xref: /openbmc/linux/arch/sh/kernel/smp.c (revision 615c36f5)
1 /*
2  * arch/sh/kernel/smp.c
3  *
4  * SMP support for the SuperH processors.
5  *
6  * Copyright (C) 2002 - 2010 Paul Mundt
7  * Copyright (C) 2006 - 2007 Akio Idehara
8  *
9  * This file is subject to the terms and conditions of the GNU General Public
10  * License.  See the file "COPYING" in the main directory of this archive
11  * for more details.
12  */
13 #include <linux/err.h>
14 #include <linux/cache.h>
15 #include <linux/cpumask.h>
16 #include <linux/delay.h>
17 #include <linux/init.h>
18 #include <linux/spinlock.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/cpu.h>
22 #include <linux/interrupt.h>
23 #include <linux/sched.h>
24 #include <linux/atomic.h>
25 #include <asm/processor.h>
26 #include <asm/system.h>
27 #include <asm/mmu_context.h>
28 #include <asm/smp.h>
29 #include <asm/cacheflush.h>
30 #include <asm/sections.h>
31 
32 int __cpu_number_map[NR_CPUS];		/* Map physical to logical */
33 int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
34 
35 struct plat_smp_ops *mp_ops = NULL;
36 
37 /* State of each CPU */
38 DEFINE_PER_CPU(int, cpu_state) = { 0 };
39 
40 void __cpuinit register_smp_ops(struct plat_smp_ops *ops)
41 {
42 	if (mp_ops)
43 		printk(KERN_WARNING "Overriding previously set SMP ops\n");
44 
45 	mp_ops = ops;
46 }
47 
48 static inline void __cpuinit smp_store_cpu_info(unsigned int cpu)
49 {
50 	struct sh_cpuinfo *c = cpu_data + cpu;
51 
52 	memcpy(c, &boot_cpu_data, sizeof(struct sh_cpuinfo));
53 
54 	c->loops_per_jiffy = loops_per_jiffy;
55 }
56 
57 void __init smp_prepare_cpus(unsigned int max_cpus)
58 {
59 	unsigned int cpu = smp_processor_id();
60 
61 	init_new_context(current, &init_mm);
62 	current_thread_info()->cpu = cpu;
63 	mp_ops->prepare_cpus(max_cpus);
64 
65 #ifndef CONFIG_HOTPLUG_CPU
66 	init_cpu_present(&cpu_possible_map);
67 #endif
68 }
69 
70 void __init smp_prepare_boot_cpu(void)
71 {
72 	unsigned int cpu = smp_processor_id();
73 
74 	__cpu_number_map[0] = cpu;
75 	__cpu_logical_map[0] = cpu;
76 
77 	set_cpu_online(cpu, true);
78 	set_cpu_possible(cpu, true);
79 
80 	per_cpu(cpu_state, cpu) = CPU_ONLINE;
81 }
82 
83 #ifdef CONFIG_HOTPLUG_CPU
84 void native_cpu_die(unsigned int cpu)
85 {
86 	unsigned int i;
87 
88 	for (i = 0; i < 10; i++) {
89 		smp_rmb();
90 		if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
91 			if (system_state == SYSTEM_RUNNING)
92 				pr_info("CPU %u is now offline\n", cpu);
93 
94 			return;
95 		}
96 
97 		msleep(100);
98 	}
99 
100 	pr_err("CPU %u didn't die...\n", cpu);
101 }
102 
103 int native_cpu_disable(unsigned int cpu)
104 {
105 	return cpu == 0 ? -EPERM : 0;
106 }
107 
108 void play_dead_common(void)
109 {
110 	idle_task_exit();
111 	irq_ctx_exit(raw_smp_processor_id());
112 	mb();
113 
114 	__get_cpu_var(cpu_state) = CPU_DEAD;
115 	local_irq_disable();
116 }
117 
118 void native_play_dead(void)
119 {
120 	play_dead_common();
121 }
122 
123 int __cpu_disable(void)
124 {
125 	unsigned int cpu = smp_processor_id();
126 	struct task_struct *p;
127 	int ret;
128 
129 	ret = mp_ops->cpu_disable(cpu);
130 	if (ret)
131 		return ret;
132 
133 	/*
134 	 * Take this CPU offline.  Once we clear this, we can't return,
135 	 * and we must not schedule until we're ready to give up the cpu.
136 	 */
137 	set_cpu_online(cpu, false);
138 
139 	/*
140 	 * OK - migrate IRQs away from this CPU
141 	 */
142 	migrate_irqs();
143 
144 	/*
145 	 * Stop the local timer for this CPU.
146 	 */
147 	local_timer_stop(cpu);
148 
149 	/*
150 	 * Flush user cache and TLB mappings, and then remove this CPU
151 	 * from the vm mask set of all processes.
