xref: /openbmc/linux/arch/sh/kernel/smp.c (revision f42b3800)
1 /*
2  * arch/sh/kernel/smp.c
3  *
4  * SMP support for the SuperH processors.
5  *
6  * Copyright (C) 2002 - 2007 Paul Mundt
7  * Copyright (C) 2006 - 2007 Akio Idehara
8  *
9  * This file is subject to the terms and conditions of the GNU General Public
10  * License.  See the file "COPYING" in the main directory of this archive
11  * for more details.
12  */
13 #include <linux/err.h>
14 #include <linux/cache.h>
15 #include <linux/cpumask.h>
16 #include <linux/delay.h>
17 #include <linux/init.h>
18 #include <linux/spinlock.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <asm/atomic.h>
23 #include <asm/processor.h>
24 #include <asm/system.h>
25 #include <asm/mmu_context.h>
26 #include <asm/smp.h>
27 #include <asm/cacheflush.h>
28 #include <asm/sections.h>
29 
30 int __cpu_number_map[NR_CPUS];		/* Map physical to logical */
31 int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
32 
33 cpumask_t cpu_possible_map;
34 EXPORT_SYMBOL(cpu_possible_map);
35 
36 cpumask_t cpu_online_map;
37 EXPORT_SYMBOL(cpu_online_map);
38 
39 static atomic_t cpus_booted = ATOMIC_INIT(0);
40 
41 /*
42  * Run specified function on a particular processor.
43  */
44 void __smp_call_function(unsigned int cpu);
45 
46 static inline void __init smp_store_cpu_info(unsigned int cpu)
47 {
48 	struct sh_cpuinfo *c = cpu_data + cpu;
49 
50 	c->loops_per_jiffy = loops_per_jiffy;
51 }
52 
53 void __init smp_prepare_cpus(unsigned int max_cpus)
54 {
55 	unsigned int cpu = smp_processor_id();
56 
57 	init_new_context(current, &init_mm);
58 	current_thread_info()->cpu = cpu;
59 	plat_prepare_cpus(max_cpus);
60 
61 #ifndef CONFIG_HOTPLUG_CPU
62 	cpu_present_map = cpu_possible_map;
63 #endif
64 }
65 
66 void __devinit smp_prepare_boot_cpu(void)
67 {
68 	unsigned int cpu = smp_processor_id();
69 
70 	__cpu_number_map[0] = cpu;
71 	__cpu_logical_map[0] = cpu;
72 
73 	cpu_set(cpu, cpu_online_map);
74 	cpu_set(cpu, cpu_possible_map);
75 }
76 
77 asmlinkage void __cpuinit start_secondary(void)
78 {
79 	unsigned int cpu;
80 	struct mm_struct *mm = &init_mm;
81 
82 	atomic_inc(&mm->mm_count);
83 	atomic_inc(&mm->mm_users);
84 	current->active_mm = mm;
85 	BUG_ON(current->mm);
86 	enter_lazy_tlb(mm, current);
87 
88 	per_cpu_trap_init();
89 
90 	preempt_disable();
91 
92 	local_irq_enable();
93 
94 	calibrate_delay();
95 
96 	cpu = smp_processor_id();
97 	smp_store_cpu_info(cpu);
98 
99 	cpu_set(cpu, cpu_online_map);
100 
101 	cpu_idle();
102 }
103 
104 extern struct {
105 	unsigned long sp;
106 	unsigned long bss_start;
107 	unsigned long bss_end;
108 	void *start_kernel_fn;
109 	void *cpu_init_fn;
110 	void *thread_info;
111 } stack_start;
112 
113 int __cpuinit __cpu_up(unsigned int cpu)
114 {
115 	struct task_struct *tsk;
116 	unsigned long timeout;
117 
118 	tsk = fork_idle(cpu);
119 	if (IS_ERR(tsk)) {
120 		printk(KERN_ERR "Failed forking idle task for cpu %d\n", cpu);
121 		return PTR_ERR(tsk);
122 	}
123 
124 	/* Fill in data in head.S for secondary cpus */
125 	stack_start.sp = tsk->thread.sp;
126 	stack_start.thread_info = tsk->stack;
127 	stack_start.bss_start = 0; /* don't clear bss for secondary cpus */
