xref: /openbmc/linux/arch/sh/kernel/smp.c (revision 6ee73861)
1 /*
2  * arch/sh/kernel/smp.c
3  *
4  * SMP support for the SuperH processors.
5  *
6  * Copyright (C) 2002 - 2008 Paul Mundt
7  * Copyright (C) 2006 - 2007 Akio Idehara
8  *
9  * This file is subject to the terms and conditions of the GNU General Public
10  * License.  See the file "COPYING" in the main directory of this archive
11  * for more details.
12  */
13 #include <linux/err.h>
14 #include <linux/cache.h>
15 #include <linux/cpumask.h>
16 #include <linux/delay.h>
17 #include <linux/init.h>
18 #include <linux/spinlock.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/cpu.h>
22 #include <linux/interrupt.h>
23 #include <asm/atomic.h>
24 #include <asm/processor.h>
25 #include <asm/system.h>
26 #include <asm/mmu_context.h>
27 #include <asm/smp.h>
28 #include <asm/cacheflush.h>
29 #include <asm/sections.h>
30 
31 int __cpu_number_map[NR_CPUS];		/* Map physical to logical */
32 int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
33 
34 static inline void __init smp_store_cpu_info(unsigned int cpu)
35 {
36 	struct sh_cpuinfo *c = cpu_data + cpu;
37 
38 	memcpy(c, &boot_cpu_data, sizeof(struct sh_cpuinfo));
39 
40 	c->loops_per_jiffy = loops_per_jiffy;
41 }
42 
43 void __init smp_prepare_cpus(unsigned int max_cpus)
44 {
45 	unsigned int cpu = smp_processor_id();
46 
47 	init_new_context(current, &init_mm);
48 	current_thread_info()->cpu = cpu;
49 	plat_prepare_cpus(max_cpus);
50 
51 #ifndef CONFIG_HOTPLUG_CPU
52 	init_cpu_present(&cpu_possible_map);
53 #endif
54 }
55 
56 void __devinit smp_prepare_boot_cpu(void)
57 {
58 	unsigned int cpu = smp_processor_id();
59 
60 	__cpu_number_map[0] = cpu;
61 	__cpu_logical_map[0] = cpu;
62 
63 	set_cpu_online(cpu, true);
64 	set_cpu_possible(cpu, true);
65 }
66 
67 asmlinkage void __cpuinit start_secondary(void)
68 {
69 	unsigned int cpu;
70 	struct mm_struct *mm = &init_mm;
71 
72 	atomic_inc(&mm->mm_count);
73 	atomic_inc(&mm->mm_users);
74 	current->active_mm = mm;
75 	BUG_ON(current->mm);
76 	enter_lazy_tlb(mm, current);
77 
78 	per_cpu_trap_init();
79 
80 	preempt_disable();
81 
82 	notify_cpu_starting(smp_processor_id());
83 
84 	local_irq_enable();
85 
86 	cpu = smp_processor_id();
87 
88 	/* Enable local timers */
89 	local_timer_setup(cpu);
90 	calibrate_delay();
91 
92 	smp_store_cpu_info(cpu);
93 
94 	cpu_set(cpu, cpu_online_map);
95 
96 	cpu_idle();
97 }
98 
99 extern struct {
100 	unsigned long sp;
101 	unsigned long bss_start;
102 	unsigned long bss_end;
103 	void *start_kernel_fn;
104 	void *cpu_init_fn;
105 	void *thread_info;
106 } stack_start;
107 
108 int __cpuinit __cpu_up(unsigned int cpu)
109 {
110 	struct task_struct *tsk;
111 	unsigned long timeout;
112 
113 	tsk = fork_idle(cpu);
114 	if (IS_ERR(tsk)) {
115 		printk(KERN_ERR "Failed forking idle task for cpu %d\n", cpu);
116 		return PTR_ERR(tsk);
117 	}
118 
119 	/* Fill in data in head.S for secondary cpus */
120 	stack_start.sp = tsk->thread.sp;
121 	stack_start.thread_info = tsk->stack;
122 	stack_start.bss_start = 0; /* don't clear bss for secondary cpus */
