xref: /openbmc/linux/arch/sh/kernel/smp.c (revision 808643ea)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * arch/sh/kernel/smp.c
4  *
5  * SMP support for the SuperH processors.
6  *
7  * Copyright (C) 2002 - 2010 Paul Mundt
8  * Copyright (C) 2006 - 2007 Akio Idehara
9  */
10 #include <linux/err.h>
11 #include <linux/cache.h>
12 #include <linux/cpumask.h>
13 #include <linux/delay.h>
14 #include <linux/init.h>
15 #include <linux/spinlock.h>
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/cpu.h>
19 #include <linux/interrupt.h>
20 #include <linux/sched/mm.h>
21 #include <linux/sched/hotplug.h>
22 #include <linux/atomic.h>
23 #include <linux/clockchips.h>
24 #include <asm/processor.h>
25 #include <asm/mmu_context.h>
26 #include <asm/smp.h>
27 #include <asm/cacheflush.h>
28 #include <asm/sections.h>
29 #include <asm/setup.h>
30 
31 int __cpu_number_map[NR_CPUS];		/* Map physical to logical */
32 int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
33 
34 struct plat_smp_ops *mp_ops = NULL;
35 
36 /* State of each CPU */
37 DEFINE_PER_CPU(int, cpu_state) = { 0 };
38 
39 void register_smp_ops(struct plat_smp_ops *ops)
40 {
41 	if (mp_ops)
42 		printk(KERN_WARNING "Overriding previously set SMP ops\n");
43 
44 	mp_ops = ops;
45 }
46 
47 static inline void smp_store_cpu_info(unsigned int cpu)
48 {
49 	struct sh_cpuinfo *c = cpu_data + cpu;
50 
51 	memcpy(c, &boot_cpu_data, sizeof(struct sh_cpuinfo));
52 
53 	c->loops_per_jiffy = loops_per_jiffy;
54 }
55 
56 void __init smp_prepare_cpus(unsigned int max_cpus)
57 {
58 	unsigned int cpu = smp_processor_id();
59 
60 	init_new_context(current, &init_mm);
61 	current_thread_info()->cpu = cpu;
62 	mp_ops->prepare_cpus(max_cpus);
63 
64 #ifndef CONFIG_HOTPLUG_CPU
65 	init_cpu_present(cpu_possible_mask);
66 #endif
67 }
68 
69 void __init smp_prepare_boot_cpu(void)
70 {
71 	unsigned int cpu = smp_processor_id();
72 
73 	__cpu_number_map[0] = cpu;
74 	__cpu_logical_map[0] = cpu;
75 
76 	set_cpu_online(cpu, true);
77 	set_cpu_possible(cpu, true);
78 
79 	per_cpu(cpu_state, cpu) = CPU_ONLINE;
80 }
81 
82 #ifdef CONFIG_HOTPLUG_CPU
83 void native_cpu_die(unsigned int cpu)
84 {
85 	unsigned int i;
86 
87 	for (i = 0; i < 10; i++) {
88 		smp_rmb();
89 		if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
90 			if (system_state == SYSTEM_RUNNING)
91 				pr_info("CPU %u is now offline\n", cpu);
92 
93 			return;
94 		}
95 
96 		msleep(100);
97 	}
98 
99 	pr_err("CPU %u didn't die...\n", cpu);
100 }
101 
102 int native_cpu_disable(unsigned int cpu)
103 {
104 	return cpu == 0 ? -EPERM : 0;
105 }
106 
107 void play_dead_common(void)
108 {
109 	idle_task_exit();
110 	irq_ctx_exit(raw_smp_processor_id());
111 	mb();
112 
113 	__this_cpu_write(cpu_state, CPU_DEAD);
114 	local_irq_disable();
115 }
116 
117 void native_play_dead(void)
118 {
119 	play_dead_common();
120 }
121 
122 int __cpu_disable(void)
123 {
124 	unsigned int cpu = smp_processor_id();
125 	int ret;
126 
127 	ret = mp_ops->cpu_disable(cpu);
128 	if (ret)
129 		return ret;
130 
131 	/*
132 	 * Take this CPU offline.  Once we clear this, we can't return,
133 	 * and we must not schedule until we're ready to give up the cpu.
134 	 */
135 	set_cpu_online(cpu, false);
136 
137 	/*
138 	 * OK - migrate IRQs away from this CPU
139 	 */
140 	migrate_irqs();
141 
142 	/*
143 	 * Flush user cache and TLB mappings, and then remove this CPU
144 	 * from the vm mask set of all processes.
