xref: /openbmc/linux/arch/sh/kernel/smp.c (revision f15cbe6f1a4b4d9df59142fc8e4abb973302cf44)
1 /*
2  * arch/sh/kernel/smp.c
3  *
4  * SMP support for the SuperH processors.
5  *
6  * Copyright (C) 2002 - 2007 Paul Mundt
7  * Copyright (C) 2006 - 2007 Akio Idehara
8  *
9  * This file is subject to the terms and conditions of the GNU General Public
10  * License.  See the file "COPYING" in the main directory of this archive
11  * for more details.
12  */
13 #include <linux/err.h>
14 #include <linux/cache.h>
15 #include <linux/cpumask.h>
16 #include <linux/delay.h>
17 #include <linux/init.h>
18 #include <linux/spinlock.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <asm/atomic.h>
23 #include <asm/processor.h>
24 #include <asm/system.h>
25 #include <asm/mmu_context.h>
26 #include <asm/smp.h>
27 #include <asm/cacheflush.h>
28 #include <asm/sections.h>
29 
30 int __cpu_number_map[NR_CPUS];		/* Map physical to logical */
31 int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
32 
33 cpumask_t cpu_possible_map;
34 EXPORT_SYMBOL(cpu_possible_map);
35 
36 cpumask_t cpu_online_map;
37 EXPORT_SYMBOL(cpu_online_map);
38 
39 static inline void __init smp_store_cpu_info(unsigned int cpu)
40 {
41 	struct sh_cpuinfo *c = cpu_data + cpu;
42 
43 	c->loops_per_jiffy = loops_per_jiffy;
44 }
45 
46 void __init smp_prepare_cpus(unsigned int max_cpus)
47 {
48 	unsigned int cpu = smp_processor_id();
49 
50 	init_new_context(current, &init_mm);
51 	current_thread_info()->cpu = cpu;
52 	plat_prepare_cpus(max_cpus);
53 
54 #ifndef CONFIG_HOTPLUG_CPU
55 	cpu_present_map = cpu_possible_map;
56 #endif
57 }
58 
59 void __devinit smp_prepare_boot_cpu(void)
60 {
61 	unsigned int cpu = smp_processor_id();
62 
63 	__cpu_number_map[0] = cpu;
64 	__cpu_logical_map[0] = cpu;
65 
66 	cpu_set(cpu, cpu_online_map);
67 	cpu_set(cpu, cpu_possible_map);
68 }
69 
70 asmlinkage void __cpuinit start_secondary(void)
71 {
72 	unsigned int cpu;
73 	struct mm_struct *mm = &init_mm;
74 
75 	atomic_inc(&mm->mm_count);
76 	atomic_inc(&mm->mm_users);
77 	current->active_mm = mm;
78 	BUG_ON(current->mm);
79 	enter_lazy_tlb(mm, current);
80 
81 	per_cpu_trap_init();
82 
83 	preempt_disable();
84 
85 	local_irq_enable();
86 
87 	calibrate_delay();
88 
89 	cpu = smp_processor_id();
90 	smp_store_cpu_info(cpu);
91 
92 	cpu_set(cpu, cpu_online_map);
93 
94 	cpu_idle();
95 }
96 
97 extern struct {
98 	unsigned long sp;
99 	unsigned long bss_start;
100 	unsigned long bss_end;
101 	void *start_kernel_fn;
102 	void *cpu_init_fn;
103 	void *thread_info;
104 } stack_start;
105 
106 int __cpuinit __cpu_up(unsigned int cpu)
107 {
108 	struct task_struct *tsk;
109 	unsigned long timeout;
110 
111 	tsk = fork_idle(cpu);
112 	if (IS_ERR(tsk)) {
113 		printk(KERN_ERR "Failed forking idle task for cpu %d\n", cpu);
114 		return PTR_ERR(tsk);
115 	}
116 
117 	/* Fill in data in head.S for secondary cpus */
118 	stack_start.sp = tsk->thread.sp;
119 	stack_start.thread_info = tsk->stack;
120 	stack_start.bss_start = 0; /* don't clear bss for secondary cpus */
121 	stack_start.start_kernel_fn = start_secondary;
122 
123 	flush_cache_all();
124 
125 	plat_start_cpu(cpu, (unsigned long)_stext);
126 
127 	timeout = jiffies + HZ;
128 	while (time_before(jiffies, timeout)) {
129 		if (cpu_online(cpu))
130 			break;
131 
132 		udelay(10);
133 	}
134 
135 	if (cpu_online(cpu))
136 		return 0;
137 
138 	return -ENOENT;
139 }
140 
141 void __init smp_cpus_done(unsigned int max_cpus)
142 {
143 	unsigned long bogosum = 0;
144 	int cpu;
145 
146 	for_each_online_cpu(cpu)
147 		bogosum += cpu_data[cpu].loops_per_jiffy;
148 
149 	printk(KERN_INFO "SMP: Total of %d processors activated "
150 	       "(%lu.%02lu BogoMIPS).\n", num_online_cpus(),
151 	       bogosum / (500000/HZ),
152 	       (bogosum / (5000/HZ)) % 100);
153 }
154 
155 void smp_send_reschedule(int cpu)
156 {
157 	plat_send_ipi(cpu, SMP_MSG_RESCHEDULE);
158 }
159 
160 static void stop_this_cpu(void *unused)
161 {
162 	cpu_clear(smp_processor_id(), cpu_online_map);
163 	local_irq_disable();
164 
165 	for (;;)
166 		cpu_relax();
167 }
168 
169 void smp_send_stop(void)
170 {
171 	smp_call_function(stop_this_cpu, 0, 0);
172 }
173 
174 void arch_send_call_function_ipi(cpumask_t mask)
175 {
176 	int cpu;
177 