123 	stack_start.start_kernel_fn = start_secondary;
124 
125 	flush_cache_all();
126 
127 	plat_start_cpu(cpu, (unsigned long)_stext);
128 
129 	timeout = jiffies + HZ;
130 	while (time_before(jiffies, timeout)) {
131 		if (cpu_online(cpu))
132 			break;
133 
134 		udelay(10);
135 	}
136 
137 	if (cpu_online(cpu))
138 		return 0;
139 
140 	return -ENOENT;
141 }
142 
143 void __init smp_cpus_done(unsigned int max_cpus)
144 {
145 	unsigned long bogosum = 0;
146 	int cpu;
147 
148 	for_each_online_cpu(cpu)
149 		bogosum += cpu_data[cpu].loops_per_jiffy;
150 
151 	printk(KERN_INFO "SMP: Total of %d processors activated "
152 	       "(%lu.%02lu BogoMIPS).\n", num_online_cpus(),
153 	       bogosum / (500000/HZ),
154 	       (bogosum / (5000/HZ)) % 100);
155 }
156 
157 void smp_send_reschedule(int cpu)
158 {
159 	plat_send_ipi(cpu, SMP_MSG_RESCHEDULE);
160 }
161 
162 static void stop_this_cpu(void *unused)
163 {
164 	cpu_clear(smp_processor_id(), cpu_online_map);
165 	local_irq_disable();
166 
167 	for (;;)
168 		cpu_relax();
169 }
170 
171 void smp_send_stop(void)
172 {
173 	smp_call_function(stop_this_cpu, 0, 0);
174 }
175 
176 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
177 {
178 	int cpu;
179 
180 	for_each_cpu(cpu, mask)
181 		plat_send_ipi(cpu, SMP_MSG_FUNCTION);
182 }
183 
184 void arch_send_call_function_single_ipi(int cpu)
185 {
186 	plat_send_ipi(cpu, SMP_MSG_FUNCTION_SINGLE);
187 }
188 
189 void smp_timer_broadcast(const struct cpumask *mask)
190 {
191 	int cpu;
192 
193 	for_each_cpu(cpu, mask)
194 		plat_send_ipi(cpu, SMP_MSG_TIMER);
195 }
196 
197 static void ipi_timer(void)
198 {
199 	irq_enter();
200 	local_timer_interrupt();
201 	irq_exit();
202 }
203 
204 void smp_message_recv(unsigned int msg)
205 {
206 	switch (msg) {
207 	case SMP_MSG_FUNCTION:
208 		generic_smp_call_function_interrupt();
209 		break;
210 	case SMP_MSG_RESCHEDULE:
211 		break;
212 	case SMP_MSG_FUNCTION_SINGLE:
213 		generic_smp_call_function_single_interrupt();
214 		break;
215 	case SMP_MSG_TIMER:
216 		ipi_timer();
217 		break;
218 	default:
219 		printk(KERN_WARNING "SMP %d: %s(): unknown IPI %d\n",
220 		       smp_processor_id(), __func__, msg);
221 		break;
222 	}
223 }
224 
225 /* Not really SMP stuff ... */
226 int setup_profiling_timer(unsigned int multiplier)
227 {
228 	return 0;
229 }
230 
231 static void flush_tlb_all_ipi(void *info)
232 {
233 	local_flush_tlb_all();
234 }
235 
236 void flush_tlb_all(void)
237 {
238 	on_each_cpu(flush_tlb_all_ipi, 0, 1);
239 }
240 
241 static void flush_tlb_mm_ipi(void *mm)
242 {
243 	local_flush_tlb_mm((struct mm_struct *)mm);
244 }
245 
246 /*
247  * The following tlb flush calls are invoked when old translations are
248  * being torn down, or pte attributes are changing. For single threaded
249  * address spaces, a new context is obtained on the current cpu, and tlb
250  * context on other cpus are invalidated to force a new context allocation
251  * at switch_mm time, should the mm ever be used on other cpus. For
252  * multithreaded address spaces, intercpu interrupts have to be sent.
