1 /* 2 * arch/sh/kernel/smp.c 3 * 4 * SMP support for the SuperH processors. 5 * 6 * Copyright (C) 2002 - 2010 Paul Mundt 7 * Copyright (C) 2006 - 2007 Akio Idehara 8 * 9 * This file is subject to the terms and conditions of the GNU General Public 10 * License. See the file "COPYING" in the main directory of this archive 11 * for more details. 12 */ 13 #include <linux/err.h> 14 #include <linux/cache.h> 15 #include <linux/cpumask.h> 16 #include <linux/delay.h> 17 #include <linux/init.h> 18 #include <linux/spinlock.h> 19 #include <linux/mm.h> 20 #include <linux/module.h> 21 #include <linux/cpu.h> 22 #include <linux/interrupt.h> 23 #include <linux/sched/mm.h> 24 #include <linux/sched/hotplug.h> 25 #include <linux/atomic.h> 26 #include <linux/clockchips.h> 27 #include <asm/processor.h> 28 #include <asm/mmu_context.h> 29 #include <asm/smp.h> 30 #include <asm/cacheflush.h> 31 #include <asm/sections.h> 32 #include <asm/setup.h> 33 34 int __cpu_number_map[NR_CPUS]; /* Map physical to logical */ 35 int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */ 36 37 struct plat_smp_ops *mp_ops = NULL; 38 39 /* State of each CPU */ 40 DEFINE_PER_CPU(int, cpu_state) = { 0 }; 41 42 void register_smp_ops(struct plat_smp_ops *ops) 43 { 44 if (mp_ops) 45 printk(KERN_WARNING "Overriding previously set SMP ops\n"); 46 47 mp_ops = ops; 48 } 49 50 static inline void smp_store_cpu_info(unsigned int cpu) 51 { 52 struct sh_cpuinfo *c = cpu_data + cpu; 53 54 memcpy(c, &boot_cpu_data, sizeof(struct sh_cpuinfo)); 55 56 c->loops_per_jiffy = loops_per_jiffy; 57 } 58 59 void __init smp_prepare_cpus(unsigned int max_cpus) 60 { 61 unsigned int cpu = smp_processor_id(); 62 63 init_new_context(current, &init_mm); 64 current_thread_info()->cpu = cpu; 65 mp_ops->prepare_cpus(max_cpus); 66 67 #ifndef CONFIG_HOTPLUG_CPU 68 init_cpu_present(cpu_possible_mask); 69 #endif 70 } 71 72 void __init smp_prepare_boot_cpu(void) 73 { 74 unsigned int cpu = smp_processor_id(); 75 76 __cpu_number_map[0] = cpu; 77 __cpu_logical_map[0] = cpu; 78 79 set_cpu_online(cpu, true); 80 set_cpu_possible(cpu, true); 81 82 per_cpu(cpu_state, cpu) = CPU_ONLINE; 83 } 84 85 #ifdef CONFIG_HOTPLUG_CPU 86 void native_cpu_die(unsigned int cpu) 87 { 88 unsigned int i; 89 90 for (i = 0; i < 10; i++) { 91 smp_rmb(); 92 if (per_cpu(cpu_state, cpu) == CPU_DEAD) { 93 if (system_state == SYSTEM_RUNNING) 94 pr_info("CPU %u is now offline\n", cpu); 95 96 return; 97 } 98 99 msleep(100); 100 } 101 102 pr_err("CPU %u didn't die...\n", cpu); 103 } 104 105 int native_cpu_disable(unsigned int cpu) 106 { 107 return cpu == 0 ? -EPERM : 0; 108 } 109 110 void play_dead_common(void) 111 { 112 idle_task_exit(); 113 irq_ctx_exit(raw_smp_processor_id()); 114 mb(); 115 116 __this_cpu_write(cpu_state, CPU_DEAD); 117 local_irq_disable(); 118 } 119 120 void native_play_dead(void) 121 { 122 play_dead_common(); 123 } 124 125 int __cpu_disable(void) 126 { 127 unsigned int cpu = smp_processor_id(); 128 int ret; 129 130 ret = mp_ops->cpu_disable(cpu); 131 if (ret) 132 return ret; 133 134 /* 135 * Take this CPU offline. Once we clear this, we can't return, 136 * and we must not schedule until we're ready to give up the cpu. 137 */ 138 set_cpu_online(cpu, false); 139 140 /* 141 * OK - migrate IRQs away from this CPU 142 */ 143 migrate_irqs(); 144 145 /* 146 * Flush user cache and TLB mappings, and then remove this CPU 147 * from the vm mask set of all processes. 