145 	 */
146 	flush_cache_all();
147 #ifdef CONFIG_MMU
148 	local_flush_tlb_all();
149 #endif
150 
151 	clear_tasks_mm_cpumask(cpu);
152 
153 	return 0;
154 }
155 #else /* ... !CONFIG_HOTPLUG_CPU */
156 int native_cpu_disable(unsigned int cpu)
157 {
158 	return -ENOSYS;
159 }
160 
161 void native_cpu_die(unsigned int cpu)
162 {
163 	/* We said "no" in __cpu_disable */
164 	BUG();
165 }
166 
167 void native_play_dead(void)
168 {
169 	BUG();
170 }
171 #endif
172 
173 asmlinkage void start_secondary(void)
174 {
175 	unsigned int cpu = smp_processor_id();
176 	struct mm_struct *mm = &init_mm;
177 
178 	enable_mmu();
179 	mmgrab(mm);
180 	mmget(mm);
181 	current->active_mm = mm;
182 #ifdef CONFIG_MMU
183 	enter_lazy_tlb(mm, current);
184 	local_flush_tlb_all();
185 #endif
186 
187 	per_cpu_trap_init();
188 
189 	notify_cpu_starting(cpu);
190 
191 	local_irq_enable();
192 
193 	calibrate_delay();
194 
195 	smp_store_cpu_info(cpu);
196 
197 	set_cpu_online(cpu, true);
198 	per_cpu(cpu_state, cpu) = CPU_ONLINE;
199 
200 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
201 }
202 
203 extern struct {
204 	unsigned long sp;
205 	unsigned long bss_start;
206 	unsigned long bss_end;
207 	void *start_kernel_fn;
208 	void *cpu_init_fn;
209 	void *thread_info;
210 } stack_start;
211 
212 int __cpu_up(unsigned int cpu, struct task_struct *tsk)
213 {
214 	unsigned long timeout;
215 
216 	per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
217 
218 	/* Fill in data in head.S for secondary cpus */
219 	stack_start.sp = tsk->thread.sp;
220 	stack_start.thread_info = tsk->stack;
221 	stack_start.bss_start = 0; /* don't clear bss for secondary cpus */
222 	stack_start.start_kernel_fn = start_secondary;
223 
224 	flush_icache_range((unsigned long)&stack_start,
225 			   (unsigned long)&stack_start + sizeof(stack_start));
226 	wmb();
227 
228 	mp_ops->start_cpu(cpu, (unsigned long)_stext);
229 
230 	timeout = jiffies + HZ;
231 	while (time_before(jiffies, timeout)) {
232 		if (cpu_online(cpu))
233 			break;
234 
235 		udelay(10);
236 		barrier();
237 	}
238 
239 	if (cpu_online(cpu))
240 		return 0;
241 
242 	return -ENOENT;
243 }
244 
245 void __init smp_cpus_done(unsigned int max_cpus)
246 {
247 	unsigned long bogosum = 0;
248 	int cpu;
249 
250 	for_each_online_cpu(cpu)
251 		bogosum += cpu_data[cpu].loops_per_jiffy;
252 
253 	printk(KERN_INFO "SMP: Total of %d processors activated "
254 	       "(%lu.%02lu BogoMIPS).\n", num_online_cpus(),
255 	       bogosum / (500000/HZ),
256 	       (bogosum / (5000/HZ)) % 100);
257 }
258 
259 void smp_send_reschedule(int cpu)
260 {
261 	mp_ops->send_ipi(cpu, SMP_MSG_RESCHEDULE);
262 }
263 
264 void smp_send_stop(void)
265 {
266 	smp_call_function(stop_this_cpu, 0, 0);
267 }
268 
269 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
270 {
271 	int cpu;
272 
273 	for_each_cpu(cpu, mask)
274 		mp_ops->send_ipi(cpu, SMP_MSG_FUNCTION);
275 }
276 
277 void arch_send_call_function_single_ipi(int cpu)
278 {
279 	mp_ops->send_ipi(cpu, SMP_MSG_FUNCTION_SINGLE);
280 }
281 
282 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
283 void tick_broadcast(const struct cpumask *mask)
284 {
285 	int cpu;
286 
287 	for_each_cpu(cpu, mask)
288 		mp_ops->send_ipi(cpu, SMP_MSG_TIMER);
289 }
290 
291 static void ipi_timer(void)
292 {
293 	irq_enter();
294 	tick_receive_broadcast();
295 	irq_exit();
296 }
297 #endif
298 
299 void smp_message_recv(unsigned int msg)
300 {
301 	switch (msg) {
302 	case SMP_MSG_FUNCTION:
303 		generic_smp_call_function_interrupt();
304 		break;
305 	case SMP_MSG_RESCHEDULE:
306 		scheduler_ipi();
307 		break;
308 	case SMP_MSG_FUNCTION_SINGLE:
309 		generic_smp_call_function_single_interrupt();
310 		break;
311 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
312 	case SMP_MSG_TIMER:
313 		ipi_timer();
314 		break;
315 #endif
316 	default:
317 		printk(KERN_WARNING "SMP %d: %s(): unknown IPI %d\n",
318 		       smp_processor_id(), __func__, msg);
319 		break;
320 	}
321 }
322 
323 /* Not really SMP stuff ... */
324 int setup_profiling_timer(unsigned int multiplier)
325 {
326 	return 0;
327 }
328 
329 #ifdef CONFIG_MMU
330 
331 static void flush_tlb_all_ipi(void *info)
332 {
333 	local_flush_tlb_all();
334 }
335 
336 void flush_tlb_all(void)
337 {
338 	on_each_cpu(flush_tlb_all_ipi, 0, 1);
339 }
340 
341 static void flush_tlb_mm_ipi(void *mm)
342 {
343 	local_flush_tlb_mm((struct mm_struct *)mm);
344 }
345 
346 /*
347  * The following tlb flush calls are invoked when old translations are
348  * being torn down, or pte attributes are changing. For single threaded
349  * address spaces, a new context is obtained on the current cpu, and tlb
350  * context on other cpus are invalidated to force a new context allocation
351  * at switch_mm time, should the mm ever be used on other cpus. For
352  * multithreaded address spaces, intercpu interrupts have to be sent.
