xref: /openbmc/linux/arch/sh/kernel/smp.c (revision e15a5365)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * arch/sh/kernel/smp.c
4  *
5  * SMP support for the SuperH processors.
6  *
7  * Copyright (C) 2002 - 2010 Paul Mundt
8  * Copyright (C) 2006 - 2007 Akio Idehara
9  */
10 #include <linux/err.h>
11 #include <linux/cache.h>
12 #include <linux/cpumask.h>
13 #include <linux/delay.h>
14 #include <linux/init.h>
15 #include <linux/spinlock.h>
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/cpu.h>
19 #include <linux/interrupt.h>
20 #include <linux/sched/mm.h>
21 #include <linux/sched/hotplug.h>
22 #include <linux/atomic.h>
23 #include <linux/clockchips.h>
24 #include <asm/processor.h>
25 #include <asm/mmu_context.h>
26 #include <asm/smp.h>
27 #include <asm/cacheflush.h>
28 #include <asm/sections.h>
29 #include <asm/setup.h>
30 
31 int __cpu_number_map[NR_CPUS];		/* Map physical to logical */
32 int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
33 
34 struct plat_smp_ops *mp_ops = NULL;
35 
36 /* State of each CPU */
37 DEFINE_PER_CPU(int, cpu_state) = { 0 };
38 
39 void register_smp_ops(struct plat_smp_ops *ops)
40 {
41 	if (mp_ops)
42 		printk(KERN_WARNING "Overriding previously set SMP ops\n");
43 
44 	mp_ops = ops;
45 }
46 
47 static inline void smp_store_cpu_info(unsigned int cpu)
48 {
49 	struct sh_cpuinfo *c = cpu_data + cpu;
50 
51 	memcpy(c, &boot_cpu_data, sizeof(struct sh_cpuinfo));
52 
53 	c->loops_per_jiffy = loops_per_jiffy;
54 }
55 
56 void __init smp_prepare_cpus(unsigned int max_cpus)
57 {
58 	unsigned int cpu = smp_processor_id();
59 
60 	init_new_context(current, &init_mm);
61 	current_thread_info()->cpu = cpu;
62 	mp_ops->prepare_cpus(max_cpus);
63 
64 #ifndef CONFIG_HOTPLUG_CPU
65 	init_cpu_present(cpu_possible_mask);
66 #endif
67 }
68 
69 void __init smp_prepare_boot_cpu(void)
70 {
71 	unsigned int cpu = smp_processor_id();
72 
73 	__cpu_number_map[0] = cpu;
74 	__cpu_logical_map[0] = cpu;
75 
76 	set_cpu_online(cpu, true);
77 	set_cpu_possible(cpu, true);
78 
79 	per_cpu(cpu_state, cpu) = CPU_ONLINE;
80 }
81 
82 #ifdef CONFIG_HOTPLUG_CPU
83 void native_cpu_die(unsigned int cpu)
84 {
85 	unsigned int i;
86 
87 	for (i = 0; i < 10; i++) {
88 		smp_rmb();
89 		if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
90 			if (system_state == SYSTEM_RUNNING)
91 				pr_info("CPU %u is now offline\n", cpu);
92 
93 			return;
94 		}
95 
96 		msleep(100);
97 	}
98 
99 	pr_err("CPU %u didn't die...\n", cpu);
100 }
101 
102 int native_cpu_disable(unsigned int cpu)
103 {
104 	return cpu == 0 ? -EPERM : 0;
105 }
106 
107 void play_dead_common(void)
108 {
109 	idle_task_exit();
110 	irq_ctx_exit(raw_smp_processor_id());
111 	mb();
112 
113 	__this_cpu_write(cpu_state, CPU_DEAD);
114 	local_irq_disable();
115 }
116 
117 void native_play_dead(void)
118 {
119 	play_dead_common();
120 }
121 
122 int __cpu_disable(void)
123 {
124 	unsigned int cpu = smp_processor_id();
125 	int ret;
126 
127 	ret = mp_ops->cpu_disable(cpu);
128 	if (ret)
129 		return ret;
130 
131 	/*
132 	 * Take this CPU offline.  Once we clear this, we can't return,
133 	 * and we must not schedule until we're ready to give up the cpu.
134 	 */
135 	set_cpu_online(cpu, false);
136 
137 	/*
138 	 * OK - migrate IRQs away from this CPU
139 	 */
140 	migrate_irqs();
141 
142 	/*
143 	 * Flush user cache and TLB mappings, and then remove this CPU
144 	 * from the vm mask set of all processes.
