xref: /openbmc/linux/arch/sh/kernel/smp.c (revision 5104d265)
1 /*
2  * arch/sh/kernel/smp.c
3  *
4  * SMP support for the SuperH processors.
5  *
6  * Copyright (C) 2002 - 2010 Paul Mundt
7  * Copyright (C) 2006 - 2007 Akio Idehara
8  *
9  * This file is subject to the terms and conditions of the GNU General Public
10  * License.  See the file "COPYING" in the main directory of this archive
11  * for more details.
12  */
13 #include <linux/err.h>
14 #include <linux/cache.h>
15 #include <linux/cpumask.h>
16 #include <linux/delay.h>
17 #include <linux/init.h>
18 #include <linux/spinlock.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/cpu.h>
22 #include <linux/interrupt.h>
23 #include <linux/sched.h>
24 #include <linux/atomic.h>
25 #include <asm/processor.h>
26 #include <asm/mmu_context.h>
27 #include <asm/smp.h>
28 #include <asm/cacheflush.h>
29 #include <asm/sections.h>
30 #include <asm/setup.h>
31 
32 int __cpu_number_map[NR_CPUS];		/* Map physical to logical */
33 int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
34 
35 struct plat_smp_ops *mp_ops = NULL;
36 
37 /* State of each CPU */
38 DEFINE_PER_CPU(int, cpu_state) = { 0 };
39 
40 void register_smp_ops(struct plat_smp_ops *ops)
41 {
42 	if (mp_ops)
43 		printk(KERN_WARNING "Overriding previously set SMP ops\n");
44 
45 	mp_ops = ops;
46 }
47 
48 static inline void smp_store_cpu_info(unsigned int cpu)
49 {
50 	struct sh_cpuinfo *c = cpu_data + cpu;
51 
52 	memcpy(c, &boot_cpu_data, sizeof(struct sh_cpuinfo));
53 
54 	c->loops_per_jiffy = loops_per_jiffy;
55 }
56 
57 void __init smp_prepare_cpus(unsigned int max_cpus)
58 {
59 	unsigned int cpu = smp_processor_id();
60 
61 	init_new_context(current, &init_mm);
62 	current_thread_info()->cpu = cpu;
63 	mp_ops->prepare_cpus(max_cpus);
64 
65 #ifndef CONFIG_HOTPLUG_CPU
66 	init_cpu_present(cpu_possible_mask);
67 #endif
68 }
69 
70 void __init smp_prepare_boot_cpu(void)
71 {
72 	unsigned int cpu = smp_processor_id();
73 
74 	__cpu_number_map[0] = cpu;
75 	__cpu_logical_map[0] = cpu;
76 
77 	set_cpu_online(cpu, true);
78 	set_cpu_possible(cpu, true);
79 
80 	per_cpu(cpu_state, cpu) = CPU_ONLINE;
81 }
82 
83 #ifdef CONFIG_HOTPLUG_CPU
84 void native_cpu_die(unsigned int cpu)
85 {
86 	unsigned int i;
87 
88 	for (i = 0; i < 10; i++) {
89 		smp_rmb();
90 		if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
91 			if (system_state == SYSTEM_RUNNING)
92 				pr_info("CPU %u is now offline\n", cpu);
93 
94 			return;
95 		}
96 
97 		msleep(100);
98 	}
99 
100 	pr_err("CPU %u didn't die...\n", cpu);
101 }
102 
103 int native_cpu_disable(unsigned int cpu)
104 {
105 	return cpu == 0 ? -EPERM : 0;
106 }
107 
108 void play_dead_common(void)
109 {
110 	idle_task_exit();
111 	irq_ctx_exit(raw_smp_processor_id());
112 	mb();
113 
114 	__get_cpu_var(cpu_state) = CPU_DEAD;
115 	local_irq_disable();
116 }
117 
118 void native_play_dead(void)
119 {
120 	play_dead_common();
121 }
122 
123 int __cpu_disable(void)
124 {
125 	unsigned int cpu = smp_processor_id();
126 	int ret;
127 
128 	ret = mp_ops->cpu_disable(cpu);
129 	if (ret)
130 		return ret;
131 
132 	/*
133 	 * Take this CPU offline.  Once we clear this, we can't return,
134 	 * and we must not schedule until we're ready to give up the cpu.
135 	 */
136 	set_cpu_online(cpu, false);
137 
138 	/*
139 	 * OK - migrate IRQs away from this CPU
140 	 */
141 	migrate_irqs();
142 
143 	/*
144 	 * Stop the local timer for this CPU.
145 	 */
146 	local_timer_stop(cpu);
147 
148 	/*
149 	 * Flush user cache and TLB mappings, and then remove this CPU
150 	 * from the vm mask set of all processes.