253  * Another case where intercpu interrupts are required is when the target
254  * mm might be active on another cpu (eg debuggers doing the flushes on
255  * behalf of debugees, kswapd stealing pages from another process etc).
256  * Kanoj 07/00.
257  */
258 
259 void flush_tlb_mm(struct mm_struct *mm)
260 {
261 	preempt_disable();
262 
263 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
264 		smp_call_function(flush_tlb_mm_ipi, (void *)mm, 1);
265 	} else {
266 		int i;
267 		for (i = 0; i < num_online_cpus(); i++)
268 			if (smp_processor_id() != i)
269 				cpu_context(i, mm) = 0;
270 	}
271 	local_flush_tlb_mm(mm);
272 
273 	preempt_enable();
274 }
275 
276 struct flush_tlb_data {
277 	struct vm_area_struct *vma;
278 	unsigned long addr1;
279 	unsigned long addr2;
280 };
281 
282 static void flush_tlb_range_ipi(void *info)
283 {
284 	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
285 
286 	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
287 }
288 
289 void flush_tlb_range(struct vm_area_struct *vma,
290 		     unsigned long start, unsigned long end)
291 {
292 	struct mm_struct *mm = vma->vm_mm;
293 
294 	preempt_disable();
295 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
296 		struct flush_tlb_data fd;
297 
298 		fd.vma = vma;
299 		fd.addr1 = start;
300 		fd.addr2 = end;
301 		smp_call_function(flush_tlb_range_ipi, (void *)&fd, 1);
302 	} else {
303 		int i;
304 		for (i = 0; i < num_online_cpus(); i++)
305 			if (smp_processor_id() != i)
306 				cpu_context(i, mm) = 0;
307 	}
308 	local_flush_tlb_range(vma, start, end);
309 	preempt_enable();
310 }
311 
312 static void flush_tlb_kernel_range_ipi(void *info)
313 {
314 	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
315 
316 	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
317 }
318 
319 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
320 {
321 	struct flush_tlb_data fd;
322 
323 	fd.addr1 = start;
324 	fd.addr2 = end;
325 	on_each_cpu(flush_tlb_kernel_range_ipi, (void *)&fd, 1);
326 }
327 
328 static void flush_tlb_page_ipi(void *info)
329 {
330 	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
331 
332 	local_flush_tlb_page(fd->vma, fd->addr1);
333 }
334 
335 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
336 {
337 	preempt_disable();
338 	if ((atomic_read(&vma->vm_mm->mm_users) != 1) ||
339 	    (current->mm != vma->vm_mm)) {
340 		struct flush_tlb_data fd;
341 
342 		fd.vma = vma;
343 		fd.addr1 = page;
344 		smp_call_function(flush_tlb_page_ipi, (void *)&fd, 1);
345 	} else {
346 		int i;
347 		for (i = 0; i < num_online_cpus(); i++)
348 			if (smp_processor_id() != i)
349 				cpu_context(i, vma->vm_mm) = 0;
350 	}
351 	local_flush_tlb_page(vma, page);
352 	preempt_enable();
353 }
354 
355 static void flush_tlb_one_ipi(void *info)
356 {
357 	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
358 	local_flush_tlb_one(fd->addr1, fd->addr2);
359 }
360 
361 void flush_tlb_one(unsigned long asid, unsigned long vaddr)
362 {
363 	struct flush_tlb_data fd;
364 
365 	fd.addr1 = asid;
366 	fd.addr2 = vaddr;
367 
368 	smp_call_function(flush_tlb_one_ipi, (void *)&fd, 1);
369 	local_flush_tlb_one(asid, vaddr);
370 }
371