128 	stack_start.start_kernel_fn = start_secondary;
129 
130 	flush_cache_all();
131 
132 	plat_start_cpu(cpu, (unsigned long)_stext);
133 
134 	timeout = jiffies + HZ;
135 	while (time_before(jiffies, timeout)) {
136 		if (cpu_online(cpu))
137 			break;
138 
139 		udelay(10);
140 	}
141 
142 	if (cpu_online(cpu))
143 		return 0;
144 
145 	return -ENOENT;
146 }
147 
148 void __init smp_cpus_done(unsigned int max_cpus)
149 {
150 	unsigned long bogosum = 0;
151 	int cpu;
152 
153 	for_each_online_cpu(cpu)
154 		bogosum += cpu_data[cpu].loops_per_jiffy;
155 
156 	printk(KERN_INFO "SMP: Total of %d processors activated "
157 	       "(%lu.%02lu BogoMIPS).\n", num_online_cpus(),
158 	       bogosum / (500000/HZ),
159 	       (bogosum / (5000/HZ)) % 100);
160 }
161 
162 void smp_send_reschedule(int cpu)
163 {
164 	plat_send_ipi(cpu, SMP_MSG_RESCHEDULE);
165 }
166 
167 static void stop_this_cpu(void *unused)
168 {
169 	cpu_clear(smp_processor_id(), cpu_online_map);
170 	local_irq_disable();
171 
172 	for (;;)
173 		cpu_relax();
174 }
175 
176 void smp_send_stop(void)
177 {
178 	smp_call_function(stop_this_cpu, 0, 1, 0);
179 }
180 
181 struct smp_fn_call_struct smp_fn_call = {
182 	.lock		= __SPIN_LOCK_UNLOCKED(smp_fn_call.lock),
183 	.finished	= ATOMIC_INIT(0),
184 };
185 
186 /*
187  * The caller of this wants the passed function to run on every cpu.  If wait
188  * is set, wait until all cpus have finished the function before returning.
189  * The lock is here to protect the call structure.
190  * You must not call this function with disabled interrupts or from a
191  * hardware interrupt handler or from a bottom half handler.
192  */
193 int smp_call_function(void (*func)(void *info), void *info, int retry, int wait)
194 {
195 	unsigned int nr_cpus = atomic_read(&cpus_booted);
196 	int i;
197 
198 	/* Can deadlock when called with interrupts disabled */
199 	WARN_ON(irqs_disabled());
200 
201 	spin_lock(&smp_fn_call.lock);
202 
203 	atomic_set(&smp_fn_call.finished, 0);
204 	smp_fn_call.fn = func;
205 	smp_fn_call.data = info;
206 
207 	for (i = 0; i < nr_cpus; i++)
208 		if (i != smp_processor_id())
209 			plat_send_ipi(i, SMP_MSG_FUNCTION);
210 
211 	if (wait)
212 		while (atomic_read(&smp_fn_call.finished) != (nr_cpus - 1));
213 
214 	spin_unlock(&smp_fn_call.lock);
215 
216 	return 0;
217 }
218 
219 /* Not really SMP stuff ... */
220 int setup_profiling_timer(unsigned int multiplier)
221 {
222 	return 0;
223 }
224 
225 static void flush_tlb_all_ipi(void *info)
226 {
227 	local_flush_tlb_all();
228 }
229 
230 void flush_tlb_all(void)
231 {
232 	on_each_cpu(flush_tlb_all_ipi, 0, 1, 1);
233 }
234 
235 static void flush_tlb_mm_ipi(void *mm)
236 {
237 	local_flush_tlb_mm((struct mm_struct *)mm);
238 }
239 
240 /*
241  * The following tlb flush calls are invoked when old translations are
242  * being torn down, or pte attributes are changing. For single threaded
243  * address spaces, a new context is obtained on the current cpu, and tlb
244  * context on other cpus are invalidated to force a new context allocation
245  * at switch_mm time, should the mm ever be used on other cpus. For
246  * multithreaded address spaces, intercpu interrupts have to be sent.