151 	 */
152 	flush_cache_all();
153 	local_flush_tlb_all();
154 
155 	clear_tasks_mm_cpumask(cpu);
156 
157 	return 0;
158 }
159 #else /* ... !CONFIG_HOTPLUG_CPU */
160 int native_cpu_disable(unsigned int cpu)
161 {
162 	return -ENOSYS;
163 }
164 
165 void native_cpu_die(unsigned int cpu)
166 {
167 	/* We said "no" in __cpu_disable */
168 	BUG();
169 }
170 
171 void native_play_dead(void)
172 {
173 	BUG();
174 }
175 #endif
176 
177 asmlinkage void start_secondary(void)
178 {
179 	unsigned int cpu = smp_processor_id();
180 	struct mm_struct *mm = &init_mm;
181 
182 	enable_mmu();
183 	atomic_inc(&mm->mm_count);
184 	atomic_inc(&mm->mm_users);
185 	current->active_mm = mm;
186 	enter_lazy_tlb(mm, current);
187 	local_flush_tlb_all();
188 
189 	per_cpu_trap_init();
190 
191 	preempt_disable();
192 
193 	notify_cpu_starting(cpu);
194 
195 	local_irq_enable();
196 
197 	/* Enable local timers */
198 	local_timer_setup(cpu);
199 	calibrate_delay();
200 
201 	smp_store_cpu_info(cpu);
202 
203 	set_cpu_online(cpu, true);
204 	per_cpu(cpu_state, cpu) = CPU_ONLINE;
205 
206 	cpu_startup_entry(CPUHP_ONLINE);
207 }
208 
209 extern struct {
210 	unsigned long sp;
211 	unsigned long bss_start;
212 	unsigned long bss_end;
213 	void *start_kernel_fn;
214 	void *cpu_init_fn;
215 	void *thread_info;
216 } stack_start;
217 
218 int __cpu_up(unsigned int cpu, struct task_struct *tsk)
219 {
220 	unsigned long timeout;
221 
222 	per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
223 
224 	/* Fill in data in head.S for secondary cpus */
225 	stack_start.sp = tsk->thread.sp;
226 	stack_start.thread_info = tsk->stack;
227 	stack_start.bss_start = 0; /* don't clear bss for secondary cpus */
228 	stack_start.start_kernel_fn = start_secondary;
229 
230 	flush_icache_range((unsigned long)&stack_start,
231 			   (unsigned long)&stack_start + sizeof(stack_start));
232 	wmb();
233 
234 	mp_ops->start_cpu(cpu, (unsigned long)_stext);
235 
236 	timeout = jiffies + HZ;
237 	while (time_before(jiffies, timeout)) {
238 		if (cpu_online(cpu))
239 			break;
240 
241 		udelay(10);
242 		barrier();
243 	}
244 
245 	if (cpu_online(cpu))
246 		return 0;
247 
248 	return -ENOENT;
249 }
250 
251 void __init smp_cpus_done(unsigned int max_cpus)
252 {
253 	unsigned long bogosum = 0;
254 	int cpu;
255 
256 	for_each_online_cpu(cpu)
257 		bogosum += cpu_data[cpu].loops_per_jiffy;
258 
259 	printk(KERN_INFO "SMP: Total of %d processors activated "
260 	       "(%lu.%02lu BogoMIPS).\n", num_online_cpus(),
261 	       bogosum / (500000/HZ),
262 	       (bogosum / (5000/HZ)) % 100);
263 }
264 
265 void smp_send_reschedule(int cpu)
266 {
267 	mp_ops->send_ipi(cpu, SMP_MSG_RESCHEDULE);
268 }
269 
270 void smp_send_stop(void)
271 {
272 	smp_call_function(stop_this_cpu, 0, 0);
273 }
274 
275 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
276 {
277 	int cpu;
278 
279 	for_each_cpu(cpu, mask)
280 		mp_ops->send_ipi(cpu, SMP_MSG_FUNCTION);
281 }
282 
283 void arch_send_call_function_single_ipi(int cpu)
284 {
285 	mp_ops->send_ipi(cpu, SMP_MSG_FUNCTION_SINGLE);
286 }
287 
288 void smp_timer_broadcast(const struct cpumask *mask)
289 {
290 	int cpu;
291 
292 	for_each_cpu(cpu, mask)
293 		mp_ops->send_ipi(cpu, SMP_MSG_TIMER);
294 }
295 
296 static void ipi_timer(void)
297 {
298 	irq_enter();
299 	local_timer_interrupt();
300 	irq_exit();
301 }
302 
303 void smp_message_recv(unsigned int msg)
304 {
305 	switch (msg) {
306 	case SMP_MSG_FUNCTION:
307 		generic_smp_call_function_interrupt();
308 		break;
309 	case SMP_MSG_RESCHEDULE:
310 		scheduler_ipi();
311 		break;
312 	case SMP_MSG_FUNCTION_SINGLE:
313 		generic_smp_call_function_single_interrupt();
314 		break;
315 	case SMP_MSG_TIMER:
316 		ipi_timer();
317 		break;
318 	default:
319 		printk(KERN_WARNING "SMP %d: %s(): unknown IPI %d\n",
320 		       smp_processor_id(), __func__, msg);
321 		break;
322 	}
323 }
324 
325 /* Not really SMP stuff ... */
326 int setup_profiling_timer(unsigned int multiplier)
327 {
328 	return 0;
329 }
330 
331 static void flush_tlb_all_ipi(void *info)
332 {
333 	local_flush_tlb_all();
334 }
335 
336 void flush_tlb_all(void)
337 {
338 	on_each_cpu(flush_tlb_all_ipi, 0, 1);
339 }
340 
341 static void flush_tlb_mm_ipi(void *mm)
342 {
343 	local_flush_tlb_mm((struct mm_struct *)mm);
344 }
345 
346 /*
347  * The following tlb flush calls are invoked when old translations are
348  * being torn down, or pte attributes are changing. For single threaded
349  * address spaces, a new context is obtained on the current cpu, and tlb
350  * context on other cpus are invalidated to force a new context allocation
351  * at switch_mm time, should the mm ever be used on other cpus. For
352  * multithreaded address spaces, intercpu interrupts have to be sent.