152 	 */
153 	flush_cache_all();
154 	local_flush_tlb_all();
155 
156 	read_lock(&tasklist_lock);
157 	for_each_process(p)
158 		if (p->mm)
159 			cpumask_clear_cpu(cpu, mm_cpumask(p->mm));
160 	read_unlock(&tasklist_lock);
161 
162 	return 0;
163 }
164 #else /* ... !CONFIG_HOTPLUG_CPU */
165 int native_cpu_disable(unsigned int cpu)
166 {
167 	return -ENOSYS;
168 }
169 
170 void native_cpu_die(unsigned int cpu)
171 {
172 	/* We said "no" in __cpu_disable */
173 	BUG();
174 }
175 
176 void native_play_dead(void)
177 {
178 	BUG();
179 }
180 #endif
181 
182 asmlinkage void __cpuinit start_secondary(void)
183 {
184 	unsigned int cpu = smp_processor_id();
185 	struct mm_struct *mm = &init_mm;
186 
187 	enable_mmu();
188 	atomic_inc(&mm->mm_count);
189 	atomic_inc(&mm->mm_users);
190 	current->active_mm = mm;
191 	enter_lazy_tlb(mm, current);
192 	local_flush_tlb_all();
193 
194 	per_cpu_trap_init();
195 
196 	preempt_disable();
197 
198 	notify_cpu_starting(cpu);
199 
200 	local_irq_enable();
201 
202 	/* Enable local timers */
203 	local_timer_setup(cpu);
204 	calibrate_delay();
205 
206 	smp_store_cpu_info(cpu);
207 
208 	set_cpu_online(cpu, true);
209 	per_cpu(cpu_state, cpu) = CPU_ONLINE;
210 
211 	cpu_idle();
212 }
213 
214 extern struct {
215 	unsigned long sp;
216 	unsigned long bss_start;
217 	unsigned long bss_end;
218 	void *start_kernel_fn;
219 	void *cpu_init_fn;
220 	void *thread_info;
221 } stack_start;
222 
223 int __cpuinit __cpu_up(unsigned int cpu)
224 {
225 	struct task_struct *tsk;
226 	unsigned long timeout;
227 
228 	tsk = cpu_data[cpu].idle;
229 	if (!tsk) {
230 		tsk = fork_idle(cpu);
231 		if (IS_ERR(tsk)) {
232 			pr_err("Failed forking idle task for cpu %d\n", cpu);
233 			return PTR_ERR(tsk);
234 		}
235 
236 		cpu_data[cpu].idle = tsk;
237 	}
238 
239 	per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
240 
241 	/* Fill in data in head.S for secondary cpus */
242 	stack_start.sp = tsk->thread.sp;
243 	stack_start.thread_info = tsk->stack;
244 	stack_start.bss_start = 0; /* don't clear bss for secondary cpus */
245 	stack_start.start_kernel_fn = start_secondary;
246 
247 	flush_icache_range((unsigned long)&stack_start,
248 			   (unsigned long)&stack_start + sizeof(stack_start));
249 	wmb();
250 
251 	mp_ops->start_cpu(cpu, (unsigned long)_stext);
252 
253 	timeout = jiffies + HZ;
254 	while (time_before(jiffies, timeout)) {
255 		if (cpu_online(cpu))
256 			break;
257 
258 		udelay(10);
259 		barrier();
260 	}
261 
262 	if (cpu_online(cpu))
263 		return 0;
264 
265 	return -ENOENT;
266 }
267 
268 void __init smp_cpus_done(unsigned int max_cpus)
269 {
270 	unsigned long bogosum = 0;
271 	int cpu;
272 
273 	for_each_online_cpu(cpu)
274 		bogosum += cpu_data[cpu].loops_per_jiffy;
275 
276 	printk(KERN_INFO "SMP: Total of %d processors activated "
277 	       "(%lu.%02lu BogoMIPS).\n", num_online_cpus(),
278 	       bogosum / (500000/HZ),
279 	       (bogosum / (5000/HZ)) % 100);
280 }
281 
282 void smp_send_reschedule(int cpu)
283 {
284 	mp_ops->send_ipi(cpu, SMP_MSG_RESCHEDULE);
285 }
286 
287 void smp_send_stop(void)
288 {
289 	smp_call_function(stop_this_cpu, 0, 0);
290 }
291 
292 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
293 {
294 	int cpu;
295 
296 	for_each_cpu(cpu, mask)
297 		mp_ops->send_ipi(cpu, SMP_MSG_FUNCTION);
298 }
299 
300 void arch_send_call_function_single_ipi(int cpu)
301 {
302 	mp_ops->send_ipi(cpu, SMP_MSG_FUNCTION_SINGLE);
303 }
304 
305 void smp_timer_broadcast(const struct cpumask *mask)
306 {
307 	int cpu;
308 
309 	for_each_cpu(cpu, mask)
310 		mp_ops->send_ipi(cpu, SMP_MSG_TIMER);
311 }
312 
313 static void ipi_timer(void)
314 {
315 	irq_enter();
316 	local_timer_interrupt();
317 	irq_exit();
318 }
319 
320 void smp_message_recv(unsigned int msg)
321 {
322 	switch (msg) {
323 	case SMP_MSG_FUNCTION:
324 		generic_smp_call_function_interrupt();
325 		break;
326 	case SMP_MSG_RESCHEDULE:
327 		scheduler_ipi();
328 		break;
329 	case SMP_MSG_FUNCTION_SINGLE:
330 		generic_smp_call_function_single_interrupt();
331 		break;
332 	case SMP_MSG_TIMER:
333 		ipi_timer();
334 		break;
335 	default:
336 		printk(KERN_WARNING "SMP %d: %s(): unknown IPI %d\n",
337 		       smp_processor_id(), __func__, msg);
338 		break;
339 	}
340 }
341 
342 /* Not really SMP stuff ... */
343 int setup_profiling_timer(unsigned int multiplier)
344 {
345 	return 0;
346 }
347 
348 static void flush_tlb_all_ipi(void *info)
349 {
350 	local_flush_tlb_all();
351 }
352 
353 void flush_tlb_all(void)
354 {
355 	on_each_cpu(flush_tlb_all_ipi, 0, 1);
356 }
357 
358 static void flush_tlb_mm_ipi(void *mm)
359 {
360 	local_flush_tlb_mm((struct mm_struct *)mm);
361 }
362 
363 /*
364  * The following tlb flush calls are invoked when old translations are
365  * being torn down, or pte attributes are changing. For single threaded
366  * address spaces, a new context is obtained on the current cpu, and tlb
367  * context on other cpus are invalidated to force a new context allocation
368  * at switch_mm time, should the mm ever be used on other cpus. For
369  * multithreaded address spaces, intercpu interrupts have to be sent.