148 */ 149 flush_cache_all(); 150 #ifdef CONFIG_MMU 151 local_flush_tlb_all(); 152 #endif 153 154 clear_tasks_mm_cpumask(cpu); 155 156 return 0; 157 } 158 #else /* ... !CONFIG_HOTPLUG_CPU */ 159 int native_cpu_disable(unsigned int cpu) 160 { 161 return -ENOSYS; 162 } 163 164 void native_cpu_die(unsigned int cpu) 165 { 166 /* We said "no" in __cpu_disable */ 167 BUG(); 168 } 169 170 void native_play_dead(void) 171 { 172 BUG(); 173 } 174 #endif 175 176 asmlinkage void start_secondary(void) 177 { 178 unsigned int cpu = smp_processor_id(); 179 struct mm_struct *mm = &init_mm; 180 181 enable_mmu(); 182 mmgrab(mm); 183 mmget(mm); 184 current->active_mm = mm; 185 #ifdef CONFIG_MMU 186 enter_lazy_tlb(mm, current); 187 local_flush_tlb_all(); 188 #endif 189 190 per_cpu_trap_init(); 191 192 preempt_disable(); 193 194 notify_cpu_starting(cpu); 195 196 local_irq_enable(); 197 198 calibrate_delay(); 199 200 smp_store_cpu_info(cpu); 201 202 set_cpu_online(cpu, true); 203 per_cpu(cpu_state, cpu) = CPU_ONLINE; 204 205 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 206 } 207 208 extern struct { 209 unsigned long sp; 210 unsigned long bss_start; 211 unsigned long bss_end; 212 void *start_kernel_fn; 213 void *cpu_init_fn; 214 void *thread_info; 215 } stack_start; 216 217 int __cpu_up(unsigned int cpu, struct task_struct *tsk) 218 { 219 unsigned long timeout; 220 221 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE; 222 223 /* Fill in data in head.S for secondary cpus */ 224 stack_start.sp = tsk->thread.sp; 225 stack_start.thread_info = tsk->stack; 226 stack_start.bss_start = 0; /* don't clear bss for secondary cpus */ 227 stack_start.start_kernel_fn = start_secondary; 228 229 flush_icache_range((unsigned long)&stack_start, 230 (unsigned long)&stack_start + sizeof(stack_start)); 231 wmb(); 232 233 mp_ops->start_cpu(cpu, (unsigned long)_stext); 234 235 timeout = jiffies + HZ; 236 while (time_before(jiffies, timeout)) { 237 if (cpu_online(cpu)) 238 break; 239 240 udelay(10); 241 barrier(); 242 } 243 244 if (cpu_online(cpu)) 245 return 0; 246 247 return -ENOENT; 248 } 249 250 void __init smp_cpus_done(unsigned int max_cpus) 251 { 252 unsigned long bogosum = 0; 253 int cpu; 254 255 for_each_online_cpu(cpu) 256 bogosum += cpu_data[cpu].loops_per_jiffy; 257 258 printk(KERN_INFO "SMP: Total of %d processors activated " 259 "(%lu.%02lu BogoMIPS).\n", num_online_cpus(), 260 bogosum / (500000/HZ), 261 (bogosum / (5000/HZ)) % 100); 262 } 263 264 void smp_send_reschedule(int cpu) 265 { 266 mp_ops->send_ipi(cpu, SMP_MSG_RESCHEDULE); 267 } 268 269 void smp_send_stop(void) 270 { 271 smp_call_function(stop_this_cpu, 0, 0); 272 } 273 274 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 275 { 276 int cpu; 277 278 for_each_cpu(cpu, mask) 279 mp_ops->send_ipi(cpu, SMP_MSG_FUNCTION); 280 } 281 282 void arch_send_call_function_single_ipi(int cpu) 283 { 284 mp_ops->send_ipi(cpu, SMP_MSG_FUNCTION_SINGLE); 285 } 286 287 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 288 void tick_broadcast(const struct cpumask *mask) 289 { 290 int cpu; 291 292 for_each_cpu(cpu, mask) 293 mp_ops->send_ipi(cpu, SMP_MSG_TIMER); 294 } 295 296 static void ipi_timer(void) 297 { 298 irq_enter(); 299 tick_receive_broadcast(); 300 irq_exit(); 301 } 302 #endif 303 304 void smp_message_recv(unsigned int msg) 305 { 306 switch (msg) { 307 case SMP_MSG_FUNCTION: 308 generic_smp_call_function_interrupt(); 309 break; 310 case SMP_MSG_RESCHEDULE: 311 scheduler_ipi(); 312 break; 313 case SMP_MSG_FUNCTION_SINGLE: 314 generic_smp_call_function_single_interrupt(); 315 break; 316 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 317 case SMP_MSG_TIMER: 318 ipi_timer(); 319 break; 320 #endif 321 default: 322 printk(KERN_WARNING "SMP %d: %s(): unknown IPI %d\n", 323 smp_processor_id(), __func__, msg); 324 break; 325 } 326 } 327 328 /* Not really SMP stuff ... */ 329 int setup_profiling_timer(unsigned int multiplier) 330 { 331 return 0; 332 } 333 334 #ifdef CONFIG_MMU 335 336 static void flush_tlb_all_ipi(void *info) 337 { 338 