); 85 } 86 87 if (!__flush_dcache_segment_fn) 88 panic("unknown number of cache ways\n"); 89 } 90 91 /* 92 * SH-4 has virtually indexed and physically tagged cache. 93 */ 94 void __init p3_cache_init(void) 95 { 96 compute_alias(&boot_cpu_data.icache); 97 compute_alias(&boot_cpu_data.dcache); 98 compute_alias(&boot_cpu_data.scache); 99 100 switch (boot_cpu_data.dcache.ways) { 101 case 1: 102 __flush_dcache_segment_fn = __flush_dcache_segment_1way; 103 break; 104 case 2: 105 __flush_dcache_segment_fn = __flush_dcache_segment_2way; 106 break; 107 case 4: 108 __flush_dcache_segment_fn = __flush_dcache_segment_4way; 109 break; 110 default: 111 __flush_dcache_segment_fn = NULL; 112 break; 113 } 114 115 emit_cache_params(); 116 } 117 118 /* 119 * Write back the dirty D-caches, but not invalidate them. 120 * 121 * START: Virtual Address (U0, P1, or P3) 122 * SIZE: Size of the region. 123 */ 124 void __flush_wback_region(void *start, int size) 125 { 126 unsigned long v; 127 unsigned long begin, end; 128 129 begin = (unsigned long)start & ~(L1_CACHE_BYTES-1); 130 end = ((unsigned long)start + size + L1_CACHE_BYTES-1) 131 & ~(L1_CACHE_BYTES-1); 132 for (v = begin; v < end; v+=L1_CACHE_BYTES) { 133 asm volatile("ocbwb %0" 134 : /* no output */ 135 : "m" (__m(v))); 136 } 137 } 138 139 /* 140 * Write back the dirty D-caches and invalidate them. 141 * 142 * START: Virtual Address (U0, P1, or P3) 143 * SIZE: Size of the region. 144 */ 145 void __flush_purge_region(void *start, int size) 146 { 147 unsigned long v; 148 unsigned long begin, end; 149 150 begin = (unsigned long)start & ~(L1_CACHE_BYTES-1); 151 end = ((unsigned long)start + size + L1_CACHE_BYTES-1) 152 & ~(L1_CACHE_BYTES-1); 153 for (v = begin; v < end; v+=L1_CACHE_BYTES) { 154 asm volatile("ocbp %0" 155 : /* no output */ 156 : "m" (__m(v))); 157 } 158 } 159 160 /* 161 * No write back please 162 */ 163 void __flush_invalidate_region(void *start, int size) 164 { 165 unsigned long v; 166 unsigned long begin, end; 167 168 begin = (unsigned long)start & ~(L1_CACHE_BYTES-1); 169 end = ((unsigned long)start + size + L1_CACHE_BYTES-1) 170 & ~(L1_CACHE_BYTES-1); 171 for (v = begin; v < end; v+=L1_CACHE_BYTES) { 172 asm volatile("ocbi %0" 173 : /* no output */ 174 : "m" (__m(v))); 175 } 176 } 177 178 /* 179 * Write back the range of D-cache, and purge the I-cache. 180 * 181 * Called from kernel/module.c:sys_init_module and routine for a.out format. 182 */ 183 void flush_icache_range(unsigned long start, unsigned long end) 184 { 185 flush_cache_all(); 186 } 187 188 /* 189 * Write back the D-cache and purge the I-cache for signal trampoline. 190 * .. which happens to be the same behavior as flush_icache_range(). 