370  * Another case where intercpu interrupts are required is when the target
371  * mm might be active on another cpu (eg debuggers doing the flushes on
372  * behalf of debugees, kswapd stealing pages from another process etc).
373  * Kanoj 07/00.
374  */
375 void flush_tlb_mm(struct mm_struct *mm)
376 {
377 	preempt_disable();
378 
379 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
380 		smp_call_function(flush_tlb_mm_ipi, (void *)mm, 1);
381 	} else {
382 		int i;
383 		for (i = 0; i < num_online_cpus(); i++)
384 			if (smp_processor_id() != i)
385 				cpu_context(i, mm) = 0;
386 	}
387 	local_flush_tlb_mm(mm);
388 
389 	preempt_enable();
390 }
391 
392 struct flush_tlb_data {
393 	struct vm_area_struct *vma;
394 	unsigned long addr1;
395 	unsigned long addr2;
396 };
397 
398 static void flush_tlb_range_ipi(void *info)
399 {
400 	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
401 
402 	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
403 }
404 
405 void flush_tlb_range(struct vm_area_struct *vma,
406 		     unsigned long start, unsigned long end)
407 {
408 	struct mm_struct *mm = vma->vm_mm;
409 
410 	preempt_disable();
411 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
412 		struct flush_tlb_data fd;
413 
414 		fd.vma = vma;
415 		fd.addr1 = start;
416 		fd.addr2 = end;
417 		smp_call_function(flush_tlb_range_ipi, (void *)&fd, 1);
418 	} else {
419 		int i;
420 		for (i = 0; i < num_online_cpus(); i++)
421 			if (smp_processor_id() != i)
422 				cpu_context(i, mm) = 0;
423 	}
424 	local_flush_tlb_range(vma, start, end);
425 	preempt_enable();
426 }
427 
428 static void flush_tlb_kernel_range_ipi(void *info)
429 {
430 	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
431 
432 	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
433 }
434 
435 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
436 {
437 	struct flush_tlb_data fd;
438 
439 	fd.addr1 = start;
440 	fd.addr2 = end;
441 	on_each_cpu(flush_tlb_kernel_range_ipi, (void *)&fd, 1);
442 }
443 
444 static void flush_tlb_page_ipi(void *info)
445 {
446 	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
447 
448 	local_flush_tlb_page(fd->vma, fd->addr1);
449 }
450 
451 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
452 {
453 	preempt_disable();
454 	if ((atomic_read(&vma->vm_mm->mm_users) != 1) ||
455 	    (current->mm != vma->vm_mm)) {
456 		struct flush_tlb_data fd;
457 
458 		fd.vma = vma;
459 		fd.addr1 = page;
460 		smp_call_function(flush_tlb_page_ipi, (void *)&fd, 1);
461 	} else {
462 		int i;
463 		for (i = 0; i < num_online_cpus(); i++)
464 			if (smp_processor_id() != i)
465 				cpu_context(i, vma->vm_mm) = 0;
466 	}
467 	local_flush_tlb_page(vma, page);
468 	preempt_enable();
469 }
470 
471 static void flush_tlb_one_ipi(void *info)
472 {
473 	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
474 	local_flush_tlb_one(fd->addr1, fd->addr2);
475 }
476 
477 void flush_tlb_one(unsigned long asid, unsigned long vaddr)
478 {
479 	struct flush_tlb_data fd;
480 
481 	fd.addr1 = asid;
482 	fd.addr2 = vaddr;
483 
484 	smp_call_function(flush_tlb_one_ipi, (void *)&fd, 1);
485 	local_flush_tlb_one(asid, vaddr);
486 }
487