178 	for_each_cpu_mask(cpu, mask)
179 		plat_send_ipi(cpu, SMP_MSG_FUNCTION);
180 }
181 
182 void arch_send_call_function_single_ipi(int cpu)
183 {
184 	plat_send_ipi(cpu, SMP_MSG_FUNCTION_SINGLE);
185 }
186 
187 /* Not really SMP stuff ... */
188 int setup_profiling_timer(unsigned int multiplier)
189 {
190 	return 0;
191 }
192 
193 static void flush_tlb_all_ipi(void *info)
194 {
195 	local_flush_tlb_all();
196 }
197 
198 void flush_tlb_all(void)
199 {
200 	on_each_cpu(flush_tlb_all_ipi, 0, 1);
201 }
202 
203 static void flush_tlb_mm_ipi(void *mm)
204 {
205 	local_flush_tlb_mm((struct mm_struct *)mm);
206 }
207 
208 /*
209  * The following tlb flush calls are invoked when old translations are
210  * being torn down, or pte attributes are changing. For single threaded
211  * address spaces, a new context is obtained on the current cpu, and tlb
212  * context on other cpus are invalidated to force a new context allocation
213  * at switch_mm time, should the mm ever be used on other cpus. For
214  * multithreaded address spaces, intercpu interrupts have to be sent.
215  * Another case where intercpu interrupts are required is when the target
216  * mm might be active on another cpu (eg debuggers doing the flushes on
217  * behalf of debugees, kswapd stealing pages from another process etc).
218  * Kanoj 07/00.
219  */
220 
221 void flush_tlb_mm(struct mm_struct *mm)
222 {
223 	preempt_disable();
224 
225 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
226 		smp_call_function(flush_tlb_mm_ipi, (void *)mm, 1);
227 	} else {
228 		int i;
229 		for (i = 0; i < num_online_cpus(); i++)
230 			if (smp_processor_id() != i)
231 				cpu_context(i, mm) = 0;
232 	}
233 	local_flush_tlb_mm(mm);
234 
235 	preempt_enable();
236 }
237 
238 struct flush_tlb_data {
239 	struct vm_area_struct *vma;
240 	unsigned long addr1;
241 	unsigned long addr2;
242 };
243 
244 static void flush_tlb_range_ipi(void *info)
245 {
246 	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
247 
248 	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
249 }
250 
251 void flush_tlb_range(struct vm_area_struct *vma,
252 		     unsigned long start, unsigned long end)
253 {
254 	struct mm_struct *mm = vma->vm_mm;
255 
256 	preempt_disable();
257 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
258 		struct flush_tlb_data fd;
259 
260 		fd.vma = vma;
261 		fd.addr1 = start;
262 		fd.addr2 = end;
263 		smp_call_function(flush_tlb_range_ipi, (void *)&fd, 1);
264 	} else {
265 		int i;
266 		for (i = 0; i < num_online_cpus(); i++)
267 			if (smp_processor_id() != i)
268 				cpu_context(i, mm) = 0;
269 	}
270 	local_flush_tlb_range(vma, start, end);
271 	preempt_enable();
272 }
273 
274 static void flush_tlb_kernel_range_ipi(void *info)
275 {
276 	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
277 
278 	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
279 }
280 
281 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
282 {
283 	struct flush_tlb_data fd;
284 
285 	fd.addr1 = start;
286 	fd.addr2 = end;
287 	on_each_cpu(flush_tlb_kernel_range_ipi, (void *)&fd, 1);
288 }
289 
290 static void flush_tlb_page_ipi(void *info)
291 {
292 	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
293 
294 	local_flush_tlb_page(fd->vma, fd->addr1);
295 }
296 
297 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
298 {
299 	preempt_disable();
300 	if ((atomic_read(&vma->vm_mm->mm_users) != 1) ||
301 	    (current->mm != vma->vm_mm)) {
302 		struct flush_tlb_data fd;
303 
304 		fd.vma = vma;
305 		fd.addr1 = page;
306 		smp_call_function(flush_tlb_page_ipi, (void *)&fd, 1);
307 	} else {
308 		int i;
309 		for (i = 0; i < num_online_cpus(); i++)
310 			if (smp_processor_id() != i)
311 				cpu_context(i, vma->vm_mm) = 0;
312 	}
313 	local_flush_tlb_page(vma, page);
314 	preempt_enable();
315 }
316 
317 static void flush_tlb_one_ipi(void *info)
318 {
319 	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
320 	local_flush_tlb_one(fd->addr1, fd->addr2);
321 }
322 
323 void flush_tlb_one(unsigned long asid, unsigned long vaddr)
324 {
325 	struct flush_tlb_data fd;
326 
327 	fd.addr1 = asid;
328 	fd.addr2 = vaddr;
329 
330 	smp_call_function(flush_tlb_one_ipi, (void *)&fd, 1);
331 	local_flush_tlb_one(asid, vaddr);
332 }
333