191 * So, we simply flush out a line. 192 */ 193 void __uses_jump_to_uncached flush_cache_sigtramp(unsigned long addr) 194 { 195 unsigned long v, index; 196 unsigned long flags; 197 int i; 198 199 v = addr & ~(L1_CACHE_BYTES-1); 200 asm volatile("ocbwb %0" 201 : /* no output */ 202 : "m" (__m(v))); 203 204 index = CACHE_IC_ADDRESS_ARRAY | 205 (v & boot_cpu_data.icache.entry_mask); 206 207 local_irq_save(flags); 208 jump_to_uncached(); 209 210 for (i = 0; i < boot_cpu_data.icache.ways; 211 i++, index += boot_cpu_data.icache.way_incr) 212 ctrl_outl(0, index); /* Clear out Valid-bit */ 213 214 back_to_cached(); 215 wmb(); 216 local_irq_restore(flags); 217 } 218 219 static inline void flush_cache_4096(unsigned long start, 220 unsigned long phys) 221 { 222 unsigned long flags, exec_offset = 0; 223 224 /* 225 * All types of SH-4 require PC to be in P2 to operate on the I-cache. 226 * Some types of SH-4 require PC to be in P2 to operate on the D-cache. 227 */ 228 if ((boot_cpu_data.flags & CPU_HAS_P2_FLUSH_BUG) || 229 (start < CACHE_OC_ADDRESS_ARRAY)) 230 exec_offset = 0x20000000; 231 232 local_irq_save(flags); 233 __flush_cache_4096(start | SH_CACHE_ASSOC, 234 P1SEGADDR(phys), exec_offset); 235 local_irq_restore(flags); 236 } 237 238 /* 239 * Write back & invalidate the D-cache of the page. 240 * (To avoid "alias" issues) 241 */ 242 void flush_dcache_page(struct page *page) 243 { 244 if (test_bit(PG_mapped, &page->flags)) { 245 unsigned long phys = PHYSADDR(page_address(page)); 246 unsigned long addr = CACHE_OC_ADDRESS_ARRAY; 247 int i, n; 248 249 /* Loop all the D-cache */ 250 n = boot_cpu_data.dcache.n_aliases; 251 for (i = 0; i < n; i++, addr += 4096) 252 flush_cache_4096(addr, phys); 253 } 254 255 wmb(); 256 } 257 258 /* TODO: Selective icache invalidation through IC address array.. */ 259 static inline void __uses_jump_to_uncached flush_icache_all(void) 260 { 261 unsigned long flags, ccr; 262 263 local_irq_save(flags); 264 jump_to_uncached(); 265 266 /* Flush I-cache */ 267 ccr = ctrl_inl(CCR); 268 ccr |= CCR_CACHE_ICI; 269 ctrl_outl(ccr, CCR); 270 271 /* 272 * back_to_cached() will take care of the barrier for us, don't add 273 * another one! 274 */ 275 276 back_to_cached(); 277 local_irq_restore(flags); 278 } 279 280 void flush_dcache_all(void) 281 { 282 (*__flush_dcache_segment_fn)(0UL, boot_cpu_data.dcache.way_size); 283 wmb(); 284 } 285 286 void flush_cache_all(void) 287 { 288 flush_dcache_all(); 289 flush_icache_all(); 290 } 291 292 static void __flush_cache_mm(struct mm_struct *mm, unsigned long start, 293 unsigned long end) 294 { 295 unsigned long d = 0, p = start & PAGE_MASK; 296 unsigned long alias_mask = boot_cpu_data.dcache.alias_mask; 297 unsigned long n_aliases = boot_cpu_data.dcache.n_aliases; 298 unsigned long select_bit; 299 unsigned long all_aliases_mask; 300 unsigned long addr_offset; 301 pgd_t *dir; 302 pmd_t *pmd; 303 pud_t *pud; 304 pte_t *pte; 305 int i; 306 307 dir = pgd_offset(mm, p); 308 pud = pud_offset(dir, p); 309 pmd = pmd_offset(pud, p); 310 end = PAGE_ALIGN(end); 311 312 all_aliases_mask = (1 << n_aliases) - 1; 313 314 do { 315 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) { 316 p &= PMD_MASK; 317 p += PMD_SIZE; 318 pmd++; 319 320 continue; 321 } 322 323 pte = pte_offset_kernel(pmd, p); 324 325 do { 326 unsigned long phys; 327 pte_t entry = *pte; 328 329 if (!