1 /* 2 * arch/sh/kernel/smp.c 3 * 4 * SMP support for the SuperH processors. 5 * 6 * Copyright (C) 2002 - 2010 Paul Mundt 7 * Copyright (C) 2006 - 2007 Akio Idehara 8 * 9 * This file is subject to the terms and conditions of the GNU General Public 10 * License. See the file "COPYING" in the main directory of this archive 11 * for more details. 12 */ 13 #include <linux/err.h> 14 #include <linux/cache.h> 15 #include <linux/cpumask.h> 16 #include <linux/delay.h> 17 #include <linux/init.h> 18 #include <linux/spinlock.h> 19 #include <linux/mm.h> 20 #include <linux/module.h> 21 #include <linux/cpu.h> 22 #include <linux/interrupt.h> 23 #include <linux/sched.h> 24 #include <linux/atomic.h> 25 #include <asm/processor.h> 26 #include <asm/mmu_context.h> 27 #include <asm/smp.h> 28 #include <asm/cacheflush.h> 29 #include <asm/sections.h> 30 #include <asm/setup.h> 31 32 int __cpu_number_map[NR_CPUS]; /* Map physical to logical */ 33 int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */ 34 35 struct plat_smp_ops *mp_ops = NULL; 36 37 /* State of each CPU */ 38 DEFINE_PER_CPU(int, cpu_state) = { 0 }; 39 40 void register_smp_ops(struct plat_smp_ops *ops) 41 { 42 if (mp_ops) 43 printk(KERN_WARNING "Overriding previously set SMP ops\n"); 44 45 mp_ops = ops; 46 } 47 48 static inline void smp_store_cpu_info(unsigned int cpu) 49 { 50 struct sh_cpuinfo *c = cpu_data + cpu; 51 52 memcpy(c, &boot_cpu_data, sizeof(struct sh_cpuinfo)); 53 54 c->loops_per_jiffy = loops_per_jiffy; 55 } 56 57 void __init smp_prepare_cpus(unsigned int max_cpus) 58 { 59 unsigned int cpu = smp_processor_id(); 60 61 init_new_context(current, &init_mm); 62 current_thread_info()->cpu = cpu; 63 mp_ops->prepare_cpus(max_cpus); 64 65 #ifndef CONFIG_HOTPLUG_CPU 66 init_cpu_present(cpu_possible_mask); 67 #endif 68 } 69 70 void __init smp_prepare_boot_cpu(void) 71 { 72 unsigned int cpu = smp_processor_id(); 73 74 __cpu_number_map[0] = cpu; 75 __cpu_logical_map[0] = cpu; 76 77 set_cpu_online(cpu, true); 78 set_cpu_possible(cpu, true); 79 80 per_cpu(cpu_state, cpu) = CPU_ONLINE; 81 } 82 83 #ifdef CONFIG_HOTPLUG_CPU 84 void native_cpu_die(unsigned int cpu) 85 { 86 unsigned int i; 87 88 for (i = 0; i < 10; i++) { 89 smp_rmb(); 90 if (per_cpu(cpu_state, cpu) == CPU_DEAD) { 91 if (system_state == SYSTEM_RUNNING) 92 pr_info("CPU %u is now offline\n", cpu); 93 94 return; 95 } 96 97 msleep(100); 98 } 99 100 pr_err("CPU %u didn't die...\n", cpu); 101 } 102 103 int native_cpu_disable(unsigned int cpu) 104 { 105 return cpu == 0 ? -EPERM : 0; 106 } 107 108 void play_dead_common(void) 109 { 110 idle_task_exit(); 111 irq_ctx_exit(raw_smp_processor_id()); 112 mb(); 113 114 __this_cpu_write(cpu_state, CPU_DEAD); 115 local_irq_disable(); 116 } 117 118 void native_play_dead(void) 119 { 120 play_dead_common(); 121 } 122 123 int __cpu_disable(void) 124 { 125 unsigned int cpu = smp_processor_id(); 126 int ret; 127 128 ret = mp_ops->cpu_disable(cpu); 129 if (ret) 130 return ret; 131 132 /* 133 * Take this CPU offline. Once we clear this, we can't return, 134 * and we must not schedule until we're ready to give up the cpu. 135 */ 136 set_cpu_online(cpu, false); 137 138 /* 139 * OK - migrate IRQs away from this CPU 140 */ 141 migrate_irqs(); 142 143 /* 144 * Stop the local timer for this CPU. 145 */ 146 local_timer_stop(cpu); 147 148 /* 149 * Flush user cache and TLB mappings, and then remove this CPU 150 * from the vm mask set of all processes. 