1 /* 2 * arch/sh/kernel/smp.c 3 * 4 * SMP support for the SuperH processors. 5 * 6 * Copyright (C) 2002 - 2007 Paul Mundt 7 * Copyright (C) 2006 - 2007 Akio Idehara 8 * 9 * This file is subject to the terms and conditions of the GNU General Public 10 * License. See the file "COPYING" in the main directory of this archive 11 * for more details. 12 */ 13 #include <linux/err.h> 14 #include <linux/cache.h> 15 #include <linux/cpumask.h> 16 #include <linux/delay.h> 17 #include <linux/init.h> 18 #include <linux/spinlock.h> 19 #include <linux/mm.h> 20 #include <linux/module.h> 21 #include <linux/interrupt.h> 22 #include <asm/atomic.h> 23 #include <asm/processor.h> 24 #include <asm/system.h> 25 #include <asm/mmu_context.h> 26 #include <asm/smp.h> 27 #include <asm/cacheflush.h> 28 #include <asm/sections.h> 29 30 int __cpu_number_map[NR_CPUS]; /* Map physical to logical */ 31 int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */ 32 33 cpumask_t cpu_possible_map; 34 EXPORT_SYMBOL(cpu_possible_map); 35 36 cpumask_t cpu_online_map; 37 EXPORT_SYMBOL(cpu_online_map); 38 39 static atomic_t cpus_booted = ATOMIC_INIT(0); 40 41 /* 42 * Run specified function on a particular processor. 43 */ 44 void __smp_call_function(unsigned int cpu); 45 46 static inline void __init smp_store_cpu_info(unsigned int cpu) 47 { 48 struct sh_cpuinfo *c = cpu_data + cpu; 49 50 c->loops_per_jiffy = loops_per_jiffy; 51 } 52 53 void __init smp_prepare_cpus(unsigned int max_cpus) 54 { 55 unsigned int cpu = smp_processor_id(); 56 57 init_new_context(current, &init_mm); 58 current_thread_info()->cpu = cpu; 59 plat_prepare_cpus(max_cpus); 60 61 #ifndef CONFIG_HOTPLUG_CPU 62 cpu_present_map = cpu_possible_map; 63 #endif 64 } 65 66 void __devinit smp_prepare_boot_cpu(void) 67 { 68 unsigned int cpu = smp_processor_id(); 69 70 __cpu_number_map[0] = cpu; 71 __cpu_logical_map[0] = cpu; 72 73 cpu_set(cpu, cpu_online_map); 74 cpu_set(cpu, cpu_possible_map); 75 } 76 77 asmlinkage void __cpuinit start_secondary(void) 78 { 79 unsigned int cpu; 80 struct mm_struct *mm = &init_mm; 81 82 atomic_inc(&mm->mm_count); 83 atomic_inc(&mm->mm_users); 84 current->active_mm = mm; 85 BUG_ON(current->mm); 86 enter_lazy_tlb(mm, current); 87 88 per_cpu_trap_init(); 89 90 preempt_disable(); 91 92 local_irq_enable(); 93 94 calibrate_delay(); 95 96 cpu = smp_processor_id(); 97 smp_store_cpu_info(cpu); 98 99 cpu_set(cpu, cpu_online_map); 100 101 cpu_idle(); 102 } 103 104 extern struct { 105 unsigned long sp; 106 unsigned long bss_start; 107 unsigned long bss_end; 108 void *start_kernel_fn; 109 void *cpu_init_fn; 110 void *thread_info; 111 } stack_start; 112 113 int __cpuinit __cpu_up(unsigned int cpu) 114 { 115 struct task_struct *tsk; 116 unsigned long timeout; 117 118 tsk = fork_idle(cpu); 119 if (IS_ERR(tsk)) { 120 printk(KERN_ERR "Failed forking idle task for cpu %d\n", cpu); 121 return PTR_ERR(tsk); 122 } 123 124 /* Fill in data in head.S for secondary cpus */ 125 stack_start.sp = tsk->thread.sp; 126 stack_start.thread_info = tsk->stack; 127 stack_start.bss_start = 0; /* don't clear bss for secondary cpus */ 