(pte_val(entry) & _PAGE_PRESENT)) { 330 pte++; 331 p += PAGE_SIZE; 332 continue; 333 } 334 335 phys = pte_val(entry) & PTE_PHYS_MASK; 336 337 if ((p ^ phys) & alias_mask) { 338 d |= 1 << ((p & alias_mask) >> PAGE_SHIFT); 339 d |= 1 << ((phys & alias_mask) >> PAGE_SHIFT); 340 341 if (d == all_aliases_mask) 342 goto loop_exit; 343 } 344 345 pte++; 346 p += PAGE_SIZE; 347 } while (p < end && ((unsigned long)pte & ~PAGE_MASK)); 348 pmd++; 349 } while (p < end); 350 351 loop_exit: 352 addr_offset = 0; 353 select_bit = 1; 354 355 for (i = 0; i < n_aliases; i++) { 356 if (d & select_bit) { 357 (*__flush_dcache_segment_fn)(addr_offset, PAGE_SIZE); 358 wmb(); 359 } 360 361 select_bit <<= 1; 362 addr_offset += PAGE_SIZE; 363 } 364 } 365 366 /* 367 * Note : (RPC) since the caches are physically tagged, the only point 368 * of flush_cache_mm for SH-4 is to get rid of aliases from the 369 * D-cache. The assumption elsewhere, e.g. flush_cache_range, is that 370 * lines can stay resident so long as the virtual address they were 371 * accessed with (hence cache set) is in accord with the physical 372 * address (i.e. tag). It's no different here. So I reckon we don't 373 * need to flush the I-cache, since aliases don't matter for that. We 374 * should try that. 375 * 376 * Caller takes mm->mmap_sem. 377 */ 378 void flush_cache_mm(struct mm_struct *mm) 379 { 380 /* 381 * If cache is only 4k-per-way, there are never any 'aliases'. Since 382 * the cache is physically tagged, the data can just be left in there. 383 */ 384 if (boot_cpu_data.dcache.n_aliases == 0) 385 return; 386 387 /* 388 * Don't bother groveling around the dcache for the VMA ranges 389 * if there are too many PTEs to make it worthwhile. 390 */ 391 if (mm->nr_ptes >= MAX_DCACHE_PAGES) 392 flush_dcache_all(); 393 else { 394 struct vm_area_struct *vma; 395 396 /* 397 * In this case there are reasonably sized ranges to flush, 398 * iterate through the VMA list and take care of any aliases. 399 */ 400 for (vma = mm->mmap; vma; vma = vma->vm_next) 401 __flush_cache_mm(mm, vma->vm_start, vma->vm_end); 402 } 403 404 /* Only touch the icache if one of the VMAs has VM_EXEC set. */ 405 if (mm->exec_vm) 406 flush_icache_all(); 407 } 408 409 /* 410 * Write back and invalidate I/D-caches for the page. 411 * 412 * ADDR: Virtual Address (U0 address) 413 * PFN: Physical page number 414 */ 415 void flush_cache_page(struct vm_area_struct *vma, unsigned long address, 416 unsigned long pfn) 417 { 418 unsigned long phys = pfn << PAGE_SHIFT; 419 unsigned int alias_mask; 420 421 alias_mask = boot_cpu_data.dcache.alias_mask; 422 423 /* We only need to flush D-cache when we have alias */ 424 if ((address^phys) & alias_mask) { 425 /* Loop 4K of the D-cache */ 426 flush_cache_4096( 427 CACHE_OC_ADDRESS_ARRAY | (address & alias_mask), 428 phys); 429 /* Loop another 4K of the D-cache */ 430 flush_cache_4096( 431 CACHE_OC_ADDRESS_ARRAY | (phys & alias_mask), 432 phys); 433 } 434 435 alias_mask = boot_cpu_data.icache.alias_mask; 436 if (vma->vm_flags & VM_EXEC) { 437 /* 438 * Evict entries from the portion of the cache from which code 439 * may have been executed at this address (virtual). There's 440 * no need to evict from the portion corresponding to the 441 * physical address as for the D-cache, because we know the 442 * kernel has never executed the code through its identity 443 * translation. 