xref: /openbmc/linux/arch/sh/kernel/smp.c (revision 6d99a79c)
1 /*
2  * arch/sh/kernel/smp.c
3  *
4  * SMP support for the SuperH processors.
5  *
6  * Copyright (C) 2002 - 2010 Paul Mundt
7  * Copyright (C) 2006 - 2007 Akio Idehara
8  *
9  * This file is subject to the terms and conditions of the GNU General Public
10  * License.  See the file "COPYING" in the main directory of this archive
11  * for more details.
12  */
13 #include <linux/err.h>
14 #include <linux/cache.h>
15 #include <linux/cpumask.h>
16 #include <linux/delay.h>
17 #include <linux/init.h>
18 #include <linux/spinlock.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/cpu.h>
22 #include <linux/interrupt.h>
23 #include <linux/sched/mm.h>
24 #include <linux/sched/hotplug.h>
25 #include <linux/atomic.h>
26 #include <linux/clockchips.h>
27 #include <asm/processor.h>
28 #include <asm/mmu_context.h>
29 #include <asm/smp.h>
30 #include <asm/cacheflush.h>
31 #include <asm/sections.h>
32 #include <asm/setup.h>
33 
34 int __cpu_number_map[NR_CPUS];		/* Map physical to logical */
35 int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
36 
37 struct plat_smp_ops *mp_ops = NULL;
38 
39 /* State of each CPU */
40 DEFINE_PER_CPU(int, cpu_state) = { 0 };
41 
42 void register_smp_ops(struct plat_smp_ops *ops)
43 {
44 	if (mp_ops)
45 		printk(KERN_WARNING "Overriding previously set SMP ops\n");
46 
47 	mp_ops = ops;
48 }
49 
50 static inline void smp_store_cpu_info(unsigned int cpu)
51 {
52 	struct sh_cpuinfo *c = cpu_data + cpu;
53 
54 	memcpy(c, &boot_cpu_data, sizeof(struct sh_cpuinfo));
55 
56 	c->loops_per_jiffy = loops_per_jiffy;
57 }
58 
59 void __init smp_prepare_cpus(unsigned int max_cpus)
60 {
61 	unsigned int cpu = smp_processor_id();
62 
63 	init_new_context(current, &init_mm);
64 	current_thread_info()->cpu = cpu;
65 	mp_ops->prepare_cpus(max_cpus);
66 
67 #ifndef CONFIG_HOTPLUG_CPU
68 	init_cpu_present(cpu_possible_mask);
69 #endif
70 }
71 
72 void __init smp_prepare_boot_cpu(void)
73 {
74 	unsigned int cpu = smp_processor_id();
75 
76 	__cpu_number_map[0] = cpu;
77 	__cpu_logical_map[0] = cpu;
78 
79 	set_cpu_online(cpu, true);
80 	set_cpu_possible(cpu, true);
81 
82 	per_cpu(cpu_state, cpu) = CPU_ONLINE;
83 }
84 
85 #ifdef CONFIG_HOTPLUG_CPU
86 void native_cpu_die(unsigned int cpu)
87 {
88 	unsigned int i;
89 
90 	for (i = 0; i < 10; i++) {
91 		smp_rmb();
92 		if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
93 			if (system_state == SYSTEM_RUNNING)
94 				pr_info("CPU %u is now offline\n", cpu);
95 
96 			return;
97 		}
98 
99 		msleep(100);
100 	}
101 
102 	pr_err("CPU %u didn't die...\n", cpu);
103 }
104 
105 int native_cpu_disable(unsigned int cpu)
106 {
107 	return cpu == 0 ? -EPERM : 0;
108 }
109 
110 void play_dead_common(void)
111 {
112 	idle_task_exit();
113 	irq_ctx_exit(raw_smp_processor_id());
114 	mb();
115 
116 	__this_cpu_write(cpu_state, CPU_DEAD);
117 	local_irq_disable();
118 }
119 
120 void native_play_dead(void)
121 {
122 	play_dead_common();
123 }
124 
125 int __cpu_disable(void)
126 {
127 	unsigned int cpu = smp_processor_id();
128 	int ret;
129 
130 	ret = mp_ops->cpu_disable(cpu);
131 	if (ret)
132 		return ret;
133 
134 	/*
135 	 * Take this CPU offline.  Once we clear this, we can't return,
136 	 * and we must not schedule until we're ready to give up the cpu.
137 	 */
138 	set_cpu_online(cpu, false);
139 
140 	/*
141 	 * OK - migrate IRQs away from this CPU
142 	 */
143 	migrate_irqs();
144 
145 	/*
146 	 * Flush user cache and TLB mappings, and then remove this CPU
147 	 * from the vm mask set of all processes.