128 stack_start.start_kernel_fn = start_secondary; 129 130 flush_cache_all(); 131 132 plat_start_cpu(cpu, (unsigned long)_stext); 133 134 timeout = jiffies + HZ; 135 while (time_before(jiffies, timeout)) { 136 if (cpu_online(cpu)) 137 break; 138 139 udelay(10); 140 } 141 142 if (cpu_online(cpu)) 143 return 0; 144 145 return -ENOENT; 146 } 147 148 void __init smp_cpus_done(unsigned int max_cpus) 149 { 150 unsigned long bogosum = 0; 151 int cpu; 152 153 for_each_online_cpu(cpu) 154 bogosum += cpu_data[cpu].loops_per_jiffy; 155 156 printk(KERN_INFO "SMP: Total of %d processors activated " 157 "(%lu.%02lu BogoMIPS).\n", num_online_cpus(), 158 bogosum / (500000/HZ), 159 (bogosum / (5000/HZ)) % 100); 160 } 161 162 void smp_send_reschedule(int cpu) 163 { 164 plat_send_ipi(cpu, SMP_MSG_RESCHEDULE); 165 } 166 167 static void stop_this_cpu(void *unused) 168 { 169 cpu_clear(smp_processor_id(), cpu_online_map); 170 local_irq_disable(); 171 172 for (;;) 173 cpu_relax(); 174 } 175 176 void smp_send_stop(void) 177 { 178 smp_call_function(stop_this_cpu, 0, 1, 0); 179 } 180 181 struct smp_fn_call_struct smp_fn_call = { 182 .lock = __SPIN_LOCK_UNLOCKED(smp_fn_call.lock), 183 .finished = ATOMIC_INIT(0), 184 }; 185 186 /* 187 * The caller of this wants the passed function to run on every cpu. If wait 188 * is set, wait until all cpus have finished the function before returning. 189 * The lock is here to protect the call structure. 190 * You must not call this function with disabled interrupts or from a 191 * hardware interrupt handler or from a bottom half handler. 192 */ 193 int smp_call_function(void (*func)(void *info), void *info, int retry, int wait) 194 { 195 unsigned int nr_cpus = atomic_read(&cpus_booted); 196 int i; 197 198 /* Can deadlock when called with interrupts disabled */ 199 WARN_ON(irqs_disabled()); 200 201 spin_lock(&smp_fn_call.lock); 202 203 atomic_set(&smp_fn_call.finished, 0); 204 smp_fn_call.fn = func; 205 smp_fn_call.data = info; 206 207 for (i = 0; i < nr_cpus; i++) 208 if (i != smp_processor_id()) 209 plat_send_ipi(i, SMP_MSG_FUNCTION); 210 211 if (wait) 212 while (atomic_read(&smp_fn_call.finished) != (nr_cpus - 1)); 213 214 spin_unlock(&smp_fn_call.lock); 215 216 return 0; 217 } 218 219 /* Not really SMP stuff ... */ 220 int setup_profiling_timer(unsigned int multiplier) 221 { 222 return 0; 223 } 224 225 static void flush_tlb_all_ipi(void *info) 226 { 227 local_flush_tlb_all(); 228 } 229 230 void flush_tlb_all(void) 231 { 232 on_each_cpu(flush_tlb_all_ipi, 0, 1, 1); 233 } 234 235 static void flush_tlb_mm_ipi(void *mm) 236 { 237 local_flush_tlb_mm((struct mm_struct *)mm); 238 } 239 240 /* 241 * The following tlb flush calls are invoked when old translations are 242 * being torn down, or pte attributes are changing. For single threaded 243 * address spaces, a new context is obtained on the current cpu, and tlb 244 * context on other cpus are invalidated to force a new context allocation 245 * at switch_mm time, should the mm ever be used on other cpus. For 246 * multithreaded address spaces, intercpu interrupts have to be sent. 247 * Another case where intercpu interrupts are required is when the target 248 * mm might be active on another cpu (eg debuggers doing the flushes on 249 * behalf of debugees, kswapd stealing pages from another process etc). 