353  * Another case where intercpu interrupts are required is when the target
354  * mm might be active on another cpu (eg debuggers doing the flushes on
355  * behalf of debugees, kswapd stealing pages from another process etc).
356  * Kanoj 07/00.
357  */
358 void flush_tlb_mm(struct mm_struct *mm)
359 {
360 	preempt_disable();
361 
362 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
363 		smp_call_function(flush_tlb_mm_ipi, (void *)mm, 1);
364 	} else {
365 		int i;
366 		for_each_online_cpu(i)
367 			if (smp_processor_id() != i)
368 				cpu_context(i, mm) = 0;
369 	}
370 	local_flush_tlb_mm(mm);
371 
372 	preempt_enable();
373 }
374 
375 struct flush_tlb_data {
376 	struct vm_area_struct *vma;
377 	unsigned long addr1;
378 	unsigned long addr2;
379 };
380 
381 static void flush_tlb_range_ipi(void *info)
382 {
383 	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
384 
385 	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
386 }
387 
388 void flush_tlb_range(struct vm_area_struct *vma,
389 		     unsigned long start, unsigned long end)
390 {
391 	struct mm_struct *mm = vma->vm_mm;
392 
393 	preempt_disable();
394 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
395 		struct flush_tlb_data fd;
396 
397 		fd.vma = vma;
398 		fd.addr1 = start;
399 		fd.addr2 = end;
400 		smp_call_function(flush_tlb_range_ipi, (void *)&fd, 1);
401 	} else {
402 		int i;
403 		for_each_online_cpu(i)
404 			if (smp_processor_id() != i)
405 				cpu_context(i, mm) = 0;
406 	}
407 	local_flush_tlb_range(vma, start, end);
408 	preempt_enable();
409 }
410 
411 static void flush_tlb_kernel_range_ipi(void *info)
412 {
413 	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
414 
415 	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
416 }
417 
418 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
419 {
420 	struct flush_tlb_data fd;
421 
422 	fd.addr1 = start;
423 	fd.addr2 = end;
424 	on_each_cpu(flush_tlb_kernel_range_ipi, (void *)&fd, 1);
425 }
426 
427 static void flush_tlb_page_ipi(void *info)
428 {
429 	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
430 
431 	local_flush_tlb_page(fd->vma, fd->addr1);
432 }
433 
434 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
435 {
436 	preempt_disable();
437 	if ((atomic_read(&vma->vm_mm->mm_users) != 1) ||
438 	    (current->mm != vma->vm_mm)) {
439 		struct flush_tlb_data fd;
440 
441 		fd.vma = vma;
442 		fd.addr1 = page;
443 		smp_call_function(flush_tlb_page_ipi, (void *)&fd, 1);
444 	} else {
445 		int i;
446 		for_each_online_cpu(i)
447 			if (smp_processor_id() != i)
448 				cpu_context(i, vma->vm_mm) = 0;
449 	}
450 	local_flush_tlb_page(vma, page);
451 	preempt_enable();
452 }
453 
454 static void flush_tlb_one_ipi(void *info)
455 {
456 	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
457 	local_flush_tlb_one(fd->addr1, fd->addr2);
458 }
459 
460 void flush_tlb_one(unsigned long asid, unsigned long vaddr)
461 {
462 	struct flush_tlb_data fd;
463 
464 	fd.addr1 = asid;
465 	fd.addr2 = vaddr;
466 
467 	smp_call_function(flush_tlb_one_ipi, (void *)&fd, 1);
468 	local_flush_tlb_one(asid, vaddr);
469 }
470 
471 #endif
472