local_flush_tlb_all(); 339 } 340 341 void flush_tlb_all(void) 342 { 343 on_each_cpu(flush_tlb_all_ipi, 0, 1); 344 } 345 346 static void flush_tlb_mm_ipi(void *mm) 347 { 348 local_flush_tlb_mm((struct mm_struct *)mm); 349 } 350 351 /* 352 * The following tlb flush calls are invoked when old translations are 353 * being torn down, or pte attributes are changing. For single threaded 354 * address spaces, a new context is obtained on the current cpu, and tlb 355 * context on other cpus are invalidated to force a new context allocation 356 * at switch_mm time, should the mm ever be used on other cpus. For 357 * multithreaded address spaces, intercpu interrupts have to be sent. 358 * Another case where intercpu interrupts are required is when the target 359 * mm might be active on another cpu (eg debuggers doing the flushes on 360 * behalf of debugees, kswapd stealing pages from another process etc). 361 * Kanoj 07/00. 362 */ 363 void flush_tlb_mm(struct mm_struct *mm) 364 { 365 preempt_disable(); 366 367 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { 368 smp_call_function(flush_tlb_mm_ipi, (void *)mm, 1); 369 } else { 370 int i; 371 for_each_online_cpu(i) 372 if (smp_processor_id() != i) 373 cpu_context(i, mm) = 0; 374 } 375 local_flush_tlb_mm(mm); 376 377 preempt_enable(); 378 } 379 380 struct flush_tlb_data { 381 struct vm_area_struct *vma; 382 unsigned long addr1; 383 unsigned long addr2; 384 }; 385 386 static void flush_tlb_range_ipi(void *info) 387 { 388 struct flush_tlb_data *fd = (struct flush_tlb_data *)info; 389 390 local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2); 391 } 392 393 void flush_tlb_range(struct vm_area_struct *vma, 394 unsigned long start, unsigned long end) 395 { 396 struct mm_struct *mm = vma->vm_mm; 397 398 preempt_disable(); 399 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { 400 struct flush_tlb_data fd; 401 402 fd.vma = vma; 403 fd.addr1 = start; 404 fd.addr2 = end; 405 smp_call_function(flush_tlb_range_ipi, (void *)&fd, 1); 406 } else { 407 int i; 408 for_each_online_cpu(i) 409 if (smp_processor_id() != i) 410 cpu_context(i, mm) = 0; 411 } 412 local_flush_tlb_range(vma, start, end); 413 preempt_enable(); 414 } 415 416 static void flush_tlb_kernel_range_ipi(void *info) 417 { 418 struct flush_tlb_data *fd = (struct flush_tlb_data *)info; 419 420 local_flush_tlb_kernel_range(fd->addr1, fd->addr2); 421 } 422 423 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 424 { 425 struct flush_tlb_data fd; 426 427 fd.addr1 = start; 428 fd.addr2 = end; 429 on_each_cpu(flush_tlb_kernel_range_ipi, (void *)&fd, 1); 430 } 431 432 static void flush_tlb_page_ipi(void *info) 433 { 434 struct flush_tlb_data *fd = (struct flush_tlb_data *)info; 435 436 local_flush_tlb_page(fd->vma, fd->addr1); 437 } 438 439 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page) 440 { 441 preempt_disable(); 442 if ((atomic_read(&vma->vm_mm->mm_users) != 1) || 443 (current->mm != vma->vm_mm)) { 444 struct flush_tlb_data fd; 445 446 fd.vma = vma; 447 fd.addr1 = page; 448 smp_call_function(flush_tlb_page_ipi, (void *)&fd, 1); 449 } else { 450 int i; 451 for_each_online_cpu(i) 452 if (smp_processor_id() != i) 453 cpu_context(i, vma->vm_mm) = 0; 454 } 455 local_flush_tlb_page(vma, page); 456 preempt_enable(); 457 } 458 459 static void flush_tlb_one_ipi(void *info) 460 { 461 struct flush_tlb_data *fd = (struct flush_tlb_data *)info; 462 local_flush_tlb_one(fd->addr1, fd->addr2); 463 } 464 465 void flush_tlb_one(unsigned long asid, unsigned long vaddr) 466 { 467 struct flush_tlb_data fd; 468 469 fd.addr1 = asid; 470 fd.addr2 = vaddr; 471 472 smp_call_function(flush_tlb_one_ipi, (void *)&fd, 1); 473 local_flush_tlb_one(asid, vaddr); 474 } 475 476 #endif 477