145 	 */
146 	flush_cache_all();
147 #ifdef CONFIG_MMU
148 	local_flush_tlb_all();
149 #endif
150 
151 	clear_tasks_mm_cpumask(cpu);
152 
153 	return 0;
154 }
155 #else /* ... !CONFIG_HOTPLUG_CPU */
156 int native_cpu_disable(unsigned int cpu)
157 {
158 	return -ENOSYS;
159 }
160 
161 void native_cpu_die(unsigned int cpu)
162 {
163 	/* We said "no" in __cpu_disable */
164 	BUG();
165 }
166 
167 void native_play_dead(void)
168 {
169 	BUG();
170 }
171 #endif
172 
173 asmlinkage void start_secondary(void)
174 {
175 	unsigned int cpu = smp_processor_id();
176 	struct mm_struct *mm = &init_mm;
177 
178 	enable_mmu();
179 	mmgrab(mm);
180 	mmget(mm);
181 	current->active_mm = mm;
182 #ifdef CONFIG_MMU
183 	enter_lazy_tlb(mm, current);
184 	local_flush_tlb_all();
185 #endif
186 
187 	per_cpu_trap_init();
188 
189 	preempt_disable();
190 
191 	notify_cpu_starting(cpu);
192 
193 	local_irq_enable();
194 
195 	calibrate_delay();
196 
197 	smp_store_cpu_info(cpu);
198 
199 	set_cpu_online(cpu, true);
200 	per_cpu(cpu_state, cpu) = CPU_ONLINE;
201 
202 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
203 }
204 
205 extern struct {
206 	unsigned long sp;
207 	unsigned long bss_start;
208 	unsigned long bss_end;
209 	void *start_kernel_fn;
210 	void *cpu_init_fn;
211 	void *thread_info;
212 } stack_start;
213 
214 int __cpu_up(unsigned int cpu, struct task_struct *tsk)
215 {
216 	unsigned long timeout;
217 
218 	per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
219 
220 	/* Fill in data in head.S for secondary cpus */
221 	stack_start.sp = tsk->thread.sp;
222 	stack_start.thread_info = tsk->stack;
223 	stack_start.bss_start = 0; /* don't clear bss for secondary cpus */
224 	stack_start.start_kernel_fn = start_secondary;
225 
226 	flush_icache_range((unsigned long)&stack_start,
227 			   (unsigned long)&stack_start + sizeof(stack_start));
228 	wmb();
229 
230 	mp_ops->start_cpu(cpu, (unsigned long)_stext);
231 
232 	timeout = jiffies + HZ;
233 	while (time_before(jiffies, timeout)) {
234 		if (cpu_online(cpu))
235 			break;
236 
237 		udelay(10);
238 		barrier();
239 	}
240 
241 	if (cpu_online(cpu))
242 		return 0;
243 
244 	return -ENOENT;
245 }
246 
247 void __init smp_cpus_done(unsigned int max_cpus)
248 {
249 	unsigned long bogosum = 0;
250 	int cpu;
251 
252 	for_each_online_cpu(cpu)
253 		bogosum += cpu_data[cpu].loops_per_jiffy;
254 
255 	printk(KERN_INFO "SMP: Total of %d processors activated "
256 	       "(%lu.%02lu BogoMIPS).\n", num_online_cpus(),
257 	       bogosum / (500000/HZ),
258 	       (bogosum / (5000/HZ)) % 100);
259 }
260 
261 void smp_send_reschedule(int cpu)
262 {
263 	mp_ops->send_ipi(cpu, SMP_MSG_RESCHEDULE);
264 }
265 
266 void smp_send_stop(void)
267 {
268 	smp_call_function(stop_this_cpu, 0, 0);
269 }
270 
271 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
272 {
273 	int cpu;
274 
275 	for_each_cpu(cpu, mask)
276 		mp_ops->send_ipi(cpu, SMP_MSG_FUNCTION);
277 }
278 
279 void arch_send_call_function_single_ipi(int cpu)
280 {
281 	mp_ops->send_ipi(cpu, SMP_MSG_FUNCTION_SINGLE);
282 }
283 
284 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
285 void tick_broadcast(const struct cpumask *mask)
286 {
287 	int cpu;
288 
289 	for_each_cpu(cpu, mask)
290 		mp_ops->send_ipi(cpu, SMP_MSG_TIMER);
291 }
292 
293 static void ipi_timer(void)
294 {
295 	irq_enter();
296 	tick_receive_broadcast();
297 	irq_exit();
298 }
299 #endif
300 
301 void smp_message_recv(unsigned int msg)
302 {
303 	switch (msg) {
304 	case SMP_MSG_FUNCTION:
305 		generic_smp_call_function_interrupt();
306 		break;
307 	case SMP_MSG_RESCHEDULE:
308 		scheduler_ipi();
309 		break;
310 	case SMP_MSG_FUNCTION_SINGLE:
311 		generic_smp_call_function_single_interrupt();
312 		break;
313 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
314 	case SMP_MSG_TIMER:
315 		ipi_timer();
316 		break;
317 #endif
318 	default:
319 		printk(KERN_WARNING "SMP %d: %s(): unknown IPI %d\n",
320 		       smp_processor_id(), __func__, msg);
321 		break;
322 	}
323 }
324 
325 /* Not really SMP stuff ... */
326 int setup_profiling_timer(unsigned int multiplier)
327 {
328 	return 0;
329 }
330 
331 #ifdef CONFIG_MMU
332 
333 static void flush_tlb_all_ipi(void *info)
334 {
335 	local_flush_tlb_all();
336 }
337 
338 void flush_tlb_all(void)
339 {
340 	on_each_cpu(flush_tlb_all_ipi, 0, 1);
341 }
342 
343 static void flush_tlb_mm_ipi(void *mm)
344 {
345 	local_flush_tlb_mm((struct mm_struct *)mm);
346 }
347 
348 /*
349  * The following tlb flush calls are invoked when old translations are
350  * being torn down, or pte attributes are changing. For single threaded
351  * address spaces, a new context is obtained on the current cpu, and tlb
352  * context on other cpus are invalidated to force a new context allocation
353  * at switch_mm time, should the mm ever be used on other cpus. For
354  * multithreaded address spaces, intercpu interrupts have to be sent.
