xref: /openbmc/linux/arch/sh/kernel/smp.c (revision e8e0929d)
1 /*
2  * arch/sh/kernel/smp.c
3  *
4  * SMP support for the SuperH processors.
5  *
6  * Copyright (C) 2002 - 2008 Paul Mundt
7  * Copyright (C) 2006 - 2007 Akio Idehara
8  *
9  * This file is subject to the terms and conditions of the GNU General Public
10  * License.  See the file "COPYING" in the main directory of this archive
11  * for more details.
12  */
13 #include <linux/err.h>
14 #include <linux/cache.h>
15 #include <linux/cpumask.h>
16 #include <linux/delay.h>
17 #include <linux/init.h>
18 #include <linux/spinlock.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/cpu.h>
22 #include <linux/interrupt.h>
23 #include <asm/atomic.h>
24 #include <asm/processor.h>
25 #include <asm/system.h>
26 #include <asm/mmu_context.h>
27 #include <asm/smp.h>
28 #include <asm/cacheflush.h>
29 #include <asm/sections.h>
30 
31 int __cpu_number_map[NR_CPUS];		/* Map physical to logical */
32 int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
33 
34 static inline void __init smp_store_cpu_info(unsigned int cpu)
35 {
36 	struct sh_cpuinfo *c = cpu_data + cpu;
37 
38 	c->loops_per_jiffy = loops_per_jiffy;
39 }
40 
41 void __init smp_prepare_cpus(unsigned int max_cpus)
42 {
43 	unsigned int cpu = smp_processor_id();
44 
45 	init_new_context(current, &init_mm);
46 	current_thread_info()->cpu = cpu;
47 	plat_prepare_cpus(max_cpus);
48 
49 #ifndef CONFIG_HOTPLUG_CPU
50 	init_cpu_present(&cpu_possible_map);
51 #endif
52 }
53 
54 void __devinit smp_prepare_boot_cpu(void)
55 {
56 	unsigned int cpu = smp_processor_id();
57 
58 	__cpu_number_map[0] = cpu;
59 	__cpu_logical_map[0] = cpu;
60 
61 	set_cpu_online(cpu, true);
62 	set_cpu_possible(cpu, true);
63 }
64 
65 asmlinkage void __cpuinit start_secondary(void)
66 {
67 	unsigned int cpu;
68 	struct mm_struct *mm = &init_mm;
69 
70 	atomic_inc(&mm->mm_count);
71 	atomic_inc(&mm->mm_users);
72 	current->active_mm = mm;
73 	BUG_ON(current->mm);
74 	enter_lazy_tlb(mm, current);
75 
76 	per_cpu_trap_init();
77 
78 	preempt_disable();
79 
80 	notify_cpu_starting(smp_processor_id());
81 
82 	local_irq_enable();
83 
84 	cpu = smp_processor_id();
85 
86 	/* Enable local timers */
87 	local_timer_setup(cpu);
88 	calibrate_delay();
89 
90 	smp_store_cpu_info(cpu);
91 
92 	cpu_set(cpu, cpu_online_map);
93 
94 	cpu_idle();
95 }
96 
97 extern struct {
98 	unsigned long sp;
99 	unsigned long bss_start;
100 	unsigned long bss_end;
101 	void *start_kernel_fn;
102 	void *cpu_init_fn;
103 	void *thread_info;
104 } stack_start;
105 
106 int __cpuinit __cpu_up(unsigned int cpu)
107 {
108 	struct task_struct *tsk;
109 	unsigned long timeout;
110 
111 	tsk = fork_idle(cpu);
112 	if (IS_ERR(tsk)) {
113 		printk(KERN_ERR "Failed forking idle task for cpu %d\n", cpu);
114 		return PTR_ERR(tsk);
115 	}
116 
117 	/* Fill in data in head.S for secondary cpus */
118 	stack_start.sp = tsk->thread.sp;
119 	stack_start.thread_info = tsk->stack;
120 	stack_start.bss_start = 0; /* don't clear bss for secondary cpus */