247  * Another case where intercpu interrupts are required is when the target
248  * mm might be active on another cpu (eg debuggers doing the flushes on
249  * behalf of debugees, kswapd stealing pages from another process etc).
250  * Kanoj 07/00.
251  */
252 
253 void flush_tlb_mm(struct mm_struct *mm)
254 {
255 	preempt_disable();
256 
257 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
258 		smp_call_function(flush_tlb_mm_ipi, (void *)mm, 1, 1);
259 	} else {
260 		int i;
261 		for (i = 0; i < num_online_cpus(); i++)
262 			if (smp_processor_id() != i)
263 				cpu_context(i, mm) = 0;
264 	}
265 	local_flush_tlb_mm(mm);
266 
267 	preempt_enable();
268 }
269 
270 struct flush_tlb_data {
271 	struct vm_area_struct *vma;
272 	unsigned long addr1;
273 	unsigned long addr2;
274 };
275 
276 static void flush_tlb_range_ipi(void *info)
277 {
278 	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
279 
280 	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
281 }
282 
283 void flush_tlb_range(struct vm_area_struct *vma,
284 		     unsigned long start, unsigned long end)
285 {
286 	struct mm_struct *mm = vma->vm_mm;
287 
288 	preempt_disable();
289 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
290 		struct flush_tlb_data fd;
291 
292 		fd.vma = vma;
293 		fd.addr1 = start;
294 		fd.addr2 = end;
295 		smp_call_function(flush_tlb_range_ipi, (void *)&fd, 1, 1);
296 	} else {
297 		int i;
298 		for (i = 0; i < num_online_cpus(); i++)
299 			if (smp_processor_id() != i)
300 				cpu_context(i, mm) = 0;
301 	}
302 	local_flush_tlb_range(vma, start, end);
303 	preempt_enable();
304 }
305 
306 static void flush_tlb_kernel_range_ipi(void *info)
307 {
308 	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
309 
310 	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
311 }
312 
313 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
314 {
315 	struct flush_tlb_data fd;
316 
317 	fd.addr1 = start;
318 	fd.addr2 = end;
319 	on_each_cpu(flush_tlb_kernel_range_ipi, (void *)&fd, 1, 1);
320 }
321 
322 static void flush_tlb_page_ipi(void *info)
323 {
324 	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
325 
326 	local_flush_tlb_page(fd->vma, fd->addr1);
327 }
328 
329 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
330 {
331 	preempt_disable();
332 	if ((atomic_read(&vma->vm_mm->mm_users) != 1) ||
333 	    (current->mm != vma->vm_mm)) {
334 		struct flush_tlb_data fd;
335 
336 		fd.vma = vma;
337 		fd.addr1 = page;
338 		smp_call_function(flush_tlb_page_ipi, (void *)&fd, 1, 1);
339 	} else {
340 		int i;
341 		for (i = 0; i < num_online_cpus(); i++)
342 			if (smp_processor_id() != i)
343 				cpu_context(i, vma->vm_mm) = 0;
344 	}
345 	local_flush_tlb_page(vma, page);
346 	preempt_enable();
347 }
348 
349 static void flush_tlb_one_ipi(void *info)
350 {
351 	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
352 	local_flush_tlb_one(fd->addr1, fd->addr2);
353 }
354 
355 void flush_tlb_one(unsigned long asid, unsigned long vaddr)
356 {
357 	struct flush_tlb_data fd;
358 
359 	fd.addr1 = asid;
360 	fd.addr2 = vaddr;
361 
362 	smp_call_function(flush_tlb_one_ipi, (void *)&fd, 1, 1);
363 	local_flush_tlb_one(asid, vaddr);
364 }
365