355  * Another case where intercpu interrupts are required is when the target
356  * mm might be active on another cpu (eg debuggers doing the flushes on
357  * behalf of debugees, kswapd stealing pages from another process etc).
358  * Kanoj 07/00.
359  */
360 void flush_tlb_mm(struct mm_struct *mm)
361 {
362 	preempt_disable();
363 
364 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
365 		smp_call_function(flush_tlb_mm_ipi, (void *)mm, 1);
366 	} else {
367 		int i;
368 		for_each_online_cpu(i)
369 			if (smp_processor_id() != i)
370 				cpu_context(i, mm) = 0;
371 	}
372 	local_flush_tlb_mm(mm);
373 
374 	preempt_enable();
375 }
376 
377 struct flush_tlb_data {
378 	struct vm_area_struct *vma;
379 	unsigned long addr1;
380 	unsigned long addr2;
381 };
382 
383 static void flush_tlb_range_ipi(void *info)
384 {
385 	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
386 
387 	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
388 }
389 
390 void flush_tlb_range(struct vm_area_struct *vma,
391 		     unsigned long start, unsigned long end)
392 {
393 	struct mm_struct *mm = vma->vm_mm;
394 
395 	preempt_disable();
396 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
397 		struct flush_tlb_data fd;
398 
399 		fd.vma = vma;
400 		fd.addr1 = start;
401 		fd.addr2 = end;
402 		smp_call_function(flush_tlb_range_ipi, (void *)&fd, 1);
403 	} else {
404 		int i;
405 		for_each_online_cpu(i)
406 			if (smp_processor_id() != i)
407 				cpu_context(i, mm) = 0;
408 	}
409 	local_flush_tlb_range(vma, start, end);
410 	preempt_enable();
411 }
412 
413 static void flush_tlb_kernel_range_ipi(void *info)
414 {
415 	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
416 
417 	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
418 }
419 
420 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
421 {
422 	struct flush_tlb_data fd;
423 
424 	fd.addr1 = start;
425 	fd.addr2 = end;
426 	on_each_cpu(flush_tlb_kernel_range_ipi, (void *)&fd, 1);
427 }
428 
429 static void flush_tlb_page_ipi(void *info)
430 {
431 	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
432 
433 	local_flush_tlb_page(fd->vma, fd->addr1);
434 }
435 
436 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
437 {
438 	preempt_disable();
439 	if ((atomic_read(&vma->vm_mm->mm_users) != 1) ||
440 	    (current->mm != vma->vm_mm)) {
441 		struct flush_tlb_data fd;
442 
443 		fd.vma = vma;
444 		fd.addr1 = page;
445 		smp_call_function(flush_tlb_page_ipi, (void *)&fd, 1);
446 	} else {
447 		int i;
448 		for_each_online_cpu(i)
449 			if (smp_processor_id() != i)
450 				cpu_context(i, vma->vm_mm) = 0;
451 	}
452 	local_flush_tlb_page(vma, page);
453 	preempt_enable();
454 }
455 
456 static void flush_tlb_one_ipi(void *info)
457 {
458 	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
459 	local_flush_tlb_one(fd->addr1, fd->addr2);
460 }
461 
462 void flush_tlb_one(unsigned long asid, unsigned long vaddr)
463 {
464 	struct flush_tlb_data fd;
465 
466 	fd.addr1 = asid;
467 	fd.addr2 = vaddr;
468 
469 	smp_call_function(flush_tlb_one_ipi, (void *)&fd, 1);
470 	local_flush_tlb_one(asid, vaddr);
471 }
472 
473 #endif
474