151 */ 152 flush_cache_all(); 153 local_flush_tlb_all(); 154 155 clear_tasks_mm_cpumask(cpu); 156 157 return 0; 158 } 159 #else /* ... !CONFIG_HOTPLUG_CPU */ 160 int native_cpu_disable(unsigned int cpu) 161 { 162 return -ENOSYS; 163 } 164 165 void native_cpu_die(unsigned int cpu) 166 { 167 /* We said "no" in __cpu_disable */ 168 BUG(); 169 } 170 171 void native_play_dead(void) 172 { 173 BUG(); 174 } 175 #endif 176 177 asmlinkage void start_secondary(void) 178 { 179 unsigned int cpu = smp_processor_id(); 180 struct mm_struct *mm = &init_mm; 181 182 enable_mmu(); 183 atomic_inc(&mm->mm_count); 184 atomic_inc(&mm->mm_users); 185 current->active_mm = mm; 186 enter_lazy_tlb(mm, current); 187 local_flush_tlb_all(); 188 189 per_cpu_trap_init(); 190 191 preempt_disable(); 192 193 notify_cpu_starting(cpu); 194 195 local_irq_enable(); 196 197 /* Enable local timers */ 198 local_timer_setup(cpu); 199 calibrate_delay(); 200 201 smp_store_cpu_info(cpu); 202 203 set_cpu_online(cpu, true); 204 per_cpu(cpu_state, cpu) = CPU_ONLINE; 205 206 cpu_startup_entry(CPUHP_ONLINE); 207 } 208 209 extern struct { 210 unsigned long sp; 211 unsigned long bss_start; 212 unsigned long bss_end; 213 void *start_kernel_fn; 214 void *cpu_init_fn; 215 void *thread_info; 216 } stack_start; 217 218 int __cpu_up(unsigned int cpu, struct task_struct *tsk) 219 { 220 unsigned long timeout; 221 222 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE; 223 224 /* Fill in data in head.S for secondary cpus */ 225 stack_start.sp = tsk->thread.sp; 226 stack_start.thread_info = tsk->stack; 227 stack_start.bss_start = 0; /* don't clear bss for secondary cpus */ 228 stack_start.start_kernel_fn = start_secondary; 229 230 flush_icache_range((unsigned long)&stack_start, 231 (unsigned long)&stack_start + sizeof(stack_start)); 232 wmb(); 233 234 mp_ops->start_cpu(cpu, (unsigned long)_stext); 235 236 timeout = jiffies + HZ; 237 while (time_before(jiffies, timeout)) { 238 if (cpu_online(cpu)) 239 break; 240 241 udelay(10); 242 barrier(); 243 } 244 245 if (cpu_online(cpu)) 246 return 0; 247 248 return -ENOENT; 249 } 250 251 void __init smp_cpus_done(unsigned int max_cpus) 252 { 253 unsigned long bogosum = 0; 254 int cpu; 255 256 for_each_online_cpu(cpu) 257 bogosum += cpu_data[cpu].loops_per_jiffy; 258 259 printk(KERN_INFO "SMP: Total of %d processors activated " 260 "(%lu.%02lu BogoMIPS).\n", num_online_cpus(), 261 bogosum / (500000/HZ), 262 (bogosum / (5000/HZ)) % 100); 263 } 264 265 void smp_send_reschedule(int cpu) 266 { 267 mp_ops->send_ipi(cpu, SMP_MSG_RESCHEDULE); 268 } 269 270 void smp_send_stop(void) 271 { 272 smp_call_function(stop_this_cpu, 0, 0); 273 } 274 275 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 276 { 277 int cpu; 278 279 for_each_cpu(cpu, mask) 280 mp_ops->send_ipi(cpu, SMP_MSG_FUNCTION); 281 } 282 283 void arch_send_call_function_single_ipi(int cpu) 284 { 285 mp_ops->send_ipi(cpu, SMP_MSG_FUNCTION_SINGLE); 286 } 287 288 void smp_timer_broadcast(const struct cpumask *mask) 289 { 290 int cpu; 291 292 for_each_cpu(cpu, mask) 293 mp_ops->send_ipi(cpu, SMP_MSG_TIMER); 294 } 295 296 static void ipi_timer(void) 297 { 298 irq_enter(); 299 local_timer_interrupt(); 300 irq_exit(); 301 } 302 303 void smp_message_recv(unsigned int msg) 304 { 305 switch (msg) { 306 case SMP_MSG_FUNCTION: 307 generic_smp_call_function_interrupt(); 308 break; 309 case SMP_MSG_RESCHEDULE: 310 scheduler_ipi(); 311 break; 312 case SMP_MSG_FUNCTION_SINGLE: 313 generic_smp_call_function_single_interrupt(); 314 break; 315 case SMP_MSG_TIMER: 316 ipi_timer(); 317 break; 318 default: 319 printk(KERN_WARNING "SMP %d: %s(): unknown IPI %d\n", 320 smp_processor_id(), __func__, msg); 321 break; 322 } 323 } 324 325 /* Not really SMP stuff ... */ 326 int setup_profiling_timer(unsigned int multiplier) 327 { 328 return 0; 329 } 330 331 static void flush_tlb_all_ipi(void *info) 332 { 333 local_flush_tlb_all(); 334 } 335 336 void flush_tlb_all(void) 337 { 338 