148 	 */
149 	flush_cache_all();
150 #ifdef CONFIG_MMU
151 	local_flush_tlb_all();
152 #endif
153 
154 	clear_tasks_mm_cpumask(cpu);
155 
156 	return 0;
157 }
158 #else /* ... !CONFIG_HOTPLUG_CPU */
159 int native_cpu_disable(unsigned int cpu)
160 {
161 	return -ENOSYS;
162 }
163 
164 void native_cpu_die(unsigned int cpu)
165 {
166 	/* We said "no" in __cpu_disable */
167 	BUG();
168 }
169 
170 void native_play_dead(void)
171 {
172 	BUG();
173 }
174 #endif
175 
176 asmlinkage void start_secondary(void)
177 {
178 	unsigned int cpu = smp_processor_id();
179 	struct mm_struct *mm = &init_mm;
180 
181 	enable_mmu();
182 	mmgrab(mm);
183 	mmget(mm);
184 	current->active_mm = mm;
185 #ifdef CONFIG_MMU
186 	enter_lazy_tlb(mm, current);
187 	local_flush_tlb_all();
188 #endif
189 
190 	per_cpu_trap_init();
191 
192 	preempt_disable();
193 
194 	notify_cpu_starting(cpu);
195 
196 	local_irq_enable();
197 
198 	calibrate_delay();
199 
200 	smp_store_cpu_info(cpu);
201 
202 	set_cpu_online(cpu, true);
203 	per_cpu(cpu_state, cpu) = CPU_ONLINE;
204 
205 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
206 }
207 
208 extern struct {
209 	unsigned long sp;
210 	unsigned long bss_start;
211 	unsigned long bss_end;
212 	void *start_kernel_fn;
213 	void *cpu_init_fn;
214 	void *thread_info;
215 } stack_start;
216 
217 int __cpu_up(unsigned int cpu, struct task_struct *tsk)
218 {
219 	unsigned long timeout;
220 
221 	per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
222 
223 	/* Fill in data in head.S for secondary cpus */
224 	stack_start.sp = tsk->thread.sp;
225 	stack_start.thread_info = tsk->stack;
226 	stack_start.bss_start = 0; /* don't clear bss for secondary cpus */
227 	stack_start.start_kernel_fn = start_secondary;
228 
229 	flush_icache_range((unsigned long)&stack_start,
230 			   (unsigned long)&stack_start + sizeof(stack_start));
231 	wmb();
232 
233 	mp_ops->start_cpu(cpu, (unsigned long)_stext);
234 
235 	timeout = jiffies + HZ;
236 	while (time_before(jiffies, timeout)) {
237 		if (cpu_online(cpu))
238 			break;
239 
240 		udelay(10);
241 		barrier();
242 	}
243 
244 	if (cpu_online(cpu))
245 		return 0;
246 
247 	return -ENOENT;
248 }
249 
250 void __init smp_cpus_done(unsigned int max_cpus)
251 {
252 	unsigned long bogosum = 0;
253 	int cpu;
254 
255 	for_each_online_cpu(cpu)
256 		bogosum += cpu_data[cpu].loops_per_jiffy;
257 
258 	printk(KERN_INFO "SMP: Total of %d processors activated "
259 	       "(%lu.%02lu BogoMIPS).\n", num_online_cpus(),
260 	       bogosum / (500000/HZ),
261 	       (bogosum / (5000/HZ)) % 100);
262 }
263 
264 void smp_send_reschedule(int cpu)
265 {
266 	mp_ops->send_ipi(cpu, SMP_MSG_RESCHEDULE);
267 }
268 
269 void smp_send_stop(void)
270 {
271 	smp_call_function(stop_this_cpu, 0, 0);
272 }
273 
274 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
275 {
276 	int cpu;
277 
278 	for_each_cpu(cpu, mask)
279 		mp_ops->send_ipi(cpu, SMP_MSG_FUNCTION);
280 }
281 
282 void arch_send_call_function_single_ipi(int cpu)
283 {
284 	mp_ops->send_ipi(cpu, SMP_MSG_FUNCTION_SINGLE);
285 }
286 
287 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
288 void tick_broadcast(const struct cpumask *mask)
289 {
290 	int cpu;
291 
292 	for_each_cpu(cpu, mask)
293 		mp_ops->send_ipi(cpu, SMP_MSG_TIMER);
294 }
295 
296 static void ipi_timer(void)
297 {
298 	irq_enter();
299 	tick_receive_broadcast();
300 	irq_exit();
301 }
302 #endif
303 
304 void smp_message_recv(unsigned int msg)
305 {
306 	switch (msg) {
307 	case SMP_MSG_FUNCTION:
308 		generic_smp_call_function_interrupt();
309 		break;
310 	case SMP_MSG_RESCHEDULE:
311 		scheduler_ipi();
312 		break;
313 	case SMP_MSG_FUNCTION_SINGLE:
314 		generic_smp_call_function_single_interrupt();
315 		break;
316 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
317 	case SMP_MSG_TIMER:
318 		ipi_timer();
319 		break;
320 #endif
321 	default:
322 		printk(KERN_WARNING "SMP %d: %s(): unknown IPI %d\n",
323 		       smp_processor_id(), __func__, msg);
324 		break;
325 	}
326 }
327 
328 /* Not really SMP stuff ... */
329 int setup_profiling_timer(unsigned int multiplier)
330 {
331 	return 0;
332 }
333 
334 #ifdef CONFIG_MMU
335 
336 static void flush_tlb_all_ipi(void *info)
337 {
338 	local_flush_tlb_all();
339 }
340 
341 void flush_tlb_all(void)
342 {
343 	on_each_cpu(flush_tlb_all_ipi, 0, 1);
344 }
345 
346 static void flush_tlb_mm_ipi(void *mm)
347 {
348 	local_flush_tlb_mm((struct mm_struct *)mm);
349 }
350 
351 /*
352  * The following tlb flush calls are invoked when old translations are
353  * being torn down, or pte attributes are changing. For single threaded
354  * address spaces, a new context is obtained on the current cpu, and tlb
355  * context on other cpus are invalidated to force a new context allocation
356  * at switch_mm time, should the mm ever be used on other cpus. For
357  * multithreaded address spaces, intercpu interrupts have to be sent.