121 	stack_start.start_kernel_fn = start_secondary;
122 
123 	flush_cache_all();
124 
125 	plat_start_cpu(cpu, (unsigned long)_stext);
126 
127 	timeout = jiffies + HZ;
128 	while (time_before(jiffies, timeout)) {
129 		if (cpu_online(cpu))
130 			break;
131 
132 		udelay(10);
133 	}
134 
135 	if (cpu_online(cpu))
136 		return 0;
137 
138 	return -ENOENT;
139 }
140 
141 void __init smp_cpus_done(unsigned int max_cpus)
142 {
143 	unsigned long bogosum = 0;
144 	int cpu;
145 
146 	for_each_online_cpu(cpu)
147 		bogosum += cpu_data[cpu].loops_per_jiffy;
148 
149 	printk(KERN_INFO "SMP: Total of %d processors activated "
150 	       "(%lu.%02lu BogoMIPS).\n", num_online_cpus(),
151 	       bogosum / (500000/HZ),
152 	       (bogosum / (5000/HZ)) % 100);
153 }
154 
155 void smp_send_reschedule(int cpu)
156 {
157 	plat_send_ipi(cpu, SMP_MSG_RESCHEDULE);
158 }
159 
160 static void stop_this_cpu(void *unused)
161 {
162 	cpu_clear(smp_processor_id(), cpu_online_map);
163 	local_irq_disable();
164 
165 	for (;;)
166 		cpu_relax();
167 }
168 
169 void smp_send_stop(void)
170 {
171 	smp_call_function(stop_this_cpu, 0, 0);
172 }
173 
174 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
175 {
176 	int cpu;
177 
178 	for_each_cpu(cpu, mask)
179 		plat_send_ipi(cpu, SMP_MSG_FUNCTION);
180 }
181 
182 void arch_send_call_function_single_ipi(int cpu)
183 {
184 	plat_send_ipi(cpu, SMP_MSG_FUNCTION_SINGLE);
185 }
186 
187 void smp_timer_broadcast(const struct cpumask *mask)
188 {
189 	int cpu;
190 
191 	for_each_cpu(cpu, mask)
192 		plat_send_ipi(cpu, SMP_MSG_TIMER);
193 }
194 
195 static void ipi_timer(void)
196 {
197 	irq_enter();
198 	local_timer_interrupt();
199 	irq_exit();
200 }
201 
202 void smp_message_recv(unsigned int msg)
203 {
204 	switch (msg) {
205 	case SMP_MSG_FUNCTION:
206 		generic_smp_call_function_interrupt();
207 		break;
208 	case SMP_MSG_RESCHEDULE:
209 		break;
210 	case SMP_MSG_FUNCTION_SINGLE:
211 		generic_smp_call_function_single_interrupt();
212 		break;
213 	case SMP_MSG_TIMER:
214 		ipi_timer();
215 		break;
216 	default:
217 		printk(KERN_WARNING "SMP %d: %s(): unknown IPI %d\n",
218 		       smp_processor_id(), __func__, msg);
219 		break;
220 	}
221 }
222 
223 /* Not really SMP stuff ... */
224 int setup_profiling_timer(unsigned int multiplier)
225 {
226 	return 0;
227 }
228 
229 static void flush_tlb_all_ipi(void *info)
230 {
231 	local_flush_tlb_all();
232 }
233 
234 void flush_tlb_all(void)
235 {
236 	on_each_cpu(flush_tlb_all_ipi, 0, 1);
237 }
238 
239 static void flush_tlb_mm_ipi(void *mm)
240 {
241 	local_flush_tlb_mm((struct mm_struct *)mm);
242 }
243 
244 /*
245  * The following tlb flush calls are invoked when old translations are
246  * being torn down, or pte attributes are changing. For single threaded
247  * address spaces, a new context is obtained on the current cpu, and tlb
248  * context on other cpus are invalidated to force a new context allocation
249  * at switch_mm time, should the mm ever be used on other cpus. For
250  * multithreaded address spaces, intercpu interrupts have to be sent.