on_each_cpu(flush_tlb_all_ipi, 0, 1); 339 } 340 341 static void flush_tlb_mm_ipi(void *mm) 342 { 343 local_flush_tlb_mm((struct mm_struct *)mm); 344 } 345 346 /* 347 * The following tlb flush calls are invoked when old translations are 348 * being torn down, or pte attributes are changing. For single threaded 349 * address spaces, a new context is obtained on the current cpu, and tlb 350 * context on other cpus are invalidated to force a new context allocation 351 * at switch_mm time, should the mm ever be used on other cpus. For 352 * multithreaded address spaces, intercpu interrupts have to be sent. 353 * Another case where intercpu interrupts are required is when the target 354 * mm might be active on another cpu (eg debuggers doing the flushes on 355 * behalf of debugees, kswapd stealing pages from another process etc). 356 * Kanoj 07/00. 357 */ 358 void flush_tlb_mm(struct mm_struct *mm) 359 { 360 preempt_disable(); 361 362 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { 363 smp_call_function(flush_tlb_mm_ipi, (void *)mm, 1); 364 } else { 365 int i; 366 for (i = 0; i < num_online_cpus(); i++) 367 if (smp_processor_id() != i) 368 cpu_context(i, mm) = 0; 369 } 370 local_flush_tlb_mm(mm); 371 372 preempt_enable(); 373 } 374 375 struct flush_tlb_data { 376 struct vm_area_struct *vma; 377 unsigned long addr1; 378 unsigned long addr2; 379 }; 380 381 static void flush_tlb_range_ipi(void *info) 382 { 383 struct flush_tlb_data *fd = (struct flush_tlb_data *)info; 384 385 local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2); 386 } 387 388 void flush_tlb_range(struct vm_area_struct *vma, 389 unsigned long start, unsigned long end) 390 { 391 struct mm_struct *mm = vma->vm_mm; 392 393 preempt_disable(); 394 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { 395 struct flush_tlb_data fd; 396 397 fd.vma = vma; 398 fd.addr1 = start; 399 fd.addr2 = end; 400 smp_call_function(flush_tlb_range_ipi, (void *)&fd, 1); 401 } else { 402 int i; 403 for (i = 0; i < num_online_cpus(); i++) 404 if (smp_processor_id() != i) 405 cpu_context(i, mm) = 0; 406 } 407 local_flush_tlb_range(vma, start, end); 408 preempt_enable(); 409 } 410 411 static void flush_tlb_kernel_range_ipi(void *info) 412 { 413 struct flush_tlb_data *fd = (struct flush_tlb_data *)info; 414 415 local_flush_tlb_kernel_range(fd->addr1, fd->addr2); 416 } 417 418 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 419 { 420 struct flush_tlb_data fd; 421 422 fd.addr1 = start; 423 fd.addr2 = end; 424 on_each_cpu(flush_tlb_kernel_range_ipi, (void *)&fd, 1); 425 } 426 427 static void flush_tlb_page_ipi(void *info) 428 { 429 struct flush_tlb_data *fd = (struct flush_tlb_data *)info; 430 431 local_flush_tlb_page(fd->vma, fd->addr1); 432 } 433 434 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page) 435 { 436 preempt_disable(); 437 if ((atomic_read(&vma->vm_mm->mm_users) != 1) || 438 (current->mm != vma->vm_mm)) { 439 struct flush_tlb_data fd; 440 441 fd.vma = vma; 442 fd.addr1 = page; 443 smp_call_function(flush_tlb_page_ipi, (void *)&fd, 1); 444 } else { 445 int i; 446 for (i = 0; i < num_online_cpus(); i++) 447 if (smp_processor_id() != i) 448 cpu_context(i, vma->vm_mm) = 0; 449 } 450 local_flush_tlb_page(vma, page); 451 preempt_enable(); 452 } 453 454 static void flush_tlb_one_ipi(void *info) 455 { 456 struct flush_tlb_data *fd = (struct flush_tlb_data *)info; 457 local_flush_tlb_one(fd->addr1, fd->addr2); 458 } 459 460 void flush_tlb_one(unsigned long asid, unsigned long vaddr) 461 { 462 struct flush_tlb_data fd; 463 464 fd.addr1 = asid; 465 fd.addr2 = vaddr; 466 467 smp_call_function(flush_tlb_one_ipi, (void *)&fd, 1); 468 local_flush_tlb_one(asid, vaddr); 469 } 470