444 */ 445 flush_cache_4096( 446 CACHE_IC_ADDRESS_ARRAY | (address & alias_mask), 447 phys); 448 } 449 } 450 451 /* 452 * Write back and invalidate D-caches. 453 * 454 * START, END: Virtual Address (U0 address) 455 * 456 * NOTE: We need to flush the _physical_ page entry. 457 * Flushing the cache lines for U0 only isn't enough. 458 * We need to flush for P1 too, which may contain aliases. 459 */ 460 void flush_cache_range(struct vm_area_struct *vma, unsigned long start, 461 unsigned long end) 462 { 463 /* 464 * If cache is only 4k-per-way, there are never any 'aliases'. Since 465 * the cache is physically tagged, the data can just be left in there. 466 */ 467 if (boot_cpu_data.dcache.n_aliases == 0) 468 return; 469 470 /* 471 * Don't bother with the lookup and alias check if we have a 472 * wide range to cover, just blow away the dcache in its 473 * entirety instead. -- PFM. 474 */ 475 if (((end - start) >> PAGE_SHIFT) >= MAX_DCACHE_PAGES) 476 flush_dcache_all(); 477 else 478 __flush_cache_mm(vma->vm_mm, start, end); 479 480 if (vma->vm_flags & VM_EXEC) { 481 /* 482 * TODO: Is this required??? Need to look at how I-cache 483 * coherency is assured when new programs are loaded to see if 484 * this matters. 485 */ 486 flush_icache_all(); 487 } 488 } 489 490 /* 491 * flush_icache_user_range 492 * @vma: VMA of the process 493 * @page: page 494 * @addr: U0 address 495 * @len: length of the range (< page size) 496 */ 497 void flush_icache_user_range(struct vm_area_struct *vma, 498 struct page *page, unsigned long addr, int len) 499 { 500 flush_cache_page(vma, addr, page_to_pfn(page)); 501 mb(); 502 } 503 504 /** 505 * __flush_cache_4096 506 * 507 * @addr: address in memory mapped cache array 508 * @phys: P1 address to flush (has to match tags if addr has 'A' bit 509 * set i.e. associative write) 510 * @exec_offset: set to 0x20000000 if flush has to be executed from P2 511 * region else 0x0 512 * 513 * The offset into the cache array implied by 'addr' selects the 514 * 'colour' of the virtual address range that will be flushed. The 515 * operation (purge/write-back) is selected by the lower 2 bits of 516 * 'phys'. 517 */ 518 static void __flush_cache_4096(unsigned long addr, unsigned long phys, 519 unsigned long exec_offset) 520 { 521 int way_count; 522 unsigned long base_addr = addr; 523 struct cache_info *dcache; 524 unsigned long way_incr; 525 unsigned long a, ea, p; 526 unsigned long temp_pc; 527 528 dcache = &boot_cpu_data.dcache; 529 /* Write this way for better assembly. */ 530 way_count = dcache->ways; 531 way_incr = dcache->way_incr; 532 533 /* 534 * Apply exec_offset (i.e. branch to P2 if required.). 535 * 536 * FIXME: 537 * 538 * If I write "=r" for the (temp_pc), it puts this in r6 hence 539 * trashing exec_offset before it's been added on - why? Hence 540 * "=&r" as a 'workaround' 541 */ 542 asm volatile("mov.l 1f, %0\n\t" 543 "add %1, %0\n\t" 544 "jmp @%0\n\t" 545 "nop\n\t" 546 ".balign 4\n\t" 547 "1: .long 2f\n\t" 548 "2:\n" : "=&r" (temp_pc) : "r" (exec_offset)); 549 550 /* 551 * We know there will be >=1 iteration, so write as do-while to avoid 552 * pointless nead-of-loop check for 0 iterations. 