251  * Another case where intercpu interrupts are required is when the target
252  * mm might be active on another cpu (eg debuggers doing the flushes on
253  * behalf of debugees, kswapd stealing pages from another process etc).
254  * Kanoj 07/00.
255  */
256 
257 void flush_tlb_mm(struct mm_struct *mm)
258 {
259 	preempt_disable();
260 
261 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
262 		smp_call_function(flush_tlb_mm_ipi, (void *)mm, 1);
263 	} else {
264 		int i;
265 		for (i = 0; i < num_online_cpus(); i++)
266 			if (smp_processor_id() != i)
267 				cpu_context(i, mm) = 0;
268 	}
269 	local_flush_tlb_mm(mm);
270 
271 	preempt_enable();
272 }
273 
274 struct flush_tlb_data {
275 	struct vm_area_struct *vma;
276 	unsigned long addr1;
277 	unsigned long addr2;
278 };
279 
280 static void flush_tlb_range_ipi(void *info)
281 {
282 	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
283 
284 	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
285 }
286 
287 void flush_tlb_range(struct vm_area_struct *vma,
288 		     unsigned long start, unsigned long end)
289 {
290 	struct mm_struct *mm = vma->vm_mm;
291 
292 	preempt_disable();
293 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
294 		struct flush_tlb_data fd;
295 
296 		fd.vma = vma;
297 		fd.addr1 = start;
298 		fd.addr2 = end;
299 		smp_call_function(flush_tlb_range_ipi, (void *)&fd, 1);
300 	} else {
301 		int i;
302 		for (i = 0; i < num_online_cpus(); i++)
303 			if (smp_processor_id() != i)
304 				cpu_context(i, mm) = 0;
305 	}
306 	local_flush_tlb_range(vma, start, end);
307 	preempt_enable();
308 }
309 
310 static void flush_tlb_kernel_range_ipi(void *info)
311 {
312 	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
313 
314 	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
315 }
316 
317 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
318 {
319 	struct flush_tlb_data fd;
320 
321 	fd.addr1 = start;
322 	fd.addr2 = end;
323 	on_each_cpu(flush_tlb_kernel_range_ipi, (void *)&fd, 1);
324 }
325 
326 static void flush_tlb_page_ipi(void *info)
327 {
328 	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
329 
330 	local_flush_tlb_page(fd->vma, fd->addr1);
331 }
332 
333 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
334 {
335 	preempt_disable();
336 	if ((atomic_read(&vma->vm_mm->mm_users) != 1) ||
337 	    (current->mm != vma->vm_mm)) {
338 		struct flush_tlb_data fd;
339 
340 		fd.vma = vma;
341 		fd.addr1 = page;
342 		smp_call_function(flush_tlb_page_ipi, (void *)&fd, 1);
343 	} else {
344 		int i;
345 		for (i = 0; i < num_online_cpus(); i++)
346 			if (smp_processor_id() != i)
347 				cpu_context(i, vma->vm_mm) = 0;
348 	}
349 	local_flush_tlb_page(vma, page);
350 	preempt_enable();
351 }
352 
353 static void flush_tlb_one_ipi(void *info)
354 {
355 	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
356 	local_flush_tlb_one(fd->addr1, fd->addr2);
357 }
358 
359 void flush_tlb_one(unsigned long asid, unsigned long vaddr)
360 {
361 	struct flush_tlb_data fd;
362 
363 	fd.addr1 = asid;
364 	fd.addr2 = vaddr;
365 
366 	smp_call_function(flush_tlb_one_ipi, (void *)&fd, 1);
367 	local_flush_tlb_one(asid, vaddr);
368 }
369