1 /* 2 * arch/sh/kernel/smp.c 3 * 4 * SMP support for the SuperH processors. 5 * 6 * Copyright (C) 2002 - 2010 Paul Mundt 7 * Copyright (C) 2006 - 2007 Akio Idehara 8 * 9 * This file is subject to the terms and conditions of the GNU General Public 10 * License. See the file "COPYING" in the main directory of this archive 11 * for more details. 12 */ 13 #include <linux/err.h> 14 #include <linux/cache.h> 15 #include <linux/cpumask.h> 16 #include <linux/delay.h> 17 #include <linux/init.h> 18 #include <linux/spinlock.h> 19 #include <linux/mm.h> 20 #include <linux/module.h> 21 #include <linux/cpu.h> 22 #include <linux/interrupt.h> 23 #include <linux/sched.h> 24 #include <linux/atomic.h> 25 #include <asm/processor.h> 26 #include <asm/system.h> 27 #include <asm/mmu_context.h> 28 #include <asm/smp.h> 29 #include <asm/cacheflush.h> 30 #include <asm/sections.h> 31 32 int __cpu_number_map[NR_CPUS]; /* Map physical to logical */ 33 int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */ 34 35 struct plat_smp_ops *mp_ops = NULL; 36 37 /* State of each CPU */ 38 DEFINE_PER_CPU(int, cpu_state) = { 0 }; 39 40 void __cpuinit register_smp_ops(struct plat_smp_ops *ops) 41 { 42 if (mp_ops) 43 printk(KERN_WARNING "Overriding previously set SMP ops\n"); 44 45 mp_ops = ops; 46 } 47 48 static inline void __cpuinit smp_store_cpu_info(unsigned int cpu) 49 { 50 struct sh_cpuinfo *c = cpu_data + cpu; 51 52 memcpy(c, &boot_cpu_data, sizeof(struct sh_cpuinfo)); 53 54 c->loops_per_jiffy = loops_per_jiffy; 55 } 56 57 void __init smp_prepare_cpus(unsigned int max_cpus) 58 { 59 unsigned int cpu = smp_processor_id(); 60 61 init_new_context(current, &init_mm); 62 current_thread_info()->cpu = cpu; 63 mp_ops->prepare_cpus(max_cpus); 64 65 #ifndef CONFIG_HOTPLUG_CPU 66 init_cpu_present(&cpu_possible_map); 67 #endif 68 } 69 70 void __init smp_prepare_boot_cpu(void) 71 { 72 unsigned int cpu = smp_processor_id(); 73 74 __cpu_number_map[0] = cpu; 75 __cpu_logical_map[0] = cpu; 76 77 set_cpu_online(cpu, true); 78 set_cpu_possible(cpu, true); 79 80 per_cpu(cpu_state, cpu) = CPU_ONLINE; 81 } 82 83 #ifdef CONFIG_HOTPLUG_CPU 84 void native_cpu_die(unsigned int cpu) 85 { 86 unsigned int i; 87 88 for (i = 0; i < 10; i++) { 89 smp_rmb(); 90 if (per_cpu(cpu_state, cpu) == CPU_DEAD) { 91 if (system_state == SYSTEM_RUNNING) 92 pr_info("CPU %u is now offline\n", cpu); 93 94 return; 95 } 96 97 msleep(100); 98 } 99 100 pr_err("CPU %u didn't die...\n", cpu); 101 } 102 103 int native_cpu_disable(unsigned int cpu) 104 { 105 return cpu == 0 ? -EPERM : 0; 106 } 107 108 void play_dead_common(void) 109 { 110 idle_task_exit(); 111 irq_ctx_exit(raw_smp_processor_id()); 112 mb(); 113 114 __get_cpu_var(cpu_state) = CPU_DEAD; 115 local_irq_disable(); 116 } 117 118 void native_play_dead(void) 119 { 120 play_dead_common(); 121 } 122 123 int __cpu_disable(void) 124 { 125 unsigned int cpu = smp_processor_id(); 126 struct task_struct *p; 127 int ret; 128 129 ret = mp_ops->cpu_disable(cpu); 130 if (ret) 131 return ret; 132 133 /* 134 * Take this CPU offline. Once we clear this, we can't return, 135 * and we must not schedule until we're ready to give up the cpu. 136 */ 137 set_cpu_online(cpu, false); 138 139 /* 140 * OK - migrate IRQs away from this CPU 141 */ 142 migrate_irqs(); 143 144 /* 145 * Stop the local timer for this CPU. 146 */ 147 local_timer_stop(cpu); 148 149 /* 150 * Flush user cache and TLB mappings, and then remove this CPU 151 * from the vm mask set of all processes. 