553 */ 554 do { 555 ea = base_addr + PAGE_SIZE; 556 a = base_addr; 557 p = phys; 558 559 do { 560 *(volatile unsigned long *)a = p; 561 /* 562 * Next line: intentionally not p+32, saves an add, p 563 * will do since only the cache tag bits need to 564 * match. 565 */ 566 *(volatile unsigned long *)(a+32) = p; 567 a += 64; 568 p += 64; 569 } while (a < ea); 570 571 base_addr += way_incr; 572 } while (--way_count != 0); 573 } 574 575 /* 576 * Break the 1, 2 and 4 way variants of this out into separate functions to 577 * avoid nearly all the overhead of having the conditional stuff in the function 578 * bodies (+ the 1 and 2 way cases avoid saving any registers too). 579 */ 580 static void __flush_dcache_segment_1way(unsigned long start, 581 unsigned long extent_per_way) 582 { 583 unsigned long orig_sr, sr_with_bl; 584 unsigned long base_addr; 585 unsigned long way_incr, linesz, way_size; 586 struct cache_info *dcache; 587 register unsigned long a0, a0e; 588 589 asm volatile("stc sr, %0" : "=r" (orig_sr)); 590 sr_with_bl = orig_sr | (1<<28); 591 base_addr = ((unsigned long)&empty_zero_page[0]); 592 593 /* 594 * The previous code aligned base_addr to 16k, i.e. the way_size of all 595 * existing SH-4 D-caches. Whilst I don't see a need to have this 596 * aligned to any better than the cache line size (which it will be 597 * anyway by construction), let's align it to at least the way_size of 598 * any existing or conceivable SH-4 D-cache. -- RPC 599 */ 600 base_addr = ((base_addr >> 16) << 16); 601 base_addr |= start; 602 603 dcache = &boot_cpu_data.dcache; 604 linesz = dcache->linesz; 605 way_incr = dcache->way_incr; 606 way_size = dcache->way_size; 607 608 a0 = base_addr; 609 a0e = base_addr + extent_per_way; 610 do { 611 asm volatile("ldc %0, sr" : : "r" (sr_with_bl)); 612 asm volatile("movca.l r0, @%0\n\t" 613 "ocbi @%0" : : "r" (a0)); 614 a0 += linesz; 615 asm volatile("movca.l r0, @%0\n\t" 616 "ocbi @%0" : : "r" (a0)); 617 a0 += linesz; 618 asm volatile("movca.l r0, @%0\n\t" 619 "ocbi @%0" : : "r" (a0)); 620 a0 += linesz; 621 asm volatile("movca.l r0, @%0\n\t" 622 "ocbi @%0" : : "r" (a0)); 623 asm volatile("ldc %0, sr" : : "r" (orig_sr)); 624 a0 += linesz; 625 } while (a0 < a0e); 626 } 627 628 static void __flush_dcache_segment_2way(unsigned long start, 629 unsigned long extent_per_way) 630 { 631 unsigned long orig_sr, sr_with_bl; 632 unsigned long base_addr; 633 unsigned long way_incr, linesz, way_size; 634 struct cache_info *dcache; 635 register unsigned long a0, a1, a0e; 636 637 asm volatile("stc sr, %0" : "=r" (orig_sr)); 638 sr_with_bl = orig_sr | (1<<28); 639 base_addr = ((unsigned long)&empty_zero_page[0]); 640 641 /* See comment under 1-way above */ 642 base_addr = ((base_addr >> 16) << 16); 643 base_addr |= start; 644 645 dcache = &boot_cpu_data.dcache; 646 linesz = dcache->linesz; 647 way_incr = dcache->way_incr; 648 way_size = dcache->way_size; 649 650 