358  * Another case where intercpu interrupts are required is when the target
359  * mm might be active on another cpu (eg debuggers doing the flushes on
360  * behalf of debugees, kswapd stealing pages from another process etc).
361  * Kanoj 07/00.
362  */
363 void flush_tlb_mm(struct mm_struct *mm)
364 {
365 	preempt_disable();
366 
367 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
368 		smp_call_function(flush_tlb_mm_ipi, (void *)mm, 1);
369 	} else {
370 		int i;
371 		for_each_online_cpu(i)
372 			if (smp_processor_id() != i)
373 				cpu_context(i, mm) = 0;
374 	}
375 	local_flush_tlb_mm(mm);
376 
377 	preempt_enable();
378 }
379 
380 struct flush_tlb_data {
381 	struct vm_area_struct *vma;
382 	unsigned long addr1;
383 	unsigned long addr2;
384 };
385 
386 static void flush_tlb_range_ipi(void *info)
387 {
388 	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
389 
390 	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
391 }
392 
393 void flush_tlb_range(struct vm_area_struct *vma,
394 		     unsigned long start, unsigned long end)
395 {
396 	struct mm_struct *mm = vma->vm_mm;
397 
398 	preempt_disable();
399 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
400 		struct flush_tlb_data fd;
401 
402 		fd.vma = vma;
403 		fd.addr1 = start;
404 		fd.addr2 = end;
405 		smp_call_function(flush_tlb_range_ipi, (void *)&fd, 1);
406 	} else {
407 		int i;
408 		for_each_online_cpu(i)
409 			if (smp_processor_id() != i)
410 				cpu_context(i, mm) = 0;
411 	}
412 	local_flush_tlb_range(vma, start, end);
413 	preempt_enable();
414 }
415 
416 static void flush_tlb_kernel_range_ipi(void *info)
417 {
418 	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
419 
420 	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
421 }
422 
423 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
424 {
425 	struct flush_tlb_data fd;
426 
427 	fd.addr1 = start;
428 	fd.addr2 = end;
429 	on_each_cpu(flush_tlb_kernel_range_ipi, (void *)&fd, 1);
430 }
431 
432 static void flush_tlb_page_ipi(void *info)
433 {
434 	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
435 
436 	local_flush_tlb_page(fd->vma, fd->addr1);
437 }
438 
439 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
440 {
441 	preempt_disable();
442 	if ((atomic_read(&vma->vm_mm->mm_users) != 1) ||
443 	    (current->mm != vma->vm_mm)) {
444 		struct flush_tlb_data fd;
445 
446 		fd.vma = vma;
447 		fd.addr1 = page;
448 		smp_call_function(flush_tlb_page_ipi, (void *)&fd, 1);
449 	} else {
450 		int i;
451 		for_each_online_cpu(i)
452 			if (smp_processor_id() != i)
453 				cpu_context(i, vma->vm_mm) = 0;
454 	}
455 	local_flush_tlb_page(vma, page);
456 	preempt_enable();
457 }
458 
459 static void flush_tlb_one_ipi(void *info)
460 {
461 	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
462 	local_flush_tlb_one(fd->addr1, fd->addr2);
463 }
464 
465 void flush_tlb_one(unsigned long asid, unsigned long vaddr)
466 {
467 	struct flush_tlb_data fd;
468 
469 	fd.addr1 = asid;
470 	fd.addr2 = vaddr;
471 
472 	smp_call_function(flush_tlb_one_ipi, (void *)&fd, 1);
473 	local_flush_tlb_one(asid, vaddr);
474 }
475 
476 #endif
477