353  * Another case where intercpu interrupts are required is when the target
354  * mm might be active on another cpu (eg debuggers doing the flushes on
355  * behalf of debugees, kswapd stealing pages from another process etc).
356  * Kanoj 07/00.
357  */
358 void flush_tlb_mm(struct mm_struct *mm)
359 {
360 	preempt_disable();
361 
362 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
363 		smp_call_function(flush_tlb_mm_ipi, (void *)mm, 1);
364 	} else {
365 		int i;
366 		for (i = 0; i < num_online_cpus(); i++)
367 			if (smp_processor_id() != i)
368 				cpu_context(i, mm) = 0;
369 	}
370 	local_flush_tlb_mm(mm);
371 
372 	preempt_enable();
373 }
374 
375 struct flush_tlb_data {
376 	struct vm_area_struct *vma;
377 	unsigned long addr1;
378 	unsigned long addr2;
379 };
380 
381 static void flush_tlb_range_ipi(void *info)
382 {
383 	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
384 
385 	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
386 }
387 
388 void flush_tlb_range(struct vm_area_struct *vma,
389 		     unsigned long start, unsigned long end)
390 {
391 	struct mm_struct *mm = vma->vm_mm;
392 
393 	preempt_disable();
394 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
395 		struct flush_tlb_data fd;
396 
397 		fd.vma = vma;
398 		fd.addr1 = start;
399 		fd.addr2 = end;
400 		smp_call_function(flush_tlb_range_ipi, (void *)&fd, 1);
401 	} else {
402 		int i;
403 		for (i = 0; i < num_online_cpus(); i++)
404 			if (smp_processor_id() != i)
405 				cpu_context(i, mm) = 0;
406 	}
407 	local_flush_tlb_range(vma, start, end);
408 	preempt_enable();
409 }
410 
411 static void flush_tlb_kernel_range_ipi(void *info)
412 {
413 	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
414 
415 	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
416 }
417 
418 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
419 {
420 	struct flush_tlb_data fd;
421 
422 	fd.addr1 = start;
423 	fd.addr2 = end;
424 	on_each_cpu(flush_tlb_kernel_range_ipi, (void *)&fd, 1);
425 }
426 
427 static void flush_tlb_page_ipi(void *info)
428 {
429 	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
430 
431 	local_flush_tlb_page(fd->vma, fd->addr1);
432 }
433 
434 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
435 {
436 	preempt_disable();
437 	if ((atomic_read(&vma->vm_mm->mm_users) != 1) ||
438 	    (current->mm != vma->vm_mm)) {
439 		struct flush_tlb_data fd;
440 
441 		fd.vma = vma;
442 		fd.addr1 = page;
443 		smp_call_function(flush_tlb_page_ipi, (void *)&fd, 1);
444 	} else {
445 		int i;
446 		for (i = 0; i < num_online_cpus(); i++)
447 			if (smp_processor_id() != i)
448 				cpu_context(i, vma->vm_mm) = 0;
449 	}
450 	local_flush_tlb_page(vma, page);
451 	preempt_enable();
452 }
453 
454 static void flush_tlb_one_ipi(void *info)
455 {
456 	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
457 	local_flush_tlb_one(fd->addr1, fd->addr2);
458 }
459 
460 void flush_tlb_one(unsigned long asid, unsigned long vaddr)
461 {
462 	struct flush_tlb_data fd;
463 
464 	fd.addr1 = asid;
465 	fd.addr2 = vaddr;
466 
467 	smp_call_function(flush_tlb_one_ipi, (void *)&fd, 1);
468 	local_flush_tlb_one(asid, vaddr);
469 }
470