250 * Kanoj 07/00. 251 */ 252 253 void flush_tlb_mm(struct mm_struct *mm) 254 { 255 preempt_disable(); 256 257 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { 258 smp_call_function(flush_tlb_mm_ipi, (void *)mm, 1, 1); 259 } else { 260 int i; 261 for (i = 0; i < num_online_cpus(); i++) 262 if (smp_processor_id() != i) 263 cpu_context(i, mm) = 0; 264 } 265 local_flush_tlb_mm(mm); 266 267 preempt_enable(); 268 } 269 270 struct flush_tlb_data { 271 struct vm_area_struct *vma; 272 unsigned long addr1; 273 unsigned long addr2; 274 }; 275 276 static void flush_tlb_range_ipi(void *info) 277 { 278 struct flush_tlb_data *fd = (struct flush_tlb_data *)info; 279 280 local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2); 281 } 282 283 void flush_tlb_range(struct vm_area_struct *vma, 284 unsigned long start, unsigned long end) 285 { 286 struct mm_struct *mm = vma->vm_mm; 287 288 preempt_disable(); 289 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { 290 struct flush_tlb_data fd; 291 292 fd.vma = vma; 293 fd.addr1 = start; 294 fd.addr2 = end; 295 smp_call_function(flush_tlb_range_ipi, (void *)&fd, 1, 1); 296 } else { 297 int i; 298 for (i = 0; i < num_online_cpus(); i++) 299 if (smp_processor_id() != i) 300 cpu_context(i, mm) = 0; 301 } 302 local_flush_tlb_range(vma, start, end); 303 preempt_enable(); 304 } 305 306 static void flush_tlb_kernel_range_ipi(void *info) 307 { 308 struct flush_tlb_data *fd = (struct flush_tlb_data *)info; 309 310 local_flush_tlb_kernel_range(fd->addr1, fd->addr2); 311 } 312 313 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 314 { 315 struct flush_tlb_data fd; 316 317 fd.addr1 = start; 318 fd.addr2 = end; 319 on_each_cpu(flush_tlb_kernel_range_ipi, (void *)&fd, 1, 1); 320 } 321 322 static void flush_tlb_page_ipi(void *info) 323 { 324 struct flush_tlb_data *fd = (struct flush_tlb_data *)info; 325 326 local_flush_tlb_page(fd->vma, fd->addr1); 327 } 328 329 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page) 330 { 331 preempt_disable(); 332 if ((atomic_read(&vma->vm_mm->mm_users) != 1) || 333 (current->mm != vma->vm_mm)) { 334 struct flush_tlb_data fd; 335 336 fd.vma = vma; 337 fd.addr1 = page; 338 smp_call_function(flush_tlb_page_ipi, (void *)&fd, 1, 1); 339 } else { 340 int i; 341 for (i = 0; i < num_online_cpus(); i++) 342 if (smp_processor_id() != i) 343 cpu_context(i, vma->vm_mm) = 0; 344 } 345 local_flush_tlb_page(vma, page); 346 preempt_enable(); 347 } 348 349 static void flush_tlb_one_ipi(void *info) 350 { 351 struct flush_tlb_data *fd = (struct flush_tlb_data *)info; 352 local_flush_tlb_one(fd->addr1, fd->addr2); 353 } 354 355 void flush_tlb_one(unsigned long asid, unsigned long vaddr) 356 { 357 struct flush_tlb_data fd; 358 359 fd.addr1 = asid; 360 fd.addr2 = vaddr; 361 362 smp_call_function(flush_tlb_one_ipi, (void *)&fd, 1, 1); 363 local_flush_tlb_one(asid, vaddr); 364 } 365