a0 = base_addr; 651 a1 = a0 + way_incr; 652 a0e = base_addr + extent_per_way; 653 do { 654 asm volatile("ldc %0, sr" : : "r" (sr_with_bl)); 655 asm volatile("movca.l r0, @%0\n\t" 656 "movca.l r0, @%1\n\t" 657 "ocbi @%0\n\t" 658 "ocbi @%1" : : 659 "r" (a0), "r" (a1)); 660 a0 += linesz; 661 a1 += linesz; 662 asm volatile("movca.l r0, @%0\n\t" 663 "movca.l r0, @%1\n\t" 664 "ocbi @%0\n\t" 665 "ocbi @%1" : : 666 "r" (a0), "r" (a1)); 667 a0 += linesz; 668 a1 += linesz; 669 asm volatile("movca.l r0, @%0\n\t" 670 "movca.l r0, @%1\n\t" 671 "ocbi @%0\n\t" 672 "ocbi @%1" : : 673 "r" (a0), "r" (a1)); 674 a0 += linesz; 675 a1 += linesz; 676 asm volatile("movca.l r0, @%0\n\t" 677 "movca.l r0, @%1\n\t" 678 "ocbi @%0\n\t" 679 "ocbi @%1" : : 680 "r" (a0), "r" (a1)); 681 asm volatile("ldc %0, sr" : : "r" (orig_sr)); 682 a0 += linesz; 683 a1 += linesz; 684 } while (a0 < a0e); 685 } 686 687 static void __flush_dcache_segment_4way(unsigned long start, 688 unsigned long extent_per_way) 689 { 690 unsigned long orig_sr, sr_with_bl; 691 unsigned long base_addr; 692 unsigned long way_incr, linesz, way_size; 693 struct cache_info *dcache; 694 register unsigned long a0, a1, a2, a3, a0e; 695 696 asm volatile("stc sr, %0" : "=r" (orig_sr)); 697 sr_with_bl = orig_sr | (1<<28); 698 base_addr = ((unsigned long)&empty_zero_page[0]); 699 700 /* See comment under 1-way above */ 701 base_addr = ((base_addr >> 16) << 16); 702 base_addr |= start; 703 704 dcache = &boot_cpu_data.dcache; 705 linesz = dcache->linesz; 706 way_incr = dcache->way_incr; 707 way_size = dcache->way_size; 708 709 a0 = base_addr; 710 a1 = a0 + way_incr; 711 a2 = a1 + way_incr; 712 a3 = a2 + way_incr; 713 a0e = base_addr + extent_per_way; 714 do { 715 asm volatile("ldc %0, sr" : : "r" (sr_with_bl)); 716 asm volatile("movca.l r0, @%0\n\t" 717 "movca.l r0, @%1\n\t" 718 "movca.l r0, @%2\n\t" 719 "movca.l r0, @%3\n\t" 720 "ocbi @%0\n\t" 721 "ocbi @%1\n\t" 722 "ocbi @%2\n\t" 723 "ocbi @%3\n\t" : : 724 "r" (a0), "r" (a1), "r" (a2), "r" (a3)); 725 a0 += linesz; 726 a1 += linesz; 727 a2 += linesz; 728 a3 += linesz; 729 asm volatile("movca.l r0, @%0\n\t" 730 "movca.l r0, @%1\n\t" 731 "movca.l r0, @%2\n\t" 732 "movca.l r0, @%3\n\t" 733 "ocbi @%0\n\t" 734 "ocbi @%1\n\t" 735 "ocbi @%2\n\t" 736 "ocbi @%3\n\t" : : 737 "r" (a0), "r" (a1), "r" (a2), "r" (a3)); 738 a0 += linesz; 739 a1 += linesz; 740 a2 += linesz; 741 a3 += linesz; 742 asm volatile("movca.l r0, @%0\n\t" 743 "movca.l r0, @%1\n\t" 744 "movca.l r0, @%2\n\t" 745 "movca.l r0, @%3\n\t" 746 "ocbi @%0\n\t" 747 "ocbi @%1\n\t" 748 "ocbi @%2\n\t" 749 "ocbi @%3\n\t" : : 750 "r" (a0), "r" (a1), "r" (a2), "r" (a3)); 751 a0 += linesz; 752 a1 += linesz; 753 a2 += linesz; 754 a3 += linesz; 755 asm volatile("movca.l r0, @%0\n\t" 756 "movca.l r0, @%1\n\t" 757 "movca.l r0, @%2\n\t" 758 "movca.l r0, @%3\n\t" 759 "ocbi @%0\n\t" 760 "ocbi @%1\n\t" 761 "ocbi @%2\n\t" 762 "ocbi @%3\n\t" : : 763 "r" (a0), "r" (a1), "r" (a2), "r" (a3)); 764 asm volatile("ldc %0, sr" : : "r" (orig_sr)); 765 a0 += linesz; 766 a1 += linesz; 767 a2 += linesz; 768 a3 += linesz; 769 } while (a0 < a0e); 770 } 771