152 */ 153 flush_cache_all(); 154 local_flush_tlb_all(); 155 156 read_lock(&tasklist_lock); 157 for_each_process(p) 158 if (p->mm) 159 cpumask_clear_cpu(cpu, mm_cpumask(p->mm)); 160 read_unlock(&tasklist_lock); 161 162 return 0; 163 } 164 #else /* ... !CONFIG_HOTPLUG_CPU */ 165 int native_cpu_disable(unsigned int cpu) 166 { 167 return -ENOSYS; 168 } 169 170 void native_cpu_die(unsigned int cpu) 171 { 172 /* We said "no" in __cpu_disable */ 173 BUG(); 174 } 175 176 void native_play_dead(void) 177 { 178 BUG(); 179 } 180 #endif 181 182 asmlinkage void __cpuinit start_secondary(void) 183 { 184 unsigned int cpu = smp_processor_id(); 185 struct mm_struct *mm = &init_mm; 186 187 enable_mmu(); 188 atomic_inc(&mm->mm_count); 189 atomic_inc(&mm->mm_users); 190 current->active_mm = mm; 191 enter_lazy_tlb(mm, current); 192 local_flush_tlb_all(); 193 194 per_cpu_trap_init(); 195 196 preempt_disable(); 197 198 notify_cpu_starting(cpu); 199 200 local_irq_enable(); 201 202 /* Enable local timers */ 203 local_timer_setup(cpu); 204 calibrate_delay(); 205 206 smp_store_cpu_info(cpu); 207 208 set_cpu_online(cpu, true); 209 per_cpu(cpu_state, cpu) = CPU_ONLINE; 210 211 cpu_idle(); 212 } 213 214 extern struct { 215 unsigned long sp; 216 unsigned long bss_start; 217 unsigned long bss_end; 218 void *start_kernel_fn; 219 void *cpu_init_fn; 220 void *thread_info; 221 } stack_start; 222 223 int __cpuinit __cpu_up(unsigned int cpu) 224 { 225 struct task_struct *tsk; 226 unsigned long timeout; 227 228 tsk = cpu_data[cpu].idle; 229 if (!tsk) { 230 tsk = fork_idle(cpu); 231 if (IS_ERR(tsk)) { 232 pr_err("Failed forking idle task for cpu %d\n", cpu); 233 return PTR_ERR(tsk); 234 } 235 236 cpu_data[cpu].idle = tsk; 237 } 238 239 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE; 240 241 /* Fill in data in head.S for secondary cpus */ 242 stack_start.sp = tsk->thread.sp; 243 stack_start.thread_info = tsk->stack; 244 stack_start.bss_start = 0; /* don't clear bss for secondary cpus */ 245 stack_start.start_kernel_fn = start_secondary; 246 247 flush_icache_range((unsigned long)&stack_start, 248 (unsigned long)&stack_start + sizeof(stack_start)); 249 wmb(); 250 251 mp_ops->start_cpu(cpu, (unsigned long)_stext); 252 253 timeout = jiffies + HZ; 254 while (time_before(jiffies, timeout)) { 255 if (cpu_online(cpu)) 256 break; 257 258 udelay(10); 259 barrier(); 260 } 261 262 if (cpu_online(cpu)) 263 return 0; 264 265 return -ENOENT; 266 } 267 268 void __init smp_cpus_done(unsigned int max_cpus) 269 { 270 unsigned long bogosum = 0; 271 int cpu; 272 273 for_each_online_cpu(cpu) 274 bogosum += cpu_data[cpu].loops_per_jiffy; 275 276 printk(KERN_INFO "SMP: Total of %d processors activated " 277 "(%lu.%02lu BogoMIPS).\n", num_online_cpus(), 278 bogosum / (500000/HZ), 279 (bogosum / (5000/HZ)) % 100); 280 } 281 282 void smp_send_reschedule(int cpu) 283 { 284 mp_ops->send_ipi(cpu, SMP_MSG_RESCHEDULE); 285 } 286 287 void smp_send_stop(void) 288 { 289 smp_call_function(stop_this_cpu, 0, 0); 290 } 291 292 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 293 { 294 int cpu; 295 296 for_each_cpu(cpu, mask) 297 mp_ops->send_ipi(cpu, SMP_MSG_FUNCTION); 298 } 299 300 void arch_send_call_function_single_ipi(int cpu) 301 { 302 mp_ops->send_ipi(cpu, SMP_MSG_FUNCTION_SINGLE); 303 } 304 305 void smp_timer_broadcast(const struct cpumask *mask) 306 { 307 int cpu; 308 309 for_each_cpu(cpu, mask) 310 mp_ops->send_ipi(cpu, SMP_MSG_TIMER); 311 } 312 313 static void ipi_timer(void) 314 { 315 irq_enter(); 316 local_timer_interrupt(); 317 irq_exit(); 318 } 319 320 void smp_message_recv(unsigned int msg) 321 { 322 switch (msg) { 323 case SMP_MSG_FUNCTION: 324 generic_smp_call_function_interrupt(); 325 break; 326 case SMP_MSG_RESCHEDULE: 327 scheduler_ipi(); 328 break; 329 case SMP_MSG_FUNCTION_SINGLE: 330 generic_smp_call_function_single_interrupt(); 331 break; 332 case SMP_MSG_TIMER: 333 ipi_timer(); 334 break; 335 default: 336 printk(KERN_WARNING "SMP %d: %s(): unknown IPI %d\n", 337 smp_processor_id(), __func__, msg); 338 break; 339 } 340 } 341 342 /* Not really SMP stuff ... */ 343 int setup_profiling_timer(unsigned int multiplier) 344 { 345 return 0; 346 } 347 348 static void flush_tlb_all_ipi(void *info) 349 { 350 local_flush_tlb_all(); 351 } 352 353 void flush_tlb_all(void) 354 { 355 on_each_cpu(flush_tlb_all_ipi, 0, 1); 356 } 357 358 static void flush_tlb_mm_ipi(void *mm) 359 { 360 local_flush_tlb_mm((struct mm_struct *)mm); 361 } 362 363 /* 364 * The following tlb flush calls are invoked when old translations are 365 * being torn down, or pte attributes are changing. For single threaded 366 * address spaces, a new context is obtained on the current cpu, and tlb 367 * context on other cpus are invalidated to force a new context allocation 368 * at switch_mm time, should the mm ever be used on other cpus. For 369 * multithreaded address spaces, intercpu interrupts have to be sent. 370 * Another case where intercpu interrupts are required is when the target 371 * mm might be active on another cpu (eg debuggers doing the flushes on 372 * behalf of debugees, kswapd stealing pages from another process etc). 373 * Kanoj 07/00. 374 */ 375 void flush_tlb_mm(struct mm_struct *mm) 376 { 377 preempt_disable(); 378 379 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { 380 smp_call_function(flush_tlb_mm_ipi, (void *)mm, 1); 381 } else { 382 int i; 383 for (i = 0; i < num_online_cpus(); i++) 384 if (smp_processor_id() != i) 385 cpu_context(i, mm) = 0; 386 } 387 local_flush_tlb_mm(mm); 388 389 preempt_enable(); 390 } 391 392 struct flush_tlb_data { 393 struct vm_area_struct *vma; 394 unsigned long addr1; 395 unsigned long addr2; 396 }; 397 398 static void flush_tlb_range_ipi(void *info) 399 { 400 struct flush_tlb_data *fd = (struct flush_tlb_data *)info; 401 402 local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2); 403 } 404 405 void flush_tlb_range(struct vm_area_struct *vma, 406 unsigned long start, unsigned long end) 407 { 408 struct mm_struct *mm = vma->vm_mm; 409 410 preempt_disable(); 411 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { 412 struct flush_tlb_data fd; 413 414 fd.vma = vma; 415 fd.addr1 = start; 416 fd.addr2 = end; 417 smp_call_function(flush_tlb_range_ipi, (void *)&fd, 1); 418 } else { 419 int i; 420 for (i = 0; i < num_online_cpus(); i++) 421 if (smp_processor_id() != i) 422 cpu_context(i, mm) = 0; 423 } 424 local_flush_tlb_range(vma, start, end); 425 preempt_enable(); 426 } 427 428 static void flush_tlb_kernel_range_ipi(void *info) 429 { 430 struct flush_tlb_data *fd = (struct flush_tlb_data *)info; 431 432 local_flush_tlb_kernel_range(fd->addr1, fd->addr2); 433 } 434 435 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 436 { 437 struct flush_tlb_data fd; 438 439 fd.addr1 = start; 440 fd.addr2 = end; 441 on_each_cpu(flush_tlb_kernel_range_ipi, (void *)&fd, 1); 442 } 443 444 static void flush_tlb_page_ipi(void *info) 445 { 446 struct flush_tlb_data *fd = (struct flush_tlb_data *)info; 447 448 local_flush_tlb_page(fd->vma, fd->addr1); 449 } 450 451 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page) 452 { 453 preempt_disable(); 454 if ((atomic_read(&vma->vm_mm->mm_users) != 1) || 455 (current->mm != vma->vm_mm)) { 456 struct flush_tlb_data fd; 457 458 fd.vma = vma; 459 fd.addr1 = page; 460 smp_call_function(flush_tlb_page_ipi, (void *)&fd, 1); 461 } else { 462 int i; 463 for (i = 0; i < num_online_cpus(); i++) 464 if (smp_processor_id() != i) 465 cpu_context(i, vma->vm_mm) = 0; 466 } 467 local_flush_tlb_page(vma, page); 468 preempt_enable(); 469 } 470 471 static void flush_tlb_one_ipi(void *info) 472 { 473 struct flush_tlb_data *fd = (struct flush_tlb_data *)info; 474 local_flush_tlb_one(fd->addr1, fd->addr2); 475 } 476 477 void flush_tlb_one(unsigned long asid, unsigned long vaddr) 478 { 479 struct flush_tlb_data fd; 480 481 fd.addr1 = asid; 482 fd.addr2 = vaddr; 483 484 smp_call_function(flush_tlb_one_ipi, (void *)&fd, 1); 485 local_flush_